当前位置:9136范文网>教育范文>教案>圆的周长教案

圆的周长教案

时间:2024-06-23 15:40:16 教案 我要投稿

关于圆的周长教案范文5篇

  作为一名优秀的教育工作者,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那要怎么写好教案呢?下面是小编整理的圆的周长教案5篇,欢迎大家借鉴与参考,希望对大家有所帮助。

关于圆的周长教案范文5篇

圆的周长教案 篇1

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  求圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学时间:

  一课时

  教学过程:

  一、复习。

  1、口答。

  4π 2π 5π 10π 8π

  2、求出下面各圆的周长。

  《圆的周长(2)》教学设计《圆的周长(2)》教学设计《圆的周长(2)》教学设计 C=πd c=2πr

  《圆的周长(2)》教学设计 3.14×2 2×3.14×4

  =6.28(厘米) =8×3.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=πd C=2πr

  (3)根据上两个公式,你能知道:

  直径=周长÷圆周率 半径=周长÷(圆周率×2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的.周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77 求:d=?

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  《圆的周长(2)》教学设计2、求下面半圆的周长,选择正确的算式。

  ⑴ 3.14×8

  ⑵ 3.14×8×2

  ⑶ 3.14×8÷2+8

  3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)

  45分钟走了多少厘米? 125.6×《圆的周长(2)》教学设计=94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  作业。

  P65-66 第3、6、7、9题

圆的周长教案 篇2

  【教学内容】

  《义务教育课程标准实验教材 数学》六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义。

  2.通过对比分析掌握圆周长的计算公式。

  3.能用圆的周长的计算公式解决一些简单的数学问题。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:推导圆的周长的计算公式,准确计算圆的周长。

  难点:理解圆周率的意义。

  【教学过程】

  一、情景引入

  出示一块钟表

  问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

  学生猜想。

  教师演示小秒针的运动过程,证实学生的猜想是否正确。

  问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

  生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

  师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

  (设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  二、动手量一量

  学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

  物品名称

  周长

  直径

  1号圆

  2号圆

  3号圆

  4号圆

  教师评价学生小组合作的情况。

  (设计目的:强调学生的小组合作意识)

  师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

  学生展示小组的成果。

  (设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

  三、对比分析

  师:观察一下我们得到的几组数据,你发现什么规律了吗?

  学生自由谈。

  学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

  师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

  课件展示圆的周长的测量方法。

  (设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

  课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

  (设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

  小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的'数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

  你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

  学生自由谈。

  我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计目的:通过学生讲故事渗透爱国主义思想)

  小结2:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  圆的周长(用字母C表示)计算公式:C=πd或C=2πr

  四、动手做一做

  下面我们来看看怎样应用圆的周长计算公式来解决问题。

  1.计算圆的周长

  实物投影展示学生的解题过程

  (设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

  2.一个圆形喷水池的半径是5m,它的周长是多少米?

  (设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

  3.小组交流错误原因。(可让其他学生避免同样的错误)

  (设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

  4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

  (设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

  五.你能说说在这一节课中你有什么收获吗?

  可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

  六、课外合作:

  小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

  (设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

圆的周长教案 篇3

  【教学目标】:

  1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

  2、能运用圆的周长的计算公式解决一些简单的数学问题。

  3、初步体会转换思想,学到一些解决实际问题的数学方法。

  【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

  【教学难点】:理解圆周率的意义

  【教学难点】:教师:课件(U盘)、表格、卷尺。

  学生:线或卷尺、计算器。

  【教学过程】:

  (1)教学准备:

  1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,

  8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

  6是3的( )倍。 20是5的( )倍。

  22是7的( )倍。

  2、把倍数关系句改写成等式。

  ①6是3的2倍 ( )

  ②20是5的4倍。 ( )

  ③22是7的22/7 倍。( )

  ④C是d的a倍。( )

  3、 数学是一门关系学

  正方形的周长与边长的关系

  C=4a

  正方形的周长 是 边长的4倍

  (2)新授过程。

  自学课本第62页,思考

  1、什么是圆的周长?

  答:围成圆的曲线的长是圆的周长。

  2、直观认识圆的周长。演示动画。

  3、你认为 圆的周长与正方形的周长最大的.不同在哪里?

  4、课本里介绍了几种度量圆的周长的方法?

  围绳法 滚动法

  5、动画演示滚动法

  6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长

  的大小与什么有关系?

  7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

  8、动手操作验证猜想

  其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

  π是一个无限不循环小数。

  π=3.141592653……

  在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

  9、投影展示π的前900位,体会π的小数数位的庞大。

  10、圆周率前6位谐音记忆

  π=3.14159…… 山 巅一寺一壶酒 巅 diān

  11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

  c=2πr。

  12、对比 : c=4 a c=πd

  (三)知识应用。求下面圆的周长

  (四)课堂作业。《课本》P65 练习十四 1题、2题

圆的周长教案 篇4

  教学目标:

  ⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题;

  ⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

  教学流程:

  一、揭示课题

  ⑴猜测这节课的学习内容。

  ⑵揭示课题--圆的周长。

  二、确定探索新知的方向。

  ⑴观察课前画在黑板上的两幅图。

  分别指出正方形、圆形和正六边形的周长。

  ⑵沟通联系。

  找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

  ⑶比较周长的长短。

  以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的'周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

  ⑷确定探究方向。

  量出圆的周长和直径,算出它们之间的倍数。

  ⑸准备数据采集。

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  三、合作探究新知。

  ⑴学生操作活动。

  小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

  教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

  教师在分组活动中采集到的数据。(是后加的,时加的)

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  ⑵合理,得出公式,

  看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

  ⑶介绍祖冲之。

  四、利用新知解决简单的数学问题。

  ⑴说出计算周长的算式。

  ⑵口答练习十八1~2。

  ⑶作业练习十八3~4。

圆的周长教案 篇5

  教学内容:

  圆的周长(小学数学九年制义务教材第十册).

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的'周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、互动

  请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=d

  =3.141.95

  =6.123

  6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示,错误的出示)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

【圆的周长教案】相关文章:

圆的周长教案11-18

《圆的周长》教案[经典]11-01

圆的周长教案04-12

《圆的周长》教案08-30

有关圆的周长教案11-01

圆的周长教案优秀09-05

圆的周长教案15篇09-23

圆的周长教案(15篇)08-15

【合集】圆的周长教案优秀12-21

圆的周长说课稿03-22