- 反比例函数教案 推荐度:
- 相关推荐
反比例函数教案15篇
作为一位优秀的人民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么你有了解过教案吗?下面是小编精心整理的反比例函数教案,欢迎阅读与收藏。
反比例函数教案1
【学习目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。
【学习重点】
理解反比例函数的意义,确定反比例函数的解析式。
【学习难点】
反比例函数的.解析式的确定。
【学法指导】
自主、合作、探究
教学互动设计
【自主学习,基础过关】
一、自主学习:
(一)复习巩固
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.
2.一次函数的解析式是:;当时,称为正比例函数.
3.一条直线经过点(2,3)、(4,7),求该直线的解析式.
以上这种求函数解析式的方法叫:
(二)自主探究
提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?
1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.
(1)当y1-y2=4时,求m的值;
(2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).
26.1.2反比例函数的图象和性质:课文练习
1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是( )
A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[
B.它们的图象都是轴对称图形
C.它们的图象都是中心对称图形
D.当x>0时,两个函数的函数值都随自变量的增大而增大
反比例函数教案2
教学目标:
1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
教学重点运用反比例函数解决实际问题
教学难点运用反比例函数解决实际问题
教学过程:
一、情景创设
引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中S一定,a和b之间的关系?你能举例吗?
二、例题精析
例1、见课本73页
例2、见课本74页
例3、某气球内充满一定质量的.气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?
四、课堂练习课本P74练习1、2题
五、课堂小结反比例函数的应用
六、课堂作业课本P75习题9.3第1、2题
七、教学反思
更多初二数学教案,请点击
反比例函数教案3
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1、出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2、这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3、小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1、出示例2,根据题意,学生口述填表。
2、教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的`意义。
1、请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2、教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3、如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:xy =k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
反比例函数教案4
教学目标:
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。
教学程序:
一、导入:
1、从现实情况和已有知识经验出发,讨论两个变量之间的'相依关系,加强对函数概念的理解,导入反比例函数。
2 、U=IR,当U=220V时,
(1)你能用含 R的代数式 表示I吗?
(2)利用写出的关系式完成下表:
R(Ω) 20 40 60 80 100
I(A)
当R越来越大时,I怎样 变化?
当R越来越小呢?
( 3)变量I是R的函数吗?为什么?
答:① I = UR
② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。
③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。
二、新授:
1、反比例函数的概念
一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。
反比例函数的自变量x 不能为零。
2、做一做
一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?
解:y=20x ,是反比例函数。
三、课堂练习 :
P133,12
四、作业:
P133,习题5.1 1、2题
反比例函数教案5
教学目标
(一)教学知识点
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
(二)能力训练要求
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
(三)情感与价值观要求
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.
教学重点
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
教学难点
领会反比例函数的意义,理解反比例函数的概念.
教学方法
教师引导学生进行归纳.
教具准备
投影片两张
第一张:(记作5.1A)
第二张:(记作5.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
Ⅱ.新课讲解
[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
[师]大家还记得函数的定义吗?
[生]记得.
在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.
[师]大家能举出实例吗?
[生]可以.
例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.
等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.
[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的.表达式.
[师]请看下面的问题.
电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
R/Ω20406080100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
请大家交流后回答.
[生](1)能用含有R的代数式表示I.
由IR=220,得I= .
(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.
(3)变量I是R的函数.
由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.
[师]这位同学回答的非常精彩,下面大家再思考一个问题.
舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.
[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.
投影片:(5.1A)
京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.
[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.
[师]从上面的两个例题得出关系式
I= 和t= .
它们是函数吗?它们是正比例函数吗?是一次函数吗?
[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.
[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?
[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).
[师]很好.
一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.
从y= 中可知x作为分母,所以x不能为零.
3.做一做
投影片(5.1B)
1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
3.y是x的反比例函数,下表给出了x与y的一些值:
x-2-1
13
y
2-1
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.
[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.
[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.
[生]设反比例函数的表达式为
y= .
(1)当x=-1时,y=2;
∴k=-2.
∴表达式为y=- .
(2)当x=-2时,y=1.
当x=- 时,y=4;
当x= 时,y=-4;
当x=1时,y=-2.
当x=3时,y=- ;
当y= 时,x=-3;
当y=-1时,x=2.
因此表格中从左到右应填
-3,1,4,-4,-2,2,- .
Ⅲ.课堂练习
随堂练习(P131)
Ⅳ.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.
Ⅴ.课后作业
习题5.1
Ⅵ.活动与探究
已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?
分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.
解:由题意可知y-1= =k(x+2).
当x=1时,y=4.
所以3k=4-1,
k=1.
即表达式为y-1=x+2,
y=x+3.
由上可知y是x的一次函数.
板书设计
反比例函数教案6
教学过程设计
一、创设情境 引入课题
活动1
问题:
你们还记得一次函数图象与性质吗?
设计意图
通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:
教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。
二、类比联想 探究交流
活动2
问题:
例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)
设计意图:
通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:
学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:
1学生能否顺利进行三种表示方法的相互转换:
2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;
3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?
(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)
设计意图:
学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:
学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较 发现规律
活动3
问题:
观察反比例函数y= 与y=- 的图象。
你能发现它们的共同特征以及不同点吗?
每个函数的图象分别位于哪几个象限?
在每一个象限内,y随x的变化如何变化?
由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:
形状: 反比例函数的图象是由两支双曲线组成的.因此称反比例函数的.图象为双曲线;
位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;
任意一组变量的乘积是一个定值,即xy=k.
(注意:双曲线的两个分支都不会与x轴,y轴相交。)
学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育.
四、 运用新知 拓展训练
设计意图:
拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的.
师生形为:
学生独立思考完成。
教师巡视,引导学困生完成任务。
五、归纳总结 布置作业
问题:
本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?
反比例函数教案7
教学目标
(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。教学过程
1、引入新课
上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨
2、提出问题、解决问题
(1)审完题后,你的切入点是什么,
由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t
(2)你们再回忆一下,今天求出的.反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)
(3)明确了问题的区别,那么第二问怎样解决
根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答t
案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0 3、巩固练习 例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。 (1)蓄水池的容积是多少 (2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。 (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少 (4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空 这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。 4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论: (1)学习了反比例函数的应用。 (2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。 (3)求“至少”“最多”值时,可根据函数的性质得到。 5、作业设计①必做题: (1)课本第61页第2题。 (2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页 一、教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点 1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法: (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解 (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。 (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式 三、例题的'意图分析 教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。 教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。 补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。 四、课堂引入 1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的? 2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析 例1.见教材P47 分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。 例1.(补充)下列等式中,哪些是反比例函数 (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4 分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式 例2.(补充)当m取什么值时,函数是反比例函数? 分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误 一、教学设计思路 1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。 2. 对教材的分析 (1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。 (2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。 (3) 难点:探索并掌握反比例函数的主要性质。 二、教学过程 (一)作图象,试比较 1、提问: (1)=4/x 是什么函数?你会作反比例函数的图象吗? (2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。 2、按照上述方法作 =—4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。 (二)细观察,找规律 1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。 2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。 3、让学生观察函数 =/x 的'图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。 (1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。 (2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。 (三)用规律,练一练 1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。 2、判断一位同学画的反比例函数的图象是否正确。 3、下列函数中,其图象位于第一、三象限 的有哪几个?在其图象所在象限内,的值随x的增大而增 大的有哪几个? (四)想一想,作小结 (五)作业:课本137页第1题、141页第2题 一、情景导入 在一个平面直角坐标系中,根据所提供的两组数据描绘出相应的反比例函数图象. x-6-3-2-11236 y-1-2-3-66321 x-6-3-2-11236 y1266-6-3-2-1 观察这两个图象,试着求出它们的解析式,看看它们之间是否存在着某些关系? 二、合作探究 探究点一:反比例函数图象的性质 【类型一】利用反比例函数的性质确定字母的取值范围 在反比例函数y=1-kx的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是() A.-1B.0C.1D.2 解析:反比例函数y=1-kx的图象的每一条曲线上,y都随x的增大而增大,根据反比例函数的性质可知,该图象的两个分支分别在第二、四象限内,所以该函数的比例系数1-k<0,解得k>1.故只有D项符合题意.故选D. 方法总结:反比例函数图象的位置和函数的增减性,都是由比例系数k的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k的符号. 【类型二】比较函数值的大小 在反比例函数y=-1x的图象上有三点(x1,y1),(x2,y2),(x3,y3),若x1>x2>0>x3,则下列各式正确的是() A.y3>y1>y2B.y3>y2>y1 C.y1>y2>y3D.y1>y3>y2 解析:本题方法较多,一是根据x1,x2,x3的大小即可比较;二是画出草图,根据反比例函数图象的性质比较;三是利用特殊值法. (方法一)比较法:由题意,得y1=-1x1,y2=-1x2,y3=-1x3,因为x1>x2>0>x3,所以y3>y1>y2. (方法二)图象法: 如图,在直角坐标系中作出y=-1x的草图,描出符合条件的三个点,观察图象直接得到y3>y1>y2. (方法三)特殊值法:设x1=2,x2=1,x3=-1,则y1=-12,y2=-1,y3=1,所以y3>y1>y2.故选A.方法总结:此题的三种解法中,图象法形象直观,具有一般性;特殊值法最简单,这种方法对于解答许多选择题都很有效,要注意学会使用. 探究点二:反比例函数图象中比例系数k的几何意义 如图,四边形OABC是边长为1的正方形,反比例函数y=kx的图象经过点B(x0,y0),则k的值为. 解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=kx图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1. 方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号. 三、板书设计 反比例函数的`性质性质当k>0时,在每一象限内,y的值随x的值的增大而减小当k<0时,在每一象限内,y的值随x的值的增大而增大反比例函数图象中比例系数k的几何意义 通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲. 【反思】 图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。 体会: 通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。 【教学目的】 1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。 2、能力目标:提高学生的观察、分析能力和对图形的感知水平。 3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。 【教学重点】 探索反比例函数图象的主要性质及其图像形状。 【教学难点】 1、准确画出反比例函数的图象。 2、准确掌握并能运用反比例函数图象的性质。 【教学过程】 活动1、汇海拾贝 让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。 活动2、学海历练 让学生仿照画一次函数的方法画反比例函数y=2/x和y=—2/x的图像并观察图像的.特点 活动3、成果展示 将各组的成果展示在大家的面前,并纠正可能出现的问题。 活动4、行家看台 1.反比例函数的图象是双曲线 2.当k>0时,两支双曲线分别位于第一,三象限内当k<0时,两支双曲线分别位于第二,四象限内 3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交 活动5、星级挑战 1星: 1、反比例函数y=—5/x的图象大致是() 2、函数y=6/x的图像在第象限,函数y=—4/x的图像在第象限。 2星: 1、函数y=(m—2)/x的图像在二、四象限,则m的取值范围是 2、函数y=(4—k)/x的图像在一、三象限,则k的取值范围是 3星: 1、下列反比例函数图像的一个分支,在第三象限的是() a、y=(3—π)/xb、y=2—1/xc、y=—3/xd、y=k/x 2、已知反比例函数y=—k/x的图像在第二、四象限,那么一次函数y=kx+3的图像经过() a、第一、二、三象限b、第一、二、四象限 c、第一、三、四象限d、第二、三、四象限 4星: 1、在同一坐标系中,函数y=—k/x和y=kx—k的图像大致是 2、反比例函数y=ab/x的图像在第一、三象限,那么一次函数y=ax+b的图像大致是 5星: 1、反比例函数y2m 1xm28,它的图像在一、三象限,则2、反比例函数y 活动6、回味无穷k4k2,它的图像在一、三象限,则k的取值范围是x 1、反比例函数的图象是双曲线 2、当k>0时,两支双曲线分别位于第一,三象限内当k<0时,两支双曲线分别位于第二,四象限内 3、双曲线会越来越靠近坐标轴,但不会与坐标轴相交活动 7、终极挑战 如图,矩形abcd的对角线bd经过坐标原点,矩形的边分别平行于坐标轴,点c在反比例函数y=(k2—5k—10)/x的图像上,若点a的坐标是(—2,—2)则k的值为 教学目标 1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。 2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。 3. 使学生会画出反比例函数的图象。 4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。 教学重点 1、 使学生了解反比例函数的表达式,会画反比例函数图象 2、 使学生掌握反比例函数的图象性质 3、 利用反比例函数解题 教学难点 1、 列函数表达式 2、 反比例函数图象解题 教学过程 教师活动 一、作业检查与讲评 二、复习导入 1.什么是正比例函数? 我们知道当 (1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数) (2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数) 创设问题情境 问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。 分析 和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式. 设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以 从这个关系式中发现: 1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大. 2.自变量v的取值是v>0. 问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式. 分析 根据矩形面积可知 xy=24,即 从这个关系中发现: 1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大; 2.自变量的取值是x>0. 三、新课讲解 上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function). 说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系. 2.反比例函数的解析式又可以写成:( k是常数,k≠0). 3.要求出反比例函数的解析式,只要求出k即可. 实践应用 例1 下列函数关系中,哪些是反比例函数? (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系; (2)压强p一定时,压力F与受力面积s的关系; (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系. (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式. 例2 当m为何值时,函数是反比例函数,并求出其函数解析式. 例3 将下列各题中y与x的函数关系与出来. (1),z与x成正比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与成正比例; 例4 已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y的值. 分析 因为y与 x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值. 例5 已知y=y1+y2, y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式. 小结 一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function). 要求反比例函数的解析式,可通过待定系数法求出k值,即可确定. 练习2 1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数? (1)小红一分钟可以制作2朵花,x分钟可以制作y朵花; (2)体积为100cm3的长方体,高为hcm时,底面积为Scm2; (3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2; (4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米. 2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值. 3.已知y=y1+y2, y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值. 4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm. (1)写出用高表示长的函数式; (2)写出自变量x的取值范围; (3)当x=3cm时,求y的值. 5.试用描点作图法画出问题1中函数的图象. 上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质. 二、探究归纳 1.画出函数的图象. 解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等. 3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象. 上述图象,通常称为双曲线(hyperbola). 提问 这两条曲线会与x轴、y轴相交吗?为什么? 画出反比例函数的图象 1.这个函数的图象在哪两个象限?和函数的图象有什么不同? 2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定? 3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有下列性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加. 注 1.双曲线的两个分支与x轴和y轴没有交点; 2.双曲线的两个分支关于原点成中心对称. 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少. 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小. 三、实践应用 例1 若反比例函数的图象在第二、四象限,求m的值. 分析 由反比例函数的定义可知: ,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值. 解 由题意,得 解得. 例2 已知反比例函数(k≠0),当x>0时,y随x的'增大而增大,求一次函数y=kx-k的图象经过的象限. 例3 已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象; (2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 例4 已知函数为反比例函数. (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当-3≤x≤时,求此函数的最大值和最小值. 例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象. 说明 由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支. 小结 本节课学习了画反比例函数的图象和探讨了反比例函数的性质. 1.反比例函数的图象是双曲线(hyperbola). 2.反比例函数有如下性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加. 五、课堂练习 1.在同一直角坐标系中画出下列函数的图象: 2.已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值. 4.已知反比例函数经过点A(2,-m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0< x2,试比较y1和 y2的大小 四、课后作业布置 课后练习卷一份 六、课后教学反思 知识技能目标 1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2.利用反比例函数的图象解决有关问题. 过程性目标 1.经历对反比 例函数图象的观察、分析、讨论、概括过程,会说出它的性质; 2.探索反比例函数的图象的性质,体会用数 形结合思想解数学问题. 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数 的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数 (k是常数,k0)的图象,探究它有什么性质. 二、探究归纳 1.画出函数 的图象. 分析 画出函数图象一般分 为列表、描点、连线三个步骤,在反比例函数中自变量x 0. 解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1) 、(-3,-2)、(-2,-3)等. 3.连线:用平滑的 曲线将第一象限各点依次连起来,得到图象的 第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象. 上述图象,通常称为双曲线(hyperbola). 提问 这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数 的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤). 学生讨论、交流以下问题,并 将讨论、交流的结果回答 问题. 1.这个函数的图 象在哪两个象限?和函数 的图象 有什么不同? 2.反比例函数 (k0)的图象在哪两个象限内?由什么确定? 3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数 有下列性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加. 注 1.双曲线的.两个分支与x轴和y轴没有交点; 2.双曲线的两个分支关于原点成中心对称. 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速 度快,小华乘汽车比骑自行车到镇上的时间少. 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小. 三、实践应用 例1 若反比例函数 的图象在第二、四象限,求m的值. 分析 由反比例函 数的定义可知: , 又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值. 解 由题意, 得 解得 . 例2 已知反比例函数 (k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限. 分析 由于反比例函数 (k0 ),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方. 解 因为反比例函数 (k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限. 例3 已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象; (2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析 (1) 反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上. 解 (1)设:反比例函数的解析式为: (k0). 而反比例函数的图象过 点(1,-2),即当x=1时,y=-2. 所以 ,k=-2. 即反比例函数的解析式为: . (2)点A(-5,m)在反比例函数 图象上,所以 , 点A的坐标为 . 点A关于x轴的对称点 不在这个图象上; 点A关于y轴的对称点 不在这个图象上; 点A关于原点的对称点 在这个图象上; 例4 已知函数 为反比例函数. (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当-3 时,求此函数的最大值和最小值. 解 (1)由反比例函数的定义可知: 解得,m=-2. (2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大. (3)因为在第个象限内,y随x的增大而增大, 所以当x= 时,y最大值= ; 当x=-3时,y最小值= . 所以当-3 时,此函数的最大值为8,最小值为 . 例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米. (1)写出用高表示长的函数关 系式; (2)写出自变量x的取值范围; ( 3)画出函数的图象. 解 (1)因为100=5xy,所以 . (2)x0. (3)图象如下: 说明 由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支. 四、交流反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质. 1.反比例函数的图象是双曲线(hyperbola). 2.反比例函数有如下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线 从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加. 五、检测反馈 1.在同一直角坐标系中画出下列函数的图象: (1) ; (2) . 2.已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当 时,y的值; (3)当x取 何值时, ? 3.若反比例函数 的图象在所在象限内,y随x的增大而增大,求n的值. 4.已知反比例函数 经过点A(2,-m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2( x2,y2),且x1 x2,试比较y1和 y2的大小. 一、背景分析 1.对教材的分析 本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。 本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。 传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。 (1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。 (2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。 (3)难点:探索并掌握反比例函数的主要性质。 2、对学情的分析 九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。 二、教学过程 一、忆一忆 师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形? 生:作一次函数的图象要采用以下几个步骤: (1)列表 (2)描点 (3)连线。 生乙:一次函数的图象是一条直线。 师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数? 生:反比例函数。 师:你们能作出它的图象吗? 生:可以。 点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。 二、作图象,试比较 师:请填写电脑上的表格,并开始在坐标纸上描点,连线。 师:再按照上述方法作y=-4/x的图象。 (学生动手操作) 师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。 (学生讨论交流,教师参与) 师:讨论结束,下面哪个小组的同学说说你们的看法? 生1:它们的图象都是由两支曲线组成的。 生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。 点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。 三、细观察,找规律 师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。 (展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论) 师:请同学们谈一谈刚才讨论的结果。 生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。 师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。 (1)反比例函数y=k/x的图象是由两支曲线所组成的。 (2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。 (3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。 师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题? (由学生在电脑上进行操作) 生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。 师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。 题目: (1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。 (2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。 生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。 师:大家的观察很仔细,总结得也很正确。 点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。 四、用规律,练一练 1、课本137页随堂练习1 生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。 2、下列函数中,其图象唯一、三象限的`有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个? (1)y=1/(2x) (2)y=0.3/x (3)y=10/x (4)y=-7/(100x) 生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。 五、想一想,谈收获 师:通过今天的学习,你有什么收获? 生甲:我今天知道了怎样画反比例函数的图象。 生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。 生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大 生丁:我还能用反比例函数的相关性质解题。 师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。 总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。 教学反思: 本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。 教学目标 知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。 3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。 过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力. 情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。 教学重点 教学难点 1) 重点:画反比例函数图象并认识图象的特点. 2)难点:画反比例函数图象. 教学关键 教师画图中要规范,为学生树立一个可以学习的模板 教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式 教学手段 教师画图,学生模仿 教具 三角板,小黑板 学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法 教学过程 (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置) 内 容 设计意图 一:课前检测: 1.什么叫做反比例函数; (一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。) 2.反比例函数的定义中需要注意什么? (1)k为常数,k0 (2)从y= 中可知x作为分母,所以x不能为零. 二:激发兴趣 导入新课 问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的? y=kx+b y=kx K0 一、二、三 一、三 b0 一、三、四 K0 一、二、四 二、四 b0 二、三、四 问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢? 可以 问题3:画图象的步骤有哪些呢? (1)列表 (2)描点 (3)连线 (教学片断: 师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。 生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。 生:我知道反比例函数的解析式为 且k不等于0 生:我知道反比例函数的图象是曲线。 师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢? 生:该研究反比例函数图象和性质了。 师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画? 三:探求新知 学生思考、交流、回答。 提问:你能画出 的图象吗? 学生动手画图,相互观摩。 (1) 列表(取值的特殊与有效性) x -8 -4 -2 -1 -1/2 1/2 1 2 4 8 (2)描点(描点的准确) (3)连线(注意光滑曲线) 议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点? (4)曲线的发展趋势如何? 曲线无限接近坐标轴但不与坐标轴相交 学生先分四人小组进行讨论,而后小组汇报 做一做 作反比例函数 的图象。 学生动手画图,相互观摩。 想一想 观察 和 的图象,它们有什么相同点和不同点? 学生小组讨论,弄清上述两个图象的异同点 相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点) 不同点:第一个图象位于一、三象限;第二个图象位于二、四象限 四:归纳与概括 反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。 (1) 当 k0 时,两支曲线分别位于第___、___象限, (2) 当 k0 时,两支曲线分别位于第___、___象限. 五:课堂练习 (1) (2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限; 六:形成性检测 (1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________ (2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( ) (A) (B) (C) (D) (3)画 和 的图象 七:反馈拓展 在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标. 八:作业布置 (1) 作反比例函数y=2/x,y=4/x,y=6/x的.图象 (2) 习题5.2.1 (3)预习下一节 反比例函数的图象与性质II 复习上节主要内容 (3分钟) (5分钟) 运用类比研究一次函数性质的方法,来研究反比例函数图象与性质 由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。 数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。 数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。 (12分钟) 引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质. 在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。 注:(1)x取绝对值相等符号相反的数值 (2) x取值要尽可能多,而且有代表性 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。 (3分钟) 此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。 (5分钟) 活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线 (4分钟) 培养学生归纳,语言表达能力 此中注意分类讨论思想的应用 巩固反比例函数图象性质 (2分钟) 与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。 (5分钟) 这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。 (4分钟) 此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。 (1分钟) 巩固作反比例函数图象的步骤,预习下一节课内容 教学反思与检讨: 本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。 由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。 在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。 反比例函数的图象与性质 一:画出 的图象 (1)列表(取值的特殊与有效性) x -8 -4 -2 -1 -1/2 1/2 1 2 4 8 (2)描点(描点的准确) (3)连线(注意光滑曲线) 注:(1)x取绝对值相等符号相反的数值 (2)x取值要尽可能多,而且有代表性 三:练习 (3)连线时用光滑曲线从小到大依次连接 (4)图象不与坐标轴相交 二:反比例函数的图象y = 是由两支曲线组成的。 (1) 当 k0 时,两支曲线分别位于第一、三象限, (2) 当 k0 时,两支曲线分别位于第二、四象限. 【反比例函数教案】相关文章: 反比例函数教案01-15 反比例函数教学反思03-23 八年级数学《反比例函数》说课稿01-11 二次函数教案07-31 一次函数教案11-09 初中二次函数教案01-10 小学六年级反比例教案02-22 二次函数数学教案09-30 《反比例》教学反思08-28反比例函数教案8
反比例函数教案9
反比例函数教案10
反比例函数教案11
反比例函数教案12
反比例函数教案13
反比例函数教案14
反比例函数教案15