当前位置:9136范文网>教育范文>教案>《比例的意义》教案

《比例的意义》教案

时间:2024-07-14 23:49:39 教案 我要投稿

《比例的意义》教案15篇

  作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!以下是小编精心整理的《比例的意义》教案,欢迎大家分享。

《比例的意义》教案15篇

《比例的意义》教案1

  一、知识与技能

  1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  二、过程与方法

  1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.

  2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.

  三、情感态度与价值观

  1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.

  2、通过分组讨论,培养学生合作交流意识和探索精神.

  教学重点:理解和领会反比例函数的概念.

  教学难点:领悟反比例的概念.

  教学过程

  一、创设情境,导入新课

  活动1

  问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

  (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

  (2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

  (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

  师生行为:

  先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

  教师组织学生讨论,提问学生,师生互动.

  在此活动中老师应重点关注学生:

  ①能否积极主动地合作交流.

  ②能否用语言说明两个变量间的关系.

  ③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

  分析及解答:(1)

  ;(2)

  ;(3)

  其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

  上面的函数关系式,都具有

  的形式,其中k是常数.

  二、联系生活,丰富联想

  活动2

  下列问题中,变量间的对应关系可用这样的函数式表示?

  (1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;

  (2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

  (3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

  师生行为

  学生先独立思考,在进行全班交流.

  教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

  (1)能否从现实情境中抽象出两个变量的函数关系;

  (2)能否积极主动地参与小组活动;

  (3)能否比较深刻地领会函数、反比例函数的概念.

  分析及解答:(1)

  ;(2)

  ;(3)

  概念:如果两个变量x,y之间的关系可以表示成

  的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

  活动3

  做一做:

  一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  师生行为:

  学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

  ①生能否理解反比例函数的意义,理解反比例函数的概念;

  ②学生能否顺利抽象反比例函数的模型;

  ③学生能否积极主动地合作、交流;

  活动4

  问题1:下列哪个等式中的y是x的反比例函数?

  问题2:已知y是x的反比例函数,当x=2时,y=6

  (1)写出y与x的函数关系式:

  (2)求当x=4时,y的值.

  师生行为:

  学生独立思考,然后小组合作交流.教师巡视,查看学生完成的`情况,并给予及时引导.在此活动中教师应重点关注:

  ①学生能否领会反比例函数的意义,理解反比例函数的概念;

  ②学生能否积极主动地参与小组活动.

  分析及解答:

  1、只有xy=123是反比例函数.

  2、分析:因为y是x的反比例函数,所以

  ,再把x=2和y=6代入上式就可求出常数k的值.

  解:(1)设

  ,因为x=2时,y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、巩固提高

  活动5

  1、已知y是x的反比例函数,并且当x=3时,y=8.

  (1)写出y与x之间的函数关系式.

  (2)求y=2时x的值.

  2、y是x的反比例函数,下表给出了x与y的一些值:

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

  四、课时小结

  反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.

《比例的意义》教案2

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的.例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

  四、课堂引入

  1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1.见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1.(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2.(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

《比例的意义》教案3

  教学目标:

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  教学重点:

  成正比例的量的特征及其判断方法。

  教学难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.

  教 法:

  启发引导法

  学 法:

  自主探究法

  教 具:

  课件

  教学过程:

  一、定向导学(5分)

  1、已知路程和时间,求速度

  2、已知总价和数量,求单价

  3、已知工作总量和工作时间,求工作效率

  4、导入课题

  今天我们来学习成正比例的量。

  5、出示学习目标

  1、理解正比例的意义。

  2、能根据正比例的意义判断两种量是不是成正比例。

  二、自主学习(8分)

  自学内容:书上45页例1

  自学时间:8分钟

  自学方法:读书法、自学法

  自学思考:

  1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

  2、正比例关系式是什么?

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

  (2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的`量,二是一种量变化另一种量也随着变化,三是比值(商)一定

  (3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  y/x=k(一定)

  (4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

  2、归类提升

  引导学生小结成正比例的量的意义和关系式。

  三、合作交流(5分)

  第46页正比例图像

  1、正比例图像是什么样子的?

  2、完成46页做一做

  3、各组的b1同学上台讲解

  四、质疑探究(5分)

  1、第49页第1题

  2、第49页第2题

  3、你还有什么问题?

  五、小结检测(8分)

  1、什么是正比例关系?如何判断是不是正比例关系?

  2、检测

  1、49页第3题。

  六、堂清作业(9分)

  练习九页第4、5题。

  板书设计:

  成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

  关系式:

  y/x=k

  (一定)

《比例的意义》教案4

  教学要求:

  1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学重点:认识正比例关系的意义。

  教学难点:掌握成正比例量的变化规律及其特征。

  教学过程:

  一、复习铺垫

  1.说出下列每组数量之间的关系。

  (1)速度 时间 路程

  (2)单价 数量 总价

  (3)工作效率 工作时间 工作总量

  2.引入新课。

  上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

  二、教学新课

  1.教学例1。

  出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:

  (1)表里有哪两种数量,这两种数量是怎样变化?

  (2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

  引导学生进行讨论,得出:

  (1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

  (2)时间扩大,路程也扩大;时间缩小,路程也缩小。

  (3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)

  2.教学例2。

  出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的.变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)

  3.概括。

  (1)综合例1、例2的共同点。

  提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

  (2)概括正比例关系的意义。

  像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。

  4.具体认识。

  (1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

  (2)做练习八第1题。

  让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

  5.教学例3。

  出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。

  三、巩固练习

  现在,我们根据上面的判断方法来做一些题。

  1.做“练一练”第l题。

  指名学生口答,说明理由。可以结合写出数量关系式。

  2.做“练一练”第2题。

  指名口答,并要求说明理由。

  3.做练习八第2题。

  小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)

  4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

  一种苹果,买5千克要10元。照这样计算,买15千克要30元。

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

  五、家庭作业

  练习八第3题。

《比例的意义》教案5

  教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学关键:

  理解成正比例的两个量的意义。

  教学过程:

  一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的`面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

  (2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

  (3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  三、巩固练习

  (一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

  (二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

  ①填一填:(长度:米,价格:元)

  ②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

  板书:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

  =k(一定)

《比例的意义》教案6

  第一课时

  教学内容:P32~34 比例的意义和基本性质

  教学目的:1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

  2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。

  3、使同学初步感知事物间是相互联系、变化发展的。

  教学重点;比例的意义和基本性质

  教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

  教学过程:

  一、回顾旧知,复习铺垫

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把同学举的例子板书出来,并注明比的各局部的名称。

  2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。

  12:16 : 4.5:2.7 10:6

  同学求出各比的比值后,再提问:哪两个比的比值相等?

  (4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)出示P32例1。

  每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

  5: 2.4:1.6 60:40 15:10

  每面国旗长和宽的比值有什么关系?(都相等)

  5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

  象这样表示两个比相等的式子叫做比例。

  比例也可以写成: = =

  (2)我们也学过不同的两个量也可以组成一个比,如:

  一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  指名同学读题。

  教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:

  第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的'比值都是40,这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

  指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”

  根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

  (3)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (4)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

  同学判断后,指名说出判断的根据。

  ②做P33“做一做”。

  让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。

  ③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。

  ④P36练习六的第1~2题。

  对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。

《比例的意义》教案7

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例.

  (2)一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的`基本性质

  板书课题:加上“和基本性质”,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据3×4=2×6写出比例.

  六、板书设计.

  省略

《比例的意义》教案8

  学情分析

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  教学目标

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点和难点

  教学重点:认识反比例关系的意义。

  教学难点 :掌握成反比例量的变化规律及其特征。

  教学过程一、复习导入

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、教学新课

  1.教学例4。

  出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

  点名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的`积一定)

  2.教学例5。

  出示例5。

  按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?

  (板书:每袋重量和袋数的积一定)

  乘积8000是什么数量,这种数量关系用式子怎样表示?

  [板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

  3.概括。

  (1)综合例4、例5的共同点。

  提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例4、例5里两种相关联的量,它们是什么关系的量呢?

  像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

  问:两种相关联的量成不成反比例的关键是什么?

  (乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

  4.具体认识。

  (1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例5里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)做练习八第4题。

  让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

  (4)判断。

  现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  三、巩固练习

  1. 做“练一练”第l,2,3,4,5题。

  指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

  2.拓展应用。

  3.综合练习

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

《比例的意义》教案9

  教学目标:

  1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

  2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义基本性质。

  教学难点:

  应用比例的意义和性质判断两个比是否成比例。

  教学过程

  一、导入新课

  1、什么叫比?

  2、求出下面各比的比值(小黑板)

  12:16 1/4:1/3 和9:12 4.5:2.7 10:6

  二、教学新课

  1、教学比例的意义

  (1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

  (2)归纳比例的意义

  (3)2:5和80:200能组成比例吗?你是怎样判断的?

  (4)完成第45页“做一做”

  2、教学比例的基本性质

  (1)在一个比例里,有四个数,这四个数分别叫什么名字?

  (2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

  (3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

  (4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  (5)指导学生完成第一46页“做一做”第1题。

  三、巩固练习

  四、课堂小结

  这节课你学到了哪些知识?

  创意作业:

  有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

  x

  教学内容:

  比例的意义和基本性质 (省义务教材第十二册)

  教学目标:

  1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

  2、利用比例知识解决实际问题。

  3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学过程:

  一、 谈话导入,创设情境:

  出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。【诱发审美注意】

  我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  二、 自主探究,学习新知

  (一) 教学比例的意义

  1、 8厘米

  出示

  6厘米

  4厘米

  3厘米

  (1)根据表中给出的数量写出有意义的比。

  (2)哪些比是相关联的?

  (3)根据以往经验,可将相等的两个比怎样?(用等号连接)

  教师并指出这些式子就是比例。

  2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。

  3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

  4、 写出比值是1/3的两个比,并组成比例。

  (二) 教学比例的`基本性质

  1、 比例和比有什么区别?

  2、 认识比例的各部分

  (1)让学生自己取。

  (2)组成比例的四个数叫做比例的项,两端的两项叫做比例的

  外项,中间的两项叫做比例的内项。

  板书: 8 : 6 = 4 : 3

  内 项

  外 项

  (3)让学生找出自己举的比例的内外项。

  ( )

  12

  2

  ( )

  =

  (4)找出分数形式比例的内外项位置又是怎样的?

  3、 出示 【启迪学生思维,展开审美想象】

  (1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。

  (2) 学生反馈,教师板书。

  (3) 你发现了什么?

  (4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

  4、 用比例性质验证你所写比例是否正确。

  5、练习 8 : 12 = X : 45

  0.5

  X

  20

  32

  =

  求比例中的未知项,叫做解比例。

  如何证明你的解是正确的?

  (三) 小结:今天这堂课你有什么收获?

  三、 巩固练习

  1、下面哪几组中的两个比可以组成比例。

  4

  1

  12 : 24 和18 : 36

  0.4 : 和0.4 : 0.15

  14 : 8 和7 : 4

  5

  2

  2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】

  3、从1 、8、0.6、3、7五个数中

  (1) 选出四个数,组成比例。

  (2) 任意选出3个数,再配上另一个数,组成比例。

  (3) 用所学知识进行检验。

  四、 实际应用

  不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

  同学们,如果你是汪骏强,你准备怎么办?

  执教者 方 艳

《比例的意义》教案10

  教学目标

  (一)知识教学点

  感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

  (二)能力训练点

  ①培养学生发现问题、分析问题、解决问题能力;

  ②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

  ③辩证唯物主义的初步渗透

  教学重点 比例尺的应用。

  教学难点 比例尺的实际意义。

  教学过程

  一、设置教学情境,感受比例尺

  (一)画画比比

  1、 估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

  请你估计一下黑板的长和宽。

  2、 丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

  3、 画黑板:你能照样子把黑板画在本子上吗?(师巡视)

  4、 质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

  [评析:照样子画黑板是同学们美术课上再熟悉不过的举动,但以此为本节课的开始,让学生在不知不觉中体会到了比例尺,实为教者的匠心之笔!]

  5、挑两个黑板图(一个画得不像一个画得较像)出示:

  a) 评价:①谁画得更像一点?

  ②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)

  b) 师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

  图上长7厘米,长缩小:3507=50 图上长5厘米,长缩小:3505=70

  宽1.5厘米,宽缩小:1501.5=100 宽2.5厘米,宽缩小:1502.5=60

  c) 点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。

  [评析:实践出真知!让学生分析画得像与不像使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。]

  (二)再画再比

  1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

  2、课件展示准确的平面图:

  3、请你帮老师算算长和宽分别缩小多少倍?

  图上长3.5厘米缩小:3503.5=100 宽1.5厘米缩小:1501.5=100

  4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

  [评析:从画黑板提出问题到比比谁画得像分析问题再到如何画得更像解决问题。教者均是置学生于熟悉的生活背景下,感受并理解比例尺意义,体现了数学的生活性。]

  二、结合实际,理解比例尺

  (一)说一说

  ①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

  ②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。

  ③图A、图B长和宽比例尺各是多少?分别表示什么?

  小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

  ④用自己话说说什么叫做比例尺?怎样计算比例尺?

  小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

  (二)算一算

  ①下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的'比例尺是多少?

  评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

  ②从1﹕10000这一比例尺上,你能获取那些信息?

  板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

  [评析:比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生说一说、算一算,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。]

  三、联系实际,应用比例尺

  (一)求图上距离

  1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?

  ①独立思考,试试看,如感觉有困难小组内小声讨论。

  ②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?

  方法一:400米=40000厘米 方法二:400米=40000厘米

  4000010000=4(厘米) 400001/10000=4(厘米)

  方法三:10000厘米=100米 方法四:用比例解(略)等等

  400 100=4(厘米)

  小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。

  ③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)

  [评析:怎样计算图距和实距?教者一改以往根据比例尺计算方法去死套公式(图距=实距比例尺;实距=图距比例尺)的做法,也一改教材中烦琐的比例解法,而是借助于学生对比例尺的多角度理解,不把知识点讲死,让学生灵活的选择解决方法,很好的体现了新课标的理念以人为本,即让不同的学生学不同的数学,让不同的学生得到不同的发展。]

  2、练一练:

  区委东北是我区闹市区十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)

  3、画一画:

  ①请准确地画出教室前黑板的平面图。(怎样画才算准确?)

  ②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。

  (二)求实际距离

  1、 西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?

  ①独立思考;②合作交流;③讲评算理。(略)

  2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?

  [评析:用学生熟悉的生活场景大厂区各地名,采取学生感兴趣的活动画地图联系实际应用比例尺意义计算图距和实距,使学生对数学倍感亲切,感觉数学就在我们身边,突出的体现了数学的生活性。]

  (三)新课延伸

  1、 南京距大厂40千米,画在这幅图上要画多少厘米?

  ①独立列式计算(400厘米)。

  ②要画400厘米,你有何感觉?(太长画不下)

  ③画不下怎么办?(调整比例尺)

  ④说说你的调整方案?

  [评析:一石激起千层浪!在矛盾冲突中培养学生发现问题、分析问题、解决问题的能力,同时达到使学生跳出大厂看比例的目的。]

  2、请拿出标有南京上海的地图,找出比例尺并说说意义。

  ①同座位间合作算出实际距离。

  ②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?

  2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。

  [评析:很有创意!采访老师,就地取材增加课的参与度;学生下位采访,体现课的开放性,培养学生解决实际问题能力的同时培养学生的交际能力。使课堂教学内容得到了再延伸!]

  四、课堂总结,回顾比例尺(略)

  [总评:本节课循着一根知识主线比例尺的意义与应用,引入新知别出心裁,探究新知有章有法,练习设计富有创意;同时循着一根能力主线培养学生解决实际问题能力,无论是哪个环节的例子都来源于学生熟悉的生活,重视学生的独立探究与合作讨论相结合。同时多次运用多媒体辅助教学,充分体现了以教师为主导,学生为主体,训练为主线的严禁课堂教学结构,使学生学的轻松,学有成效。]

《比例的意义》教案11

  素质教育目标

  (一)知识教学点

  1.使学生理解正比例的意义。

  2.能根据正比例的意义判断两种量是不是成正比例。

  (二)能力训练点

  1.培养学生用发展变化的观点来分析问题的能力。

  2.培养学生抽象概括能力和分析判断能力。

  (三)德育渗透点

  1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。

  2.进一步渗透函数思想。

  教学重点:使学生理解正比例的意义。

  教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

  教具学具准备:投影仪、投影片、小黑板。

  教学步骤

  一、铺垫孕伏

  用投影逐一出示下列题目,请同学回答:

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、探究新知

  1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

  2.教学例1

  (1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……

  (2)出示下表,并根据上述内容填表。

  一列火车行驶的时间和所行的路程如下表

  (3)边填表边思考:在填表过程中,你发现了什么?

  学生交流时,使之明确。

  ①表中有时间和路程两种量。

  ②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

  教师点拨:

  像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)

  ③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。

  教师问:根据计算,你发现了什么?

  引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。

  教师指出:相对应的'两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)

  ④比值60,实际就是火车的速度。用式子表示它们的关系就是:

  (4)教师小结:

  刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  3.教学例2

  (1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  (2)观察上表,引导学生明确:

  ①表中有数量(米数)和总价这两种量,它们是两种相关联的量。

  ②总价随米数的变化情况是:

  米数扩大,总价随着扩大;米数缩小,总价也随着缩小。

  ③相对应的总价和米数的比的比值是一定的。

  ④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:

  (3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)

  4.抽象概括正比例的意义。

  (1)比较例1、例2,思考并讨论,这两个例子有什么共同点?

  (2)学生初步交流时引导学生明确:

  ①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;

  ②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。

  教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)

  ③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。

  (学生答不出来时,教师引导、点拨,并补充板书:两种量中)

  (3)引导学生抽象概括出两例的共同点:

  两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。

  (4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  (补充板书:如果这成正比例的量正比例关系)

  这就是我们这节课学习的“正比例的意义”(板书课题)

  (5)看书19、20页的内容,进一步理解正比例的意义。

  (6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。

  (7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  (9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  5.教学例3

  (1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  (2)根据正比例的意义,由学生讨论解答。

  (3)汇报判断结果,并说明判断的根据。

  教师板书:

  面粉的总重量和袋数是两种相关联的量。

  所以面粉的总重量和袋数成正比例。

  6.反馈练习

  让学生试做第21页的做一做,并订正。

  三、巩固发展

  1.完成练习三第1题。

  先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?

《比例的意义》教案12

  教学目标

  1.使学生理解比例的意义,掌握组成比例的条件。

  2.使学生能正确地判断两个比能否组成比例。

  3.认识比例的各部分名称,掌握比例的基本性质。

  教学重点和难点

  比例的意义和性质的理解与应用。

  教学过程设计

  第一部分:比例的意义

  (一)复习准备

  1.求比值:

  2.请你找出比值相等的两个比。

  1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

  (二)学习新课

  1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。

  板书:80∶2

  再请你说出第二次行驶路程和时间的比。

  板书:240∶6

  师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)

  师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)

  得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)

  教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)

  师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)

  思考题:

  1.什么叫比例?

  2.比例的各部分名称?

  3.组成比例的重要条件?

  采取自学→两人讨论→集体讨论。

  师再次强调组成比例的条件:

  A.必须是两个比。

  B.两个比的比值必须相等。

  C.必须是一个式子。

  最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。

  师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)

  比例还有其它书写格式吗?请同学们看,老师怎样写。

  (三)巩固反馈

  1.判断下面两个比能否组成比例?

  (1)1∶3和3∶9( )

  (2)60∶30和160∶80( )

  (4)0.2∶0.4和1.6∶4( )

  并组成比例。(学生先写再说)

  3.随意写比例,互相查看。(至少写2个)

  第二部分:比例的性质

  (一)讲授比例的性质

  让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?

  学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:

  请你指出黑板上比例中的内外项。

  现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:

  通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)

  师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。

  师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。

  师:比例写成分数形式时,比例的性质如何理解呢?

  80×6=2×240 1.2×8=24×0.4

  即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:

  (二)课堂练习

  (放幻灯片)

  (1)用比例性质验证你所写的比例是否正确?

  (2)用2,8,5,20四个数组成比例。

  (3)填适当的数。

  3∶18=5∶( )

  为什么填30?有几个答案?

  4.8∶0.6=( )∶2

  为什么只能填16?

  12∶( )=( )∶5

  有几个答案?

  (4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?

  (5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?

  (三)课堂总结

  (学生小结这节课所学内容。)

  1.质疑:(学生、老师质疑)(幻灯片)

  ①表示两个相等的式子叫比例。对吗?

  2.思考题:

  (1)根据30×3=45×2写比例式。

  (2)求x:

  12∶30=8∶x

  能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?

  课堂教学设计说明

  本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。

  第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的.比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。

  第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

  另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。

  在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。

  板书设计

《比例的意义》教案13

  教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:认识反比例关系的意义。

  教学难点:掌握成反比例量的变化规律及其特征。

  教学过程:

  一、复习旧知

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、教学新课

  1.教学例4。

  出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例5。

  出示例5。

  请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

  3.概括反比例的意义。

  (1)综合例4、例5的共同点。

  提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

  4.具体认识。

  (1)提问:例4里有哪两种相关联的'量?这两种量成反比例关系吗?为什么,

  例5里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)做练习八第4题。

  让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

  (4)判断。

  现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  5.教学例6。

  出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

  三、巩固练习

  用刚才我们说的判断方法来做几道题。

  1.做“练一练”第l题。

  指名学生口答,说明理由。(可以写出数量关系式看一看)

  2.做“练一练”第2题。

  指名口答,说说理由。思考时可以引导看数量关系式。

  3.做练习八第5题。

  让学生先在书上判断。指名口答,要求说出数量关系式判断。

  4.下题两种相关联量成不成反比例?为什么?

  一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  5.做练习八第6题。

  各人先在书上写各成什么比例。指名口答,要求说明理由。

  6.做练习八第7题。

  先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

  练习八第7题。

《比例的意义》教案14

  教学目标:

  1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。

  2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、培养学生猜想与验证、观察与概括的能力。

  4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。

  教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  教学难点:自主探究比例的基本性质。

  教学准备:投影片、练习纸

  三案设计:

  学案

  一、自学质疑

  [探究任务一] 比例的意义

  1、投影出示几组比,让学生写出各组的比值,

  二、比例的基本性质

  教案

  一、回顾旧知、孕伏新知:

  1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?

  (生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?

  2、 师板书题目:

  (1)4:5 20:25 (2)0.6:0.3 1.8:0.9

  (3)1/4: 5/8 3:7.5 (4)3:8 9:27

  [评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]

  二、丝丝入扣,深挖比例的意义

  (一)认识意义

  1、 指名口答每组中两个比的比值,在比例下方写上比值。

  师问:你们有什么发现吗?(三组比值相等,一组不等)

  2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25

  师:最后一组能用等号连接吗?为什么?

  数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)

  [评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]

  3、同学们想研究比例的哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  板演:表示两个比相等的式子叫做比例。

  学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  5、质疑:有三个比,他们的比值相等,能组成比例吗?

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的快乐!]

  (二)练习

  1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第1题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  (1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  (2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、认识比例各部分的名称

  (1)板书出示: 4 : 5

  前项 后项

  (2)板书出示:4 : 5 = 20 : 25

  (3)如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:4/5=20/25

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?

  三、探究比例的基本性质

  1、投影出示:

  你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3

  或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答,师相机引导并板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6: 3=10:5……

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证猜想:

  师:这是你的猜想,有了猜想还必须验证。

  (1)请看黑板上这几个比例的内项的积与外项的积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)

  (2)学生任意写一个比例并验证。师巡视指导。

  师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?

  板书:1/2 ∶1/8 = 2∶ 8

  众生沉思片刻,纷纷发现等式不成立。

  生:1/2∶1/8 = 4,而 2∶8 =1/4,这两个比不能组成比例。

  师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的.?(写了一些比例式,观察比较,发现规律,再验证)

  [及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]

  四、反馈提升

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9 1.4 :2 和 5 :10

  让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ②20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  ①1.5:3=( ):4

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、课后留白

  同一时间、同一地点,人高1.5米,影长2米;树高3米,影长4米。

  (1)人高和影长的比是( )

  树高和影长的比是( )

  (2)人高和树高的比是( )

  人影长和树影长的比是( )

  你有什么发现?

  为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。

  [设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]

  六、全课总结:这节课你有什么收获?

  (最后的机会仍然给学生,学生通过清晰的板书总结的很到位)

《比例的意义》教案15

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的.四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

【《比例的意义》教案】相关文章:

《比例的意义》教案07-07

《正比例的意义》教案12-09

《比例的意义》教案(15篇)06-01

《正比例的意义》教案9篇09-15

比例的意义和基本性质教案07-03

《比例的意义》教学反思08-14

“比例的意义”教学反思09-22

比例的意义教学反思09-21

《比例的意义》教学设计05-29