当前位置:9136范文网>教育范文>教案>因式分解教案

因式分解教案

时间:2022-10-18 09:54:21 教案 我要投稿

关于因式分解教案汇总6篇

  作为一名教职工,就有可能用到教案,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?下面是小编为大家整理的因式分解教案6篇,仅供参考,大家一起来看看吧。

关于因式分解教案汇总6篇

因式分解教案 篇1

  教学目标

  教学知识点

  使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。

  潜力训练要求。

  透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。

  情感与价值观要求。

  透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。

  教学重点

  1、理解因式分解的好处。

  2、识别分解因式与整式乘法的关系。

  教学难点透过观察,归纳分解因式与整式乘法的关系。

  教学方法观察讨论法

  教学过程

  Ⅰ、创设问题情境,引入新课

  导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

  Ⅱ、讲授新课

  1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。

  993-99=99×98×100

  2、议一议

  你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。

  3、做一做

  (1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

  ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

  (2)根据上面的算式填空:

  ①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

  ④y2-6y+9=()2。⑤a3-a=()()。

  定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。

  4。想一想

  由a(a+1)(a-1)得到a3-a的.变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?

  下面我们一齐来总结一下。

  如:m(a+b+c)=ma+mb+mc(1)

  ma+mb+mc=m(a+b+c)(2)

  5、整式乘法与分解因式的联系和区别

  ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。

  6。例题下列各式从左到右的变形,哪些是因式分解?

  (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

  (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

  Ⅲ、课堂练习

  P40随堂练习

  Ⅳ、课时小结

  本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。

因式分解教案 篇2

  第1课时

  1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.

  2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.

  自主探索,合作交流.

  1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.

  2.通过对因式分解的教学,培养学生“换元”的意识.

  【重点】 因式分解的概念及提公因式法的应用.

  【难点】 正确找出多项式中各项的公因式.

  【教师准备】 多媒体.

  【学生准备】 复习有关乘法分配律的知识.

  导入一:

  【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.

  解法1:这块场地的面积=×+×+×=++==2.

  解法2:这块场地的面积=×+×+×=×=×4=2.

  从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.

  [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

  导入二:

  【问题】 计算×15-×9+×2采用什么方法?依据是什么?

  解法1:原式=-+==5.

  解法2:原式=×(15-9+2)=×8=5.

  解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.

  [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

  一、提公因式法分解因式的概念

  思路一

  [过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.

  如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).

  大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?

  分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.

  由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.

  由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.

  总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.

  [设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.

  思路二

  [过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.

  多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?

  结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.

  多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?

  结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.

  [设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.

  二、例题讲解

  [过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.

  (教材例1)把下列各式因式分解:

  (1)3x+x3;

  (2)7x3-21x2;

  (3)8a3b2-12ab3c+ab;

  (4)-24x3+12x2-28x.

  〔解析〕 首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.

  解:(1)3x+x3=x3+xx2=x(3+x2).

  (2)7x3-21x2=7x2x-7x23=7x2(x-3).

  (3)8a3b2-12ab3c+ab

  =ab8a2b-ab12b2c+ab1

  =ab(8a2b-12b2c+1).

  (4)-24x3+12x2-28x

  =-(24x3-12x2+28x)

  =-(4x6x2-4x3x+4x7)

  =-4x(6x2-3x+7).

  【学生活动】 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.

  总结:提取公因式的步骤:(1)找公因式;(2)提公因式.

  容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.

  教师提醒:

  (1)各项都含有的字母的最低次幂的积是公因式的字母部分;

  (2)因式分解后括号内的多项式的项数与原多项式的项数相同;

  (3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;

  (4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.

  [设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.

  1.提公因式法分解因式的一般形式,如:

  a+b+c=(a+b+c).

  这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.

  2.提公因式法分解因式的关键在于发现多项式的公因式.

  3.找公因式的一般步骤:

  (1)若各项系数是整系数,则取系数的最大公约数;

  (2)取各项中相同的字母,字母的指数取最低的;

  (3)所有这些因式的乘积即为公因式.

  1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )

  A.-6ab2cB.-ab2

  C.-6ab2D.-6a3b2c

  解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.

  2.下列用提公因式法分解因式正确的.是( )

  A.12abc-9a2b2=3abc(4-3ab)

  B.3x2-3x+6=3(x2-x+2)

  C.-a2+ab-ac=-a(a-b+c)

  D.x2+5x-=(x2+5x)

  解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.

  3.下列多项式中应提取的公因式为5a2b的是( )

  A.15a2b-20a2b2

  B.30a2b3-15ab4-10a3b2

  C.10a2b-20a2b3+50a4b

  D.5a2b4-10a3b3+15a4b2

  解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.

  4.填空.

  (1)5a3+4a2b-12abc=a( );

  (2)多项式32p2q3-8pq4的公因式是 ;

  (3)3a2-6ab+a= (3a-6b+1);

  (4)因式分解:+n= ;

  (5)-15a2+5a= (3a-1);

  (6)计算:21×3.14-31×3.14= .

  答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

  5.用提公因式法分解因式.

  (1)8ab2-16a3b3;

  (2)-15x-5x2;

  (3)a3b3+a2b2-ab;

  (4)-3a3-6a2+12a.

  解:(1)8ab2(1-2a2b).

  (2)-5x(3+x).

  (3)ab(a2b2+ab-1).

  (4)-3a(a2+2a-4).

  第1课时

  一、教材作业

  【必做题】

  教材第96页随堂练习.

  【选做题】

  教材第96页习题4.2.

  二、课后作业

  【基础巩固】

  1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .

  2.(20xx淮安中考)因式分解:x2-3x= .

  3.分解因式:12x3-18x22+24x3=6x .

  【能力提升】

  4.把下列各式因式分解.

  (1)3x2-6x;

  (2)5x23-25x32;

  (3)-43+162-26;

  (4)15x32+5x2-20x23.

  【拓展探究】

  5.分解因式:an+an+2+a2n.

  6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.

  【答案与解析】

  1.2ab

  2.x(x-3)

  3.(2x2-3x+42)

  4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

  5.解:原式=an1+ana2+anan=an(1+a2+an).

  6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).

  本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.

  在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.

  由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.

  随堂练习(教材第96页)

  解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

  习题4.2(教材第96页)

  1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

  2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

  3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).

  提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.

  已知方程组求7(x-3)2-2(3-x)3的值.

  〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.

  解:7(x-3)2-2(3-x)3

  =(x-3)2[7+2(x-3)]

  =(x-3)2(7+2x-6)

  =(x-3)2(2x+).

  由方程组可得原式=12×6=6.

因式分解教案 篇3

  一、教材分析

  1、教材的地位与作用

  “整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

  因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

  2、教学目标

  (1)会推导乘法公式

  (2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

  (3)会用提公因式法、公式法进行因式分解。

  (4)了解因式分解的一般步骤。

  (5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

  3、重点、难点和关键

  重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

  难点:正确运用乘法公式;正确分解因式。

  关键:正确理解乘法公式和因式分解的意义。

  二、本单元教学的方法和策略:

  1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的.更新和知识的正向迁移.

  2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.

  3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.

  4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.

  三、课时安排:

  2.1平方差公式 1课时

  2.2完全平方公式 2课时

  2.3用提公因式法进行因式分解 1课时

  2.4用公式法进行因式分解 2课时

因式分解教案 篇4

  一、背景介绍

  因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

  二、教学设计

  【教学内容分析】

  因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

  【教学目标】

  1、认知目标:(1)理解因式分解的概念和意义

  (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

  2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

  3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

  【教学重点、难点】

  重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

  【教学准备】

  实物投影仪、多媒体辅助教学。

  【教学过程】

  ㈠、情境导入

  看谁算得快:(抢答)

  (1)若a=101,b=99,则a2-b2=___________;

  (2)若a=99,b=-1,则a2-2ab+b2=____________;

  (3)若x=-3,则20x2+60x=____________。

  【初一年级学生活波好动,好表现,争强好胜。情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。】

  ㈡、探究新知

  1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  【“与其拉马喝水,不如让它口渴”。探索最佳解题方法的过程,就是学生“口渴”的地方。由此引起学生的求知欲。】

  2、观察:a2-b2=(a+b)(a-b) ,

  a2-2ab+b2 = (a-b)2 ,

  20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

  【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】

  3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

  【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】

  板书课题:§6.1因式分解

  因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

  ㈢、前进一步

  1、让学生继续观察:(a+b)(a-b)= a2-b2 ,

  (a-b)2= a2-2ab+b2,

  20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

  (要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。)

  【注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。】

  2、因式分解与整式乘法的关系:

  因式分解

  结合:a2-b2=========(a+b)(a-b)

  整式乘法

  说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的'积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

  结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果)

  ㈣、巩固新知

  1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?

  (1)x2-3x+1=x(x-3)+1 ;

  (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn;

  (4)4x2-4x+1=(2x-1)2;

  (5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x;

  (7)k2+ +2=(k+ )2;

  (8)18a3bc=3a2b?6ac。

  【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】

  2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

  【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】

  ㈤、应用解释

  例 检验下列因式分解是否正确:

  (1)x2y-xy2=xy(x-y);

  (2)2x2-1=(2x+1)(2x-1);

  (3)x2+3x+2=(x+1)(x+2).

  分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

  练习 计算下列各题,并说明你的算法:(请学生板演)

  (1)872+87×13

  (2)1012-992

  ㈥、思维拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=

  2.机动题:(填空)x2-8x+m=(x-4)( ),且m=

  【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】

  ㈦、课堂回顾

  今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

  【课堂小结交给学生, 让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习——总结——学习的良好习惯。唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。】

  ㈧、布置作业

  教科书第153的作业题。

  【设计思想】

  叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。

因式分解教案 篇5

  一、运用平方差公式分解因式

  教学目标1、使学生了解运用公式来分解因式的意义。

  2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的`因式分解。

  3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

  重点运用平方差公式分解因式

  难点灵活运用平方差公式分解因式

  教学方法对比发现法课型新授课教具投影仪

  教师活动学生活动

  情景设置:

  同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?

  (学生或许还有其他不同的解决方法,教师要给予充分的肯定)

  新课讲解:

  从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?

  首先我们来做下面两题:(投影)

  1.计算下列各式:

  (1)(a+2)(a-2)=;

  (2)(a+b)(a-b)=;

  (3)(3a+2b)(3a-2b)=.

  2.下面请你根据上面的算式填空:

  (1)a2-4=;

  (2)a2-b2=;

  (3)9a2-4b2=;

  请同学们对比以上两题,你发现什么呢?

  事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。(投影)

  比如:a2–16=a2–42=(a+4)(a–4)

  例题1:把下列各式分解因式;(投影)

  (1)36–25x2;(2)16a2–9b2;

  (3)9(a+b)2–4(a–b)2.

  (让学生弄清平方差公式的形式和特点并会运用)

  例题2:如图,求圆环形绿化区的面积

  练习:第87页练一练第1、2、3题

  小结:

  这节课你学到了什么知识,掌握什么方法?

  教学素材:

  A组题:

  1.填空:81x2-=(9x+y)(9x-y);=

  利用因式分解计算:=。

  2、下列多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

  (1)1-16a2(2)9a2x2-b2y2

  (3).49(a-b)2-16(a+b)2

  B组题:

  1分解因式81a4-b4=

  2若a+b=1,a2+b2=1,则ab=;

  3若26+28+2n是一个完全平方数,则n=.

  由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

  学生回答1:

  992-1=99×99-1=9801-1

  =9800

  学生回答2:992-1就是(99+1)(99-1)即100×98

  学生回答:平方差公式

  学生回答:

  (1):a2-4

  (2):a2-b2

  (3):9a2-4b2

  学生轻松口答

  (a+2)(a-2)

  (a+b)(a-b)

  (3a+2b)(3a-2b)

  学生回答:

  把乘法公式

  (a+b)(a-b)=a2-b2

  反过来就得到

  a2-b2=(a+b)(a-b)

  学生上台板演:

  36–25x2=62–(5x)2

  =(6+5x)(6–5x)

  16a2–9b2=(4a)2–(3b)2

  =(4a+3b)(4a–3b)

  9(a+b)2–4(a–b)2

  =[3(a+b)]2–[2(a–b)]2

  =[3(a+b)+2(a–b)]

  [3(a+b)–2(a–b)]

  =(5a+b)(a+5b)

  解:352π–152π

  =π(352–152)

  =(35+15)(35–15)π

  =50×20π

  =1000π(m2)

  这个绿化区的面积是

  1000πm2

  学生归纳总结

因式分解教案 篇6

  因式分解

  教材分析

  因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。

  教学目标

  认知目标:(1)理解因式分解的概念和好处

  (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

  潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。

  情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

  目标制定的思想

  1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

  2.课堂教学体现潜力立意。

  3.寓德育教育于教学之中。

  教学方法

  1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。

  2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。

  3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。

  4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

  5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

  教学过程安排

  一、提出问题,创设情境

  问题:看谁算得快?(计算机出示问题)

  (1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

  (2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000

  (3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

  二、观察分析,探究新知

  (1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)

  (2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?

  a2—2ab+b2=(a—b)2②

  20x2+60x=20x(x+3)③

  (3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。

  板书课题:§7。1因式分解

  1.因式分解概念:把一个多项式化成几个整式的`积的形式叫做因式分解,也叫分解因式。

  三、独立练习,巩固新知

  练习

  1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)

  ①(x+2)(x—2)=x2—4

  ②x2—4=(x+2)(x—2)

  ③a2—2ab+b2=(a—b)2

  ④3a(a+2)=3a2+6a

  ⑤3a2+6a=3a(a+2)

  ⑥x2—4+3x=(x—2)(x+2)+3x

  ⑦k2++2=(k+)2

  ⑧x—2—1=(x—1+1)(x—1—1)

  ⑨18a3bc=3a2b·6ac

  2.因式分解与整式乘法的关系:

  因式分解

  结合:a2—b2=========(a+b)(a—b)

  整式乘法

  说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

  结论:因式分解与整式乘法正好相反。

  问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?

  (如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

  由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

  四、例题教学,运用新知:

  例:把下列各式分解因式:(计算机演示)

  (1)am+bm(2)a2—9(3)a2+2ab+b2

  (4)2ab—a2—b2(5)8a3+b6

  练习2:填空:(计算机演示)

  (1)∵2xy=2x2y—6xy2

  ∴2x2y—6xy2=2xy

  (2)∵xy=2x2y—6xy2

  ∴2x2y—6xy2=xy

  (3)∵2x=2x2y—6xy2

  ∴2x2y—6xy2=2x

  五、强化训练,掌握新知:

  练习3:把下列各式分解因式:(计算机演示)

  (1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

  (4)x2+—x(5)x2—0。01(6)a3—1

  (让学生上来板演)

  六、变式训练,扩展新知(计算机演示)

  1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=

  2.机动题:(填空)x2—8x+m=(x—4),且m=

  七、整理知识,构成结构(即课堂小结)

  1.因式分解的概念因式分解是整式中的一种恒等变形

  2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。

  3.利用2中关系,能够从整式乘法探求因式分解的结果。

  4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

  八、布置作业

  1.作业本(一)中§7。1节

  2.选做题:①x2+x—m=(x+3),且m=。

  ②x2—3x+k=(x—5),且k=。

  评价与反馈

  1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。

  2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

  3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。

  4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。

  5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。

  6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。

【因式分解教案】相关文章:

因式分解教案03-15

因式分解教案15篇05-26

初中数学因式分解教案01-12

因式分解教案 15篇09-26

实用的因式分解教案4篇08-20

因式分解教案汇编10篇02-10

实用的因式分解教案3篇08-11

因式分解教案集合8篇06-06

关于因式分解教案汇总六篇10-16