当前位置:9136范文网>教育范文>教案>圆的面积教案

圆的面积教案

时间:2024-08-12 14:16:03 教案 我要投稿

圆的面积教案汇编十篇

  作为一名教学工作者,就有可能用到教案,教案是教学活动的依据,有着重要的地位。那么问题来了,教案应该怎么写?以下是小编整理的圆的面积教案10篇,欢迎大家分享。

圆的面积教案汇编十篇

圆的面积教案 篇1

  小学数学第十一册第四单元圆练习题

  一、填空。

  (1) 写出下面各题的最简整数比。

  ①圆的半径和直径的比是( ),圆的周长和直径的比是( )。

  ②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。

  (2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。

  (3)圆的周长是37.68分米,它的面积是( )平方分米。

  (4)圆的半径扩大3倍,它的面积就扩大()。

  (5)一个圆的周长、直径和半径相加的和是9.28厘米,这个圆的直径是()厘米;面积是()。

  (6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

  (7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

  (8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

  7、用一根长12.56厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。

  二、判断题。正确的画“√”,错的打“×”,并订正。

  (1)在一个圆里,两端都在圆上的'线段叫做圆的直径。( )

  (2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )

  (3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )

  (4)半圆的周长就是这个圆周长的一半。( )

  (5)求圆的周长,用字母表示就是C=πd或C=2πr。( )

  三、选择题。将正确答案的序号填在括号里。(8%)

  (1)画圆时,固定的一点叫()。

  ① 顶点② 圆心 ③ 字母O

  (2)从圆心到圆上任意一点的()叫做半径。

  ① 直线② 射线 ③ 线段

  (3)周长相等的图形中,面积最大的是()。

  ① 圆 ②正方形③长方形

  (4)圆周率表示()

  ① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系

  (5)半径为r的圆面积等于()。

  ① πr2 ② 2πr2 ③πd

  (6)圆的直径长度决定圆的()。

  ① 位置② 大小 ③ 形状

  (7)圆的半径扩大3倍,它的面积就扩大()。

  ① 3倍 ② 6倍 ③ 9倍

  (8)已知圆的周长是106.76分米,圆的半径是()。

  ① 17分米②8.5分米 ③ 34分米

  四、应用题。

  (1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?

  (2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?

  (3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)

  (4)一个农民新开挖一个圆形水池,水池的周长是50.24米,求水池占地的面积是多少平方米?

  (5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。剩下的面积是多少平方厘米?

  (6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?

  (7)公园里有一个圆形花坛,周长50.24米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?

  (8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?

  小学数学六年级(上册)圆测试题 (上)

  一、填空

  1、( )决定圆的大小,( )决定圆的位置。

  2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,

  3、( )是圆中最长的线段。

  4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。

  5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的( )倍。

  6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )

  7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。

  8、π,3.14,3.1414,0.314,31.4,从小到大排列是()。

  9、圆的周长总是直径()倍,是半径的( )倍。

  10、画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是( )。

  11、在同一个圆里,直径和半径的关系用字母表示是()。

  12、一个半圆,半径是r,它的周长是( )。

  二、判断

  1、直径是半径的2倍。

  2、两端都在圆上的线段,叫半径。

  3、半径是2厘米的圆周长和面积相等。

  4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。

  5、如果圆的直径是d,它的面积是 πd2 。

  6、圆周率就是3.14

  7、半圆形的周长就是圆周长的一半。

  8、直径是圆的对称轴。

  9、一个圆的面积和一个正方形的面积相等,它们的周长也相等

  10、半圆形的面积就是圆面积的一半

  三、应用

  1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。

  (1)、栅栏的长度是多少?

  (2)、这条小路的面积是多少?

  2、 一根12.96 米的绳子,绕树10圈还长0.4米,树干横截面的面积是多少?

  3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)

  4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?

  5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?

  6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?

  7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?

  8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?

  9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?

  10一个半圆的周长是10.28厘米,这个半圆的半径是多少,面积是多少?

  11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?

  12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是0.6米。这个游泳池占地面积是多少?

圆的面积教案 篇2

  教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

  教学目的:

  1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

  教学重点:理解和掌握圆面积的计算公式的推导过程

  教学难点:圆面积计算公式的推导

  教学过程:

  一 、创设情境,提出问题

  ( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的`什么?4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。

  三、 应用知识,拓展思维

  1师:要求圆的面积必须知道什么?

  2 运用公式计算面积

  A完成羊吃草的面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

  四 归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇3

  教学目标

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重、难点:圆面积公式的推导与运用。

  学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片

  教学过程

  一、设疑导入,激发动机

  1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。

  2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)

  3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。

  二、动手操作,探索新知

  1.猜想、引导,确定方法

  师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?

  (学生可能会想到长方形、平行四边形、三角形、梯形等。)

  师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?

  (根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)

  2.动手操作,尝试探究

  师请同学们动手剪拼一下,看到底能拼成什么图形。

  (学生动手操作,小组合作探究)

  师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)

  3.课件演示,突破难点

  师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:

  (1)圆与有近似的长方形有什么关系?

  (2)把圆16等份和32等份后,拼成的图形有什么区别?

  (3)如果等分份数仅需增加,结果会怎样?

  师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。

  4.观察比较,导出公式

  师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?

  学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的`一半×半径,也就是S=πr×r=πr2

  (可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)

  5.尝试运用

  出示例3,读题列式,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  2.完成第116页做一做的第1题。

  3.看书质疑。

  三、运用新知,解决问题

  1.求下面各圆的面积,只列式不计算。

  直径50分米

  2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?

  3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、课堂作业

  第118页的第3题和第4题。

圆的面积教案 篇4

  教学目标:

  1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2.使学生进一步体会转化方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

  3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

  教学重点:

  探索并掌握圆的面积公式,能正确计算圆的面积。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆的面积公式的推导图。

  一、回顾旧知,引入新知

  1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

  学生回答,教师予以肯定。

  2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的'直径或半径?

  3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

  (板书:圆的面积)

  设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

  二、合作交流,探究新知

  1.教学例7。

  (l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

  (2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

  (3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

  (4)学生独立完成填空。

  (5)猜测:圆的面积大约是正方形面积的几倍?

  学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

  (6)出示例7后两幅图,按照同样的方法进行计算并填表。

  正方形的面积

  圆的半径

  圆的面积

  圆面积大约是正方形面积的几倍

  (精确到十分位)

  2.交流归纳:观察上面的表格,你有什么发现?

  通过交流,明确

圆的面积教案 篇5

  教学内容:小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学难点:弄清圆与转化后的近似图形之间的关系。

  学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的`面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

圆的面积教案 篇6

  教材说明

  教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。

  这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力

  。 教学建议

  1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。

  2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。

  3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。

  4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。

  在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。

  5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。

  6.教学例4时,要启发学生想:计算圆的'面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。

  7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:

  ①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;

  ②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;

  ③计算圆面积用面积单位,计算圆周长用长度单位。

  8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。

  9.关于练习二十四中一些习题的教学建议。

  第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。

  第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。

  第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。

  第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。

  第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。

  第15*题,是求组合图形面积的练习。

  教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。

圆的面积教案 篇7

  教材分析

  圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的应用也非常广泛,能够运用所学知识解决实际问题。

  学情分析

  学生对圆的特征,多边形面积的计算已基本掌握,但对于像圆这样的曲线图形的'面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的探究也是教学中关注的问题。基于以上的思考,特制定以下教学目标:

  教学目标

  1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。

  2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:运用公式正确计算圆的面积。

  教学难点:圆面积计算公式的推导过程。

圆的面积教案 篇8

  教学目标:

  1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

  2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

  3、培养学生的逻辑思维能力。

  教学重点:培养综合运用知识的能力。

  教学难点:培养综合运用知识的能力。

  教学过程:

  一、复习。

  1、口算:

  3242528292202

  267

  2、思考:

  (1)圆的周长和面积分别怎样计算?二者有何区别?

  (2)求圆的面积需要知道什么条件?

  (3)知道圆的周长能够求它的面积吗?

  二、新课。

  1、教学练习十六第3题

  小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?

  已知:c=125.6厘米s=r2

  r:125.6(23.14)3.14202

  =125.66.28=3.14400

  =20(厘米)=1256(平方厘米)

  答:这棵树干的横截面积1256平方厘米。

  3、教学环形面积。

  (1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

  已知:R=6厘米r=2厘米求:s=?

  3.14623.1422

  =3.1436=3.144

  =113.04(平方厘米)=12.56(平方厘米)

  113.04-12.56=100.48(平方厘米)

  第二种解法:3.14(62-22)=100.48(平方厘米)

  (2)小结:环形的面积计算公式:

  S=R2-r2或S=(R2-r2)

  (3)完成做一做:一个圆形环岛的'直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  三、巩固练习。

  1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

  选择正确算式

  A、(18.843.142)23.14

  B、(18.843.14)23.14

  C、18.8423.14

  2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

  3、课堂小结。

  (1)这节课的学习内容是什么?

  (2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

  已知半径求面积S=r2

  已知直径求面积S=()2

  已知周长求面积S=()2

  (3)环形面积:S=(R2-r2)

  四、作业

  课本P70第4、6、7题。

  教学追记:

  本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。

圆的面积教案 篇9

  教材分析

  圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  学情分析

  学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的`价值。

  教学目标

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确的计算圆的面积。

  2、理解圆的面积公式的推导过程,理解转化的数学思想。

  3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重点和难点

  重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。

  难点:理解圆的面积公式的推导过程,掌握转化的数学思想。

圆的面积教案 篇10

  教学目标:

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

  2、理解圆的面积公式的推导过程,感受转化的数学思想。

  3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重难点:

  重点:理解和掌握圆面积的计算方法。

  难点:圆面积公式的推导。

  准备:圆形纸片

  一. 创设情境。

  S:同学们,请看这里?(展示课件动画)

  S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)

  S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆

  的什么量呢?

  X:是圆的面积。

  S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)

  二. 探索交流,学习新知。

  1. 出示电子课本。

  S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。

  X1:公式。

  X2:转化成学过的图形来计算。

  S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)

  X:长方形,正方形,三角形,平行四边形,梯形等等。

  (单击课件)

  S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。

  S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)

  S读:在硬纸上画一个圆。。。。。大家附页1中的圆都准备好了

  吗?

  X:准备好了。

  S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?

  X:(学生自由回答)

  S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。

  (课件演示)

  2. 讲解课件。

  4份时S问:这个像是咱们以前学过的图形吗?

  X:不像。

  S:不像没关系,咱们继续分,再分成8份,这次呢?

  X:有点像平行四边形了。

  S:继续分。(演示到32份)

  S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)

  S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的.份数越来越多。。。。。最后,它会无限地接近一个什么形状呢? X:平行四边形。

  X:长方形。

  S:到底是长方形还是平行四边形。

  S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?

  X:长方形。

  (板书:长方形)

  S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。

  3. 电子课本P68

  S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的。。。。。关系?

  S:请大家注意看我的课件演示。(讲解)

  板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2

  =2π

  2r*r

  =πr*r

  2 =πr

  2即 S=πr

  S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?

  X:半径。

  S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?

  S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?

  X:半径。

  学生先做题,再用课件演示答案。

  三. 拓展练习。

  1. 回答(尽量不要动笔)。

  2. 计算(78.5 m2)

  S= πr2

  2 = 3.14×5

  = 3.14×5×5

  =3.14×25

  =78.5 (m2)

  四. 回顾总结。

  谁愿意和大家分享你的学习成果?(学生自己总结)

  老师补充:1.化圆为方。

  2. S= πr2

  3.计算圆面积的必要条件是什么(半径)

  板书:

  1. 化圆为方。

【圆的面积教案】相关文章:

《圆的面积》教案09-10

圆的面积教案10-01

圆的面积教案03-09

圆的面积教案优秀12-23

《圆的面积》教案优秀04-25

人教版圆的面积教案09-11

圆的面积教案(15篇)09-25

小学数学圆的面积的教案11-24

圆的面积教案15篇08-18

《圆的面积》说课稿05-16