- 相关推荐
初中数学 《数据的收集》 教案
作为一无名无私奉献的教育工作者,编写教案是必不可少的,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?下面是小编帮大家整理的初中数学 《数据的收集》 教案,仅供参考,欢迎大家阅读。
初中数学 《数据的收集》 教案1
教学目标
(一)知识认知要求
1、回顾收集数据的方式。
2、回顾收集数据时,如何保证样本的代表性。
3、回顾频率、频数的概念及计算方法。
4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。
5、能利用计算器或计算机求一组数据的算术平均数。
(二)能力训练要求
1、熟练掌握本章的知识网络结构。
2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。
3、经历调查、统计等活动,在活动中发展学生解决问题的能力。
(三)情感与价值观要求
1、通过对本章内容的回顾与思考,发展学生用数学的意识。
2、在活动中培养学生团队精神。
教学重点
1、建立本章的知识框架图。
2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统计量在实际情境中的意义和应用。
教学难点
收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用。
教学过程
一、导入新课
本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。
例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?
先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。
同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?
二、讲授新课
1、举例说明收集数据的.方式主要有哪几种类型。
2、抽样调查时,如何保证样本的代表性?举例说明。
3、举出与频数、频率有关的几个生活实例?
4、刻画数据波动的统计量有哪些?它们有什么作用?举例说明。
针对上面的几个问题,同学们先独立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。
(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。
收集数据的方式有两种类型:普查和抽样调查。
例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。
在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。
用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。
例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数、极差、方差等。
上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。
例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。
刻画数据波动的统计量有极差、方差、标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)
甲:450、 460、 450 、430、 450、 460、 440 、460
乙:440 、470 、460 、440 、430 、450、 470、 4 、40
在这个试验点甲、乙两种玉米哪一种产量比较稳定?
我们可以算极差。甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克。所以甲种玉米较稳定。
还可以用方差来比较哪一种玉米稳定。
s甲2=100,s乙2=200。
s甲2<s乙2,所以甲种玉米的产量较稳定。
三、建立知识框架图
通过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。
四、随堂练习
例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。
分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断,同时运用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。
例2在举国上下众志成城抗击“非典”的斗争中,疫情变化牵动着全国人民的心。请根据下面的疫情统计图表回答问题:
(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:
①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;
②在本题的统计中,新增确诊病例的人数的中位数是___________;
③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。
(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)
①100人以下的分组组距是________;
②填写本统计表中未完成的空格;
③在统计的这段时期中,每天新增确诊
病例人数在80人以下的天数共有_________天。
解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数19
(2)①10人②11 40 0、125 0、325 ③25
五、课时小结
这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策。
六、课后作业
七、活动与探究
从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克)。依此估计这240尾鱼的总质量大约是
A、300克B、360千克C、36千克D、30千克
初中数学 《数据的收集》 教案2
一、教材分析
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标:
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的.条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:
(1)发现根的判别式。
(2)用根的判别式解决实际问题。
7、教学难点:
根的判别式的发现
8、教法:启导、探究
9、学法:合作学习与探究学习
10、教学模式:引导——发现式
二、教学过程
(一)自习回顾,引入新课
1、师生共同回顾:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x = -1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、为什么会出现无解?
(二)探索
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
ax2+bx+c= -c
x2+ x = -
x2+ x+( )2=( )2 —
2
(x+ ) 2= 2
2
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
(2)建立等式,根据有个常数根 b2-4ac=0
(3)由学生完成解题过程后教师评价
3、证明
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
(四)练习
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
三、作业
1、把例1、例2整理在作业本上。
2、有余力的同学把练习题整理在作业本。
四、教学后记:
初中数学 《数据的收集》 教案3
教学目标
(一)知识认知要求
1。回顾收集数据的方式。
2。回顾收集数据时,如何保证样本的代表性。
3。回顾频率、频数的概念及计算方法。
4。回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。
5。能利用计算器或计算机求一组数据的算术平均数。
(二)能力训练要求
1。熟练掌握本章的知识网络结构。
2。经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。
3。经历调查、统计等活动,在活动中发 展学生解决问题的能力。
(三)情感与价值观要求
1。通过对本章内容的回顾与思考,发展学 生用数学的意识。
2。在活动中培养学生团队精神。
教学重点
1。建立本章的知识框架图。
2。体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用。
教学难点
收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用。
教学过程
一、导入新课
本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。
例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?
先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。
同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?
二、讲授新课
1。举例说明收集数据的方式主要有哪几种类型。
2。抽样调查时,如何保证样本的代表性?举例说明。
3。举出与频数、频率有关的几个生活实例?
4。刻画数据波动的统计量有 哪些?它们有什么作用?举例说明。
针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。
(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。
收集数据的方式有两种类型:普查和抽样调查。
例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。
在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。
用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。
例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等。
上面我们回顾了为了了解某种情况而采取的`调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。
例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。
刻画数据波动的统计量有极差、方差、标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在这个试验点甲、乙两种玉米哪一种产量比较稳定?
我们可以算极差。甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克。所以甲种玉米较稳定。
还可以用方差来比较哪一种玉米稳定。
s甲2=100,s乙2=200。
s甲2<s乙2,所以甲种玉米的产量较稳定。
三。建立知识框架图
通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。
四、随堂练习
例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。
分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。
例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 。请根据下面的疫情统计图表回答问题:
(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:
①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;
②在本题的统计中,新增确诊病例的人数的中位数是___________;
③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。
(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)
①100人以下的分组组距是________;
②填写本统计表中未完成的空格;
③在统计的这段时期中,每天新增确诊
病例人数在80人以下的天数共有_________天。
解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19
(2)①10人 ②11 40 0。125 0。325 ③25
五.课时小结
这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策。
六.课后作业:
七.活动与探究
从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1。5,1。6,1。4,1。6,1。3,1。4,1。2,1。7,1。8(单位:千克)。依此估计这240尾鱼的总质量大约是
A。300克 B。360千克C。36千克 D。30千克
【初中数学 《数据的收集》 教案】相关文章:
数据的收集和整理教案08-05
数据的收集教学反思12-01
二年级下册数学数据收集整理教案01-04
数据的收集与整理教学反思15篇01-01
数学初中教案11-18
初中数学数轴教案11-11
初中数学教案04-30
初中数学圆教案07-05
初中数学教案12-26