当前位置:9136范文网>教育范文>教案>二次根式教案

二次根式教案

时间:2024-08-16 12:21:35 教案 我要投稿

关于二次根式教案3篇

  作为一名优秀的教育工作者,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那要怎么写好教案呢?下面是小编为大家收集的二次根式教案3篇,仅供参考,欢迎大家阅读。

关于二次根式教案3篇

二次根式教案 篇1

  一、复习引入

  学生活动:请同学们完成下列各题:

  1.计算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

  整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

  例1.计算:

  (1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的`运算规律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

  (1)(+6)(3-)(2)(+)(-)

  分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、巩固练习

  课本P20练习1、2.

  四、应用拓展

  例3.已知=2-,其中a、b是实数,且a+b≠0,

  化简+,并求值.

  分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案 篇2

  一、教学目标

  1.了解二次根式的意义;

  2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3. 掌握二次根式的性质 和 ,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  四、教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算:

  通过练习使学生进一步理解平方根、算术平方根的概念.

  观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

  表示的是算术平方根.

  (二)引入新课

  我们已遇到的这样的式子是我们这节课研究的内容,引出:

  新课:二次根式

  定义: 式子 叫做二次根式.

  对于 请同学们讨论论应注意的问题,引导学生总结:

  (1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1 当a为实数时,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0

  例2 x是怎样的实数时,式子 在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

  例3 当字母取何值时,下列各式为二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.

  (2)-3x0,x0,即x0时, 是二次根式.

  (3) ,且x0,x0,当x0时, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.

  例4 下列各式是二次根式,求式子中的'字母所满足的条件:

  (1) ; (2) ; (3) ; (4)

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

  (4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

  (三)小结(引导学生做出本节课学习内容小结)

  1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

  2.式子中,被开方数(式)必须大于等于零.

  (四)练习和作业

  练习:

  1.判断下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

  2.a是怎样的实数时,下列各式在实数范围内有意义?

  五、作业

  教材P.172习题11.1;A组1;B组1.

  六、板书设计

二次根式教案 篇3

  【1】二次根式的加减教案

  教材分析:

  本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

  学生分析:

  本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

  设计理念:

  新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的.、支持的、宽容的良好氛围进行学习。

  教学目标知识与技能目标:

  会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

  过程与方法目标:

  通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

  情感态度与价值观:

  通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

  重点、难点:重点:

  合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

  难点:

  二次根式加减法的实际应用。

  关键问题 :

  了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

  教学方法:.

  1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

  2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

  3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

  【2】二次根式的加减教案

  教学目标:

  1.知识目标:二次根式的加减法运算

  2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

  3.情感态度:培养学生善于思考,一丝不苟的科学精神。

  重难点分析:

  重点:能熟练进行二次根式的加减运算。

  难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

  教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

  运用教具:小黑板等。

  教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1.下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2.计算:

(1) ;

(2)

(3)

(4)

3.(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、 B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的'知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

【二次根式教案】相关文章:

二次根式教案08-07

二次根式教案05-15

二次根式教案[精选]05-15

二次根式教案优秀10-17

二次根式教案【精】05-15

关于二次根式教案三篇10-24

二次根式教案十篇09-25

【推荐】二次根式教案4篇07-27

【精华】二次根式教案12篇09-03

二次根式教案【汇编15篇】10-31