当前位置:9136范文网>教育范文>教案>有理数教案

有理数教案

时间:2024-07-20 12:28:03 教案 我要投稿

有理数教案

  作为一名教职工,往往需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。那要怎么写好教案呢?下面是小编收集整理的有理数教案,希望对大家有所帮助。

有理数教案

有理数教案1

  学习目标:

  1、理解加减法统一成加法运算的意义。

  2、会将有理数的加减混合运算转化为有理数的加法运算。

  3、培养学习数学的兴趣,增强学习数学的信心。

  学习重点、难点:有理数加减法统一成加法运算

  教学方法:讲练相结合

  教学过程

  一、学前准备

  1、一架飞机作特技表演,起飞后的高度变化如下表:

  高度的变化 上升4。5千米 下降3。2千米 上升1。1千米 下降1。4千米

  记作 +4。5千米 3。2千米 +1。1千米 1。4千米

  请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。

  2、你是怎么算出来的,方法是

  二、探究新知

  1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!

  2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。

  3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 。再把加号记在脑子里,省略不写

  如:(—20)+(+3)—(—5)—(+7) 有加法也有减法

  =(—20)+(+3)+(+5)+(—7) 先把减法转化为加法

  = —20+3+5—7 再把加号记在脑子里,省略不写

  可以读作:负20、正3、正5、负7的 或者负20加3加5减7。

  4、师生完整写出解题过程

  三、解决问题

  1、解决引例中的问题,再比较前面的'方法,你的感觉是

  2、例题:计算—4。4—(—4 )—(+2 )+(—2 )+12。4

  3、练习:计算 1)(7)(+5)+(4)(10)

  三、巩固

  1、小结:说说这节课的收获

  2、P241、2

  3、计算

  1)2718+(7)32 2)

  四、作业

  1、P255 2、P26第8题、14题

有理数教案2

  教学目标

  1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;

  2、会用计算器进行较繁杂的有理数混合运算。

  教学重点

  1、有理数的混合运算;

  2、运用运算律进行有理数的混合运算的简便计算。

  教学难点

  运用运算律进行有理数的混合运算的简便计算。

  有理数的混合运算的运算顺序

  也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

  先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。

  你会根据有理数的运算顺序计算上面的算式吗?

  2、8有理数的混合运算:同步练习

  1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的.数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。

  《2、8有理数的混合运算》课后训练

  1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?

有理数教案3

  教学目标

  1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

  (二)知识结构

  (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

  教学目标

  1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

  2.通过有理数的乘法运算,培养学生的运算能力;

  3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

  教学重点和难点

  重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

  难点:有理数乘法法则的理解.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.计算(-2)+(-2)+(-2).

  2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

  3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

  4.根据有理数加减运算中引出的.新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

  二、师生共同研究有理数乘法法则

  问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米.

  问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米).

  引导学生比较①,②得出:

  把一个因数换成它的相反数,所得的积是原来的积的相反数.

  这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

  把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数同0相乘,都得0.

  继而教师强调指出:

  “同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.

  用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.

  因此,在进行有理数乘法时,需要时时强调:先定符号后定值.

  三、运用举例,变式练习

  例1 计算:

  例2 某一物体温度每小时上升a度,现在温度是0度.

  (1)t小时后温度是多少?

  (2)当a,t分别是下列各数时的结果:

  ①a=3,t=2;②a=-3,t=2;

  ②a=3,t=-2;④a=-3,t=-2;

  教师引导学生检验一下(2)中各结果是否合乎实际.

  课堂练习

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

  (5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

  2.口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a.

  这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.

  3.当a,b是下列各数值时,填写空格中计算的积与和:

  4.填空:

  (1)1×(-6)=______;(2)1+(-6)=_______;

  (3)(-1)×6=________;(4)(-1)+6=______;

  (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

  (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。

  5.判断下列方程的解是正数还是负数或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

  四、小结

  今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

  五、作业

  1.计算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0。001); (5)-4。8×(-1。25); (6)-4。5×(-0。32).

  2.计算:

  3.填空(用“>”或“<”号连接):

  (1)如果 a<0,b<0,那么 ab ________0;

  (2)如果 a<0,b<0,那么ab _______0;

  (3)如果a>0时,那么a ____________2a;

  (4)如果a<0时,那么a __________2a.

  探究活动

  问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

  答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.

  道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.

有理数教案4

  学习过程:

  一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:

  1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?

  2.加法的交换律:

  两个数相加,交换xx的位置,和不变.用式子表示:a+b=。

  3.加法的结合律:

  《1.3.1有理数的加法》同步练习含答案

  在进行两个异号有理数的加法运算时,其计算步骤如下:

  ①将绝对值较大的有理数的符号作为结果的符号并记住;

  ②将记住的符号和绝对值的差一起作为最终的计算结果;

  ③用较大的绝对值减去较小的绝对值;

  ④求两个有理数的绝对值;⑤比较两个绝对值的大小.其中操作顺序正确的是( )

  A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②

  《1.3.1有理数的'加法》同步练习题(含答案)

  10.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10。

  (1)小虫最后是否回到出发点A?

  (2)在爬行过程中,如果每爬行1cm奖励一粒芝麻,那么小虫一共得到多少粒芝麻?

  解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,

  所以小虫最后回到出发点A。

  (2)小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。

  所以小虫一共得到54粒芝麻。

有理数教案5

  一、知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。

  二、过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。

  三、情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣。

  教学重点、难点与关键

  1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

  2.难点:省略括号和加号的加法算式的运算方法。

  3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式。

  教具准备

  投影仪。

  四、教学过程

  一、复习提问,引入新课

  1.叙述有理数的加法、减法法则。

  2.计算。

  (1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);

  (4)(-8)-6; (5)5-14.

  五、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算。

  例6:计算:(-20)+(+3)-(-5)-(+7)。

  分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =[(-20)+(-7)]+[(+3)+(+5)]

  =-27+(+8)

  =-19

  把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.

  这个式子读作负20、正3、正5、负7的`和或读作负20加3加5减7。

  例6的运算过程也可简写为:

  (-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7) (加减法统一为加法)

  =-20+3+5-7 (省略式子中的括号和括号前面的加号)

  =-20-7+3+5 (加法交换律交换时,要连同符号一起交换)

  =-19 (异号两数相减)

  六、巩固练习

  1.课本第24页练习。

  (1)题是已写成省略加号的代数和,可运用加法交换律、结合律。

  原式=1+3-4-0.5=0-0.5=-0.5

  (2)题运用加减混合运算律,同号结合。

  原式=-2.4-4.6+3.5+3.5=-7+7=0

  (3)题先把加减混合运算统一为加法运算。

  原式=(-7)+(-5)+(-4)+(+10)

  =-7-5-4+10 (省略括号和加号)

  =-16+10

  =-6

  七、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。

  八、作业布置

  1.课本第25页第26页习题1.3第5、6、13题。

  九、板书设计:

  1.3.2 有理数的减法(2)

  第四课时

  1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

有理数教案6

  教学目的:

  1.知识与技能

  体会有理数乘法的实际意义;

  掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。

  2.过程与方法

  经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。

  通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。

  3.情感、态度与价值观

  通过类比和分类的思想归纳乘法法则,发展举一反三的能力。

  教学重点:

  应用法则正确地进行有理数乘法运算。

  教学难点:

  两负数相乘,积的符号为正。

  教具准备:

  多媒体。

  教学过程:

  一、引入

  前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.

  问题一:有理数包括哪些数?

  回答:有理数包括正整数、正分数、负整数、负分数和零.

  问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?

  回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.

  计算下列各题;

  以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.

  二、新课

  我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。

  如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。

  1.正数与正数相乘

  问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

  (+2)×(+3)=+6

  答:结果向东运动了6米.

  2.负数与正数相乘

  问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

  (-2)×(+3)=(-6)

  3.正数与负数相乘

  问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为

  (+2)×(-3)=-6

  4.负数与负数相乘

  问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  讲解:3分前蜗牛应为l上点O右边6cm处,这可以表示为

  (-2)×(-3)=+6

  5.零与任何数相乘或任何数与零相乘

  问题五:原地不动或运动了零次,结果是什么?

  答:结果都是仍在原处,即结果都是零,若用式子表达:

  0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.

  综合上述五个问题得出:

  (1)(+2)×(+3)=+6;

  (2)(-2)×(+3)=-6;

  (3)(+2)×(-3)=-6;

  (4)(-2)×(-3)=+6.

  (5)任何数与零相乘都得零.

  观察上述(1)~(4)回答:

  1.积的符号与因数的符号有什么关系?

  2.积的绝对值与因数的绝对值有什么关系?

  答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.

  由此我们可以得到:

  两数相乘,同号得正,异号得负,并把绝对值相乘.

  (1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:

  口答:确定下列两数积的符号:

  例题:计算下列各题:

  解题步骤:

  1.认清题目类型.

  2.根据法则确定积的符号.

  3.绝对值相乘.

  练习:

  1.口答下列各题:

  (1)6×(-9);(2)(-6)×(-9);

  (3)(-6)×9;(4)(-6)×1;

  (5)(-6)×(-1);(6)6×(-1);

  (7)(-6)×0;(8)0×(-6);

  (9)(-6)×0.25;(10)(-0.5)×(-8);

  注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.

  2.在表中的各个小方格里,填写所在的'横行的第一个数与所在直列的第一个数的积:

  3.计算下列各题:

  (1)(-36)×(-15);(2)-48×1.25;

  4.填空:

  (1)1×(-5)=____;(-1)×(-5)=____;

  +(-5)=____;-(-5)=____;

  (2)1×a=____;(-1)×a=____;

  (3)1×|-5|=____;-1×|-5|=____;

  -|-5|=____

  (4)1+(-5)=____;(-1)+(-5)=____;

  (-1)+5=____.

  三、小结

  (1)指导学生看书,精读乘法法则.

  (2)强调运用法则进行有理数乘法的步骤.

  (3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.

  四、作业

  1.计算:

  (1)(-16)×15;(2)(-9)×(-14);

  (3)(-36)×(-1);(4)13×(-11);

  (5)(-25)×16;(6)(-10)×(-16).

  2.计算:

  (1)2.9×(-0.4);(2)-30.5×0.2;

  (3)0.72×(-1.25);(4)100×(-0.001);

  (5)-4.8×(-1.25);(6)-4.5×(-0.32).

  3.计算:

  4.填空:(用“>”或“<”号连接)

  (1)如果a<0,b>0,那么,ab____0;

  (2)如果a<0,b<0,那么,ab____0;

  (3)当a>0时,a____2a;

  (4)当a<0时,a____2a.

  板书设计

  1.4有理数的乘法

  法则:练习

  教学设计思路

  本节课是在小学已接触到的乘法、初中刚学习过的有理数的加减法基础上进行的。通过对实际问题的解决,引入有理数的乘法法则。在讲解运动的例子时运用现代化教学手段,把图形中的“静”变“动”,增强了直观性,初步培养想象能力。

  教学反思

  强调学生与教师一起共同参与教学活动,我们坚持把教学活动过程体现在教学中,又激发学生的思维积极性,让学生学会分析问题和解决问题。

有理数教案7

  学习目标

  1、掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算;

  2、在有理数的混合运算中,能合理地使用运算律简化运算。

  教学重点和难点

  重点:有理数的混合运算.

  难点:在有理数的混合运算中,能合理地使用运算律简化运算。注意符号问题。

  突破:从 小学四则混合运算出发, 采用以旧引新,课本示范,学生讨论,教师点拨。

  教学过程

  环节1 、温故知新

  1、计算 ( 三分钟练习 ) :

  ( 1)(-2) 3 ; (2)-2 3 ; ( 3)-7+3-6 ; ( 4)(-3) × (-8) × 25 ;

  ( 5)(-616) ÷ (-28) ; (6)0 21 ; ( 7)3.4 × 10 4 ÷ (-5)、

  2、说一说我们学过的有理数的运算律:

  加法交换律:

  加法结合律:

  乘法交换律:

  乘法结合律:

  乘法分配律:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?本节课我们学习有理数的混合运算

  环节2、自主学习:

  师:请同学们先阅读完预习要求,再用15分钟时间进行预习。

  预习要求:

  请同学们利用15分钟的自学时间完成学习内容中的三个模块, 自学中保持自学环境的.安静,认真高效的完成自学任务。

  自学内容要求:

  1 、完成法则自学模块,理解 掌握有理数混合运算的法则;

  2 、法则的运用。完成例1 、例2 的二个自学模块。

  自学模块(一)

  仔细阅读课本66 页第一段,完成下列内容。

  1、 计算:

  (1) -2 ×32=

  (2) (-2 ×3 )2 =

  2、 运算顺序有什么不同?

  3、 小组交流:

  回顾小学学过的四则混合运算顺序,有理数混合运算的顺序是怎样规定的?

  有理数混合运算法则:―――――――――――――――――――――

  ―――――――――――――――――――――

  自学模块(二)

  例1计算:6 1 1 5

  —×(-—-—)÷—

  5 3 2 4

  根据以下提示分析例1 计算

  1、例1 中是一些什么样的运算?像含有这样运算的习题与在小学时的运算顺序一样吗?

  观察运算:题目中有乘法、除法、减法运算,还有小括号.

  思考顺序:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.

  动笔计算:按思考的步骤进行计算,在计算时不要“跳步”太多。

  检查结果:是否正确.

  2、写出例1计算过程

  3、巩固练习

  试用两种方法计算:

  16×(-3/4+5/8)÷(-2)

  ① ;

  ②、

  使用运算律,解题步骤是怎样的?能计算出相同结果吗?但哪种方法更简便?

  4、小组交流

  自学模块(三)

  例2计算:(-4) 2 ×[( -1) 5 +3/4+ (-1/2) 3 ]

  1、根据以下提示分析例2计算

  仿照例1.

  观察运算:

  思考顺序:

  动笔计算:

  检查结果:

  2、写出例2计算过程

  3、巩固练习

  ( 1 )(-4 × 3 2 )-(-4 × 3) 2、

  (2)(-2) 2 -(-5 2 ) × (-1) 5 +87 ÷ (-3) × (-1) 4、

  3、小组交流

  环节3、达标检测

  ( 1)1÷(-1)+0÷4-(-4)(-1) ;

  ( 2)18+32÷(-2) 3 -(-4) 2 ×5、

  (3)计算( 题中的字母均为自然数) :

  [ (-2) 4 +(-4) 2 · (-1) 7 ] 2m · (5 3 +3 5 )、

  以小组为单位计分,积分最高的组为优胜组.

  环节4、课堂小结

  今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

  教师引导学生一起总结有理数混合运算的规律.

  1、先乘方,再——————————————————————

  2、同级运算———————————————————————

  3、若有括号———————————————————————

  在有理数的混合运算中,能合理地使用运算律简化运算,并注意符号问题。

  环节5、课后作业

  课本67页习题

有理数教案8

  教学目标:

  1.知识与技能

  掌握加法法则,体会加法法则的意义。

  2.过程与方法

  通过经历有理数加法运算的发生过程,体验数的运算探索过程,感悟有理数加法运算的技巧及运算规律。

  通过运算归纳出技巧,感悟绝对值不相等的异号两数相加的技巧,突破本节内容中的难点问题。

  3.情感、态度与价值观:

  养成积极探索、不断追求真知的品格。

  教学重点和难点:

  重点:有理数加法法则;

  难点:异号两数相加的法则。

  教学安排:

  第1课时。

  教学过程:

  一、师生共同研究有理数加法法则

  我们已经熟悉正数的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。

  例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的'和叫做净胜球数。掌前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4+(-2),黄队的净胜球数为1+(-1)。

  这里用到正数与负数的加法。学生考虑一下,怎么计算 4+(-2)?

  师:下面我们可以借助数轴来讨论有理数的加法。

  一个物体作左右方向运动,我们规定向左为负,向右为正。

  ① 两次运动后物体从起点向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数教案9

  【目标预览】

  知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

  2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。 数学思考:1、正确地进行有理数的加法运算;

  2、用数形结合的思想方法得出有理数加法法则。

  解决问题:能运用有理数加法解决实际问题。

  情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

  【教学重点和难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。

  【情景设计】

  我们来看一个大家熟悉的实际问题:

  足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:

  (1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)

  (2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)

  这里,就需要用到正数与负数的加法。

  下面,我们利用数轴一起来讨论有理数的加法规律。

  【探求新知】

  一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

  (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。

  两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

  利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

  (2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

  (3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

  (4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

  (5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

  (6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

  (7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

  总结:依次可得

  (2)(-5)+(-3)=-8②

  (3)5+(-3)=2③

  (4)3+(-5)=-2④

  (5)5+(-5)=0⑤

  (6)(-5)+5=0⑥

  (7)5+0=5或(-5)+0=-5⑦

  观察上述7个算式,自己归纳出有理数加法法则:

  1.同号两数相加,取相同的`符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数。

  【范例精析】

  例1计算下列算式的结果,并说明理由:

  (1)(+4)+(+7);(2)(-4)+(-7);

  (3)(+4)+(-7);(4)(+9)+(-4);

  (5)(+4)+(-4);(6)(+9)+(-2);

  (7)(-9)+(+2);(8)(-9)+0;

  (9)0+(+2);(10)0+0.

  学生逐题口答后,教师小结:

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

  =-(3+9)(和取负号,把绝对值相加)

  =-12.

  例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

  解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

  三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;

  黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;

  蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;

  【一试身手】

  下面请同学们计算下列各题:

  (1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  全班学生书面练,四位学生板演,教师对学生板演进行讲评.

  【总结陈词】

  1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

  2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

  【实战操练】

  1.计算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

  (4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

  (7)33+48;(8)(-56)+37.

  2.计算:

  (1)(-0.9)+(-2.7);(2)3.8+(-8.4);

  (3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

  3.计算:

  4*.用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  5*.分别根据下列条件,利用|a|与|b|表示a与b的和:

  (1)a>0,b>0;(2) a<0,b<0;

  (3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理数教案10

  一、 知识要点

  本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

  基础知识:

  1、大于0的数叫做正数。

  2、在正数前面加上负号-的数叫做负数。

  3、0既不是正数也不是负数。

  4、有理数(rational number):正整数、负 整数、0、正分数、负分数都可以写 成分数的形式,这样的数称为有理数。

  5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

  数轴满足以下要求:

  (1) 在直线上任取一个点表示数0,这个点叫做原点(origin);

  (2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

  (3) 选取适当的长度为单位长度。

  6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

  7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

  由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

  正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

  8、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

  (3)一个数同0相加,仍得这个数。

  加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

  加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数 相加,和不变。

  表达式:(a+b)+c=a+(b+c)

  9、有理数减法法则

  减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

  10、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0.

  乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

  乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  表达式:a(b+c)=ab+ac

  11、倒数

  1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

  12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

  13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。

  根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

  14、有理数的混合运算顺序

  (1)先乘方,再乘除,最后加减的顺序进行;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

  16、近似数(approximate number):

  17、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

  拓展知识:

  1、 数集:把一些数放 在一起,就组成一个数的集合,简称数集。

  一、(1) 所有有理数组成的数集叫做有理数集;

  二、(2) 所有的整数组成的数集叫做整数集。

  2、 任何有理数 都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

  3、 根据绝对值的几何意义知道:|a|0,即对任何有理数a,它的绝对值是非负数。

  4、 比较两个有理数大小的方法有:

  (1) 根据有理数在数轴上对应的点的位置直接比较;

  (2) 根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

  (3) 做差法:a-ba

  (4) 做商法:a/b1,bab.

  二、 基础训练

  选择题

  1、下列运算中正确的是( ).

  A. a2a3=a6 B. =2 C. |(3--3 D. 32=-9

  2、下列各判断句中错误的是( )

  A.数轴上原点的位置可以任意选定

  B. 数轴上与原点的距离等于 个单位的点有两个

  C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

  D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

  3、 、 是有理数,若 且 ,下列说法 正确的是( )

  A. 一定是正数 B. 一定是负数 C. 一定是正数 D. 一定是负数

  4、两数相加,如果比每个加数都小,那么这两个数是( )

  A.同为正数 B.同为负数 C.一个正数,一个负数 D.0和一个负数

  5、两个非零有理数的和为零,则它们的商是()

  A.0 B.-1 C.+1 D.不能确定

  6、一个数和它的倒数相等,则这个数是( )

  A.1 B.-1 C. 1 D. 1和0

  7、如果|a|=-a,下列成立的是( )

  A.a0 B.a0 C.a0或a=0 D.a0或a=0

  8、(-2)11+(-2)10的值是( )

  A.-2 B.(-2)21 C.0 D.-210

  9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )

  A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶

  10、在下列说法中,正确的个数是( )

  ⑴任何一个有理数都可以用数轴上的一个点来表示

  ⑵数轴上的`每一个点都表示一个有理数

  ⑶任何有理数的绝对值都不可能是负数

  ⑷每个有理数都有相反数

  A、1 B、2 C、3 D、4

  11、如果一个数的相反数比它本身 大,那么这个数为( )

  A、正数 B、负数

  C、整数 D、不等于零的有理数

  12、下列说法正确的是( )

  A、几个有理数相乘,当因数有奇数个时,积为负;

  B、几个有理数相乘,当正因数有奇数个时,积为负;

  C、几个有理数相乘,当负因数有奇数个时,积为负;

  D、几个有理数相乘,当积为负数时,负因数有奇数个;

  填空题

  1、在有理数-7, ,-(-1.43), ,0, ,-1.7321中,是整数的有_____________是负分数的有_______________。

  2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

  3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

  4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.

  5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

  6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6++20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理数是___________,立方等于它本身的有理数是__ ___________.

  10、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0 精确到 位。

  11、正数a的绝对值为__ ________;负数b的绝对值为________

  12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

  13、在数轴上表示两个数, 的数总比 的大。(用左边右边填空)

  14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

  三、强化训练

  1、计算:1+2+3++20xx+2003=__________.

  2、已知: 若 (a,b均为整数)则a+b=

  3、观察下列等式,你会发现什么规律: , , ,。。。请将你发现的规律用只含一个字母n (n为正整数)的等式表示出来

  4、已知 ,则 ___________

  5、已知 是整数, 是一个偶数,则a是 (奇,偶)

  6、已知1+2+3++31+32+33==1733,求1-3+2-6+3-9+4-12++31-93+32-96+33-99的值。

  7、在数1,2,3,,50前添+或-,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

  8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求 ++ 的值。

  9、如果规定符号*的意义是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

  例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

  星期 一 二 三 四 五

  每股涨跌 +4 +4.5 -1 -2.5 -6

  第1章(1) 星期三收盘时,每股是多少元?

  第2章(2) 本周内最高价是每股多少元?最低价是多少元?

  第3章(3) 已知买进股票是付了1.5的手续费,卖出时需付成交额1.5的手续费和1的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

  第4章(4) 以买进的股价为0点,用折线统计图表示本周该股的股价情况。

  四、竞赛训练

  1、 最小的非负有理数与最大的非正有理数的和是

  2、 乘积 =

  3、 比较大小:A= ,B= ,则A B

  4、 满足不等式104105的整数A的个数是x104+1,则x的值是( )

  A、9B、8C、7D、6

  5、 最小的一位数的质数与最小的两位数的质数的积是()

  A、11 B、22 C、26 D、33

  6、 比较

  7、 计算:

  8、 计算:(2+1)(22+1)(24+1)(28+1)(2 16+1)(232+1).xkb1.com

  9、 计算:

  10、计算

  11、计算1+3+5+7++1997+1999的值

  12、计算 1+5+52+53++599+5100的值.

  13、有理数 均不为0,且 设 试求代数式 20xx之值。

  14、已知a、b、c为实数,且 ,求 的值。

  15、已知: 。

  16、解方程组 。

  17、若a、b、c为整数,且 ,求 的值。

有理数教案11

  教学目标

  1.知识与技能

  ①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.

  ②会进行有理数的乘法运算.

  2.过程与方法

  通过对问题的变式探索,培养观察、分析、抽象的能力.

  3.情感、态度与价值观

  通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.

  教学重点难点

  重点:能按有理数乘法法则进行有理数乘法运算.

  难点:含有负因数的乘法.

  教与学互动设计

  (一)创设情境,导入新课

  做一做 出示一组算式,请同学们用计算器计算并找出它们的规律.

  例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________

  (3)(-5)(+3)=________;(4)(-5)(-3)=________

  例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________

  (3)(-6)(+4)=________;(4)(-6)(-4)=________

  (二)合作交流,解读探究

  想一想 你们发现积的符号与因数的符号之间的关系如何?

  学生活动:计算、讨论

  总结 一正一负的两个数的乘积为负;两正或两负的.乘积是正数.

  两数相乘,同号得正,异号得负.

  想一想 两数相乘,积的绝对值是怎么得到的呢?

  学生:是两因数的绝对值的积.

有理数教案12

  教学目标:

  1、知识与技能: 理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。

  2、过程与方法: 经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。

  重点、难点:

  1、重点:运算律的理解及合理、灵活的运用。

  2、难点:合理运用运算律。

  教学过程:

  一、创设情景,导入新课

  1、叙述有理数的加法法则。

  2、有理数加法与小学里学过的数的加法有什么区别和联系?

  答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的.数的加法是不同的;而计算和的绝对值,用的是小学里学过的加法或减法运算。

  二、合作交流,解读探究

  1、计算下列各题,并说明是根据哪一条运算法则?

  (1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)

  2、计算下列各题:

  (1) +(-4); (2) 8+;

  (3) +(-11); (4) (-7)+;

  (5) +(+27); (6) (-22)+.

  通过上面练习,引导学生得出:

  交换律两个有理数相加,交换加数的位置,和不变。

  用代数式表示上面一段话:

  a+b=b+a

  运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。

  结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

  用代数式表示上面一段话:

  (a+b)+c=a+(b+c)

  这里a,b,c表示任意三个有理数。

  根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。

  三、应用迁移,巩固提高

  例(P22例3) 计算:

  (1) 33+(-2)+7+(-8)

  (2) 4.375+(-82)+( -4.375)

  引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。

  本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。

  例2(P23例4)

  教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。

  练习 课本P.23练习:1、2

  四、总结反思

  本节课你有哪些收获?

  五、作业

  1、课本P27习题1.4A组第3、4题

  2、课本P28习题1.4B组第12题

有理数教案13

  一、知识点回顾

  1、掌握有理数的概念和分类。

  2、知道有理数与数轴上的点的关系。掌握数轴的定义,会用数轴上的点表示有理数,理解有理数的有序性,会比较两个有理数的大小。

  3、利用数轴理解数的绝对值和一对相反数的意义。

  4、掌握有理数的运算法则。

  5、有理数的乘方。了解底数、指数、幂等概念。

  6、掌握有理数的运算律。

  7、熟练进行有理数的混合运算。运算时可合理运用运算律,使运算简便。

  8、掌握科学计数法。

  二、典型例题分析

  1、计算

  (1)、 (2)、(- 2 )+ 1 + 1 + (- 5 )

  (3)、-150(- )-250.125+50(- ) (4)、(+3 )(3 -7 ) (5)、3 (- )-(- )2 - (- )

  (6)- ( + - )

  (7)、{1+[ -(- )](-2)}(- - -0.05)

  (8)、

  (9)、

  (10)、

  (11)、已知|x|= ,|y|= ,且xy0,求代数式5x+7y-9的值。

  (12)、

  (13)、

  (14)、已知 的值。

  2、实数 在数轴上的位置如图,化简:

  3、已知a、b互为相反数,c、d互为倒数,求 的值;

  4、已知有理数a、b、c满足 + + = -1 求 的值。

  5、用计算器计算下列各式,并将结果填写在横线上。

  ①1715873=

  ②2715873=

  ③3715873=

  ④4715873=

  ⑴你发现了什么规律?把你发现的规律用简练的语言写出来;

  ⑵不用计算器,请你直接写出9715873的结果。

  6、任意写出一个数3的倍数,把它的各个数位上数字分别立方,再把这些立方数相加,得到一个新的数;接着,把这个新得到的数的各个数位上的数字分别立方,再把这些立方数相加,又得到一个新的数;,如此重复做下去,你发现了什么规律?请借助计算器进行探索。

  7、欢欢在一家玩具厂里测量了20个底座是圆形玩具的底座直径,测得直径如下(单位 mm):25、 25、 24、 24、 23、 24、 24、 25、 26、 25、 23、 23、 24、 25、 25、 24、 24、 26、 26、 25。 试计算这20个玩具的直径总和以及平均直径。你能找出比较简单的计算方法吗?如果请叙述你的方法。

  9、一口水井,水面比井口低3m,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42m ,却下滑了0.15m;第二次往上爬了0.5m后又往下滑了0.1m;第三次往上爬了0.7m又下滑了0.15m;第四次往上爬了0.75m又下滑0.1m,第五次往上爬了0.55m,没有下滑;第六次蜗牛又往上爬了0.48m没有下滑,问蜗牛有没有爬上井口?

  有理数及其运算 测试与练习部分

  一、选择题

  1.下列说法中正确的是( )

  (A)一个数的倒数必小于这个数 (B)一个数的相反数必小于这个数

  (C)一个数的立方必大于这个数的平方(D)一个数的绝对值必不小于这个数

  2. 6.07 是( )

  (A)17位数 (B)18位数 (C)19位数 (D)20位数

  3.下列各式中正确的是( )

  (A) (B)- (C) (D)-

  4.两个不为零的数互为相反数,则它们的商为( )

  (A)-1 (B)1 (C)0 (D)不能确定

  5.10 (n是正整数)表示的数是( )

  (A)10个n相乘的积 (B)n个10相乘的积 (C)1后面有n-1个零

  (D)1后面有n+1个零

  6.下列判断错误的( )

  (A)负数的偶次方是正数 (B)有理数的偶次方是正数

  (C)-1的任何次方的绝对值都是1 (D)有理数的偶次方不是负数

  7.有加法交换律可得,a-b+c=( )

  (A)a-c-b (B)c+a-b (C)a-c+b (D)c-a-b

  8.如果两个有理数的差是正数,那么这两个数( )

  (A)都是正数 (B)都不是正数 (C)不都是正数 (D)以上都可能

  9.计算(-2) +(-2) 所得结果是( )

  (A)2 (B)-1 (C)-2 (D)-2

  10、绝对值 小于7而大于3的所有整数的和是 ( )

  A、15 B、-15 C、0 D、30

  11、若│a │=7 ,b的相反数是2,则a+b的值是 ( )

  A、-9 B、-9或+9 C、+5或-5 D、+5或-9

  12、在(-5)-( )= -7中的括号里应填( )

  A、-2 B、2 C、-12 D、12

  13、下列说法中错误的有( )

  ①若两数的差是正数,则这两个数都是正数

  ②若两个数是互为相反数,则它们的差为零

  ③零减去任何一个有理数,其差是该数的相反数

  A、0个 B、1个 C、2个 D、3个

  14、减去一个正数,差一定 ( ) 被减数。

  A、大于 B、等于 C、小于 D、不能确定谁大

  15、若M+|-20|=|M|+|20|,则M一定是( )

  A、任意一个有理数 B、任意一个非负数

  C、任意一个非正数 D、任意一个负数

  16、两个负数的和为a,它们的差为b,则a与b的.大小关系是( )

  A、a>b B、a=b C、a<b D、ab

  17 、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是( )

  A、m>m-n>m+n B、m+n>m>m-n

  C、m-n>m+n>m D、m-n>m>m+n

  18、若 =a+b-c-d, 则 的值是( )

  A、4 B、-4 C、10 D、-10

  19、计算:-1.9917的结果是( )

  A、33.83 B、-33.83 C、-32.83 D、-31.83

  20、如果两个有理数的积小于零,和大于零,则这两个有理数( )

  A、符号相反 B、符号相反且负数的绝对值大

  C、符号相反且绝对值相等 D、符号相反且正数的绝对值大

  21、在计算( - + )(- 36)时,可以避免通分的运算律是( )

  A、加法交换律 B、分配律 C、乘法交换律 D、加法结合律

  22、定义运算:对于任意两个有理数a、b,有a*b=(a-1)(b+1) 则计算-3*4的值是( )

  A、12 B、-12 C、20 D、-20

  23、已知0>a>b,则 与 的大小是( )

  A、 > B、 = C、 < D、无法判定

  24、若 = -1,则a是( )

  A、正数 B、负数 C、非正数 D、非负数

  25、已知a与b互为倒数,m与n互为相反数,则 ab-3m-3n的值是( )

  A、-1 B、1 C、- D、

  二、填空题

  1.减去一个数,等于加上 ,除以一个数,等于乘以_______________.

  2.用科学记数法表示138000000得_____________

  3.绝对值小于4的整数的积是__________

  4.比较大小:-0.1 ___________ (-0.1)

  5.一个数的平方等于它的绝对值,则这个数是____________________

  6.列式计算:3的二次幂与- 的积的相反数______________________________

  7.已知 =4, =3,当ab0时,a-b=______________

  8、小丽沿着东西方向的道路行走,她先向正东方向走77米,再向正西方向走108 米,最后小丽停在出发点 方向 米处。

  9、当x、y 满足 时,│x│+│y│=│x+y│成立。

  10、(- 4 )+( )= -2 ( )-(-6 )=2

  11、已知有理数a.b在数轴上的对应点位置如图所示: ? ? ?

  b o a

  化简:①│a│-a= ③│a│+│b│=

  ②│a+b│= ④│b-a│=

  12、3.141 +0.314 -31.40.2= 。

  13、两个有理数相乘,若把其中一个因数换成它的相反数,则所得的积是原来的积的 。

  14、已知3a是一个负数,则a是 数

  15、数b与它的倒数 相等,则b= 。

  16、(1)绝对值不大于20xx的所有整数的和是 ,积是 。

  17、 的0.12倍等于-14.4

  三、解答题

  1、- 2、

  3.-1.53 4、 -2

  5、 6、(- )

  7、( - + )(- 63) 8、-150(- )-250.125+50(- )

  9、3 (- )-(- )2 - (- )

  10、{1+[ -(- )](-2)}(- - -0.05)

  11、(1)已知a、b互为相反数,c、d互为倒数,求 的值;

有理数教案14

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一) 重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、理解掌握有理数的减法法则。

  2、会进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1); (2)-3+(-7);

  (3)-10+(+3); (4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  1、师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的.相反数(-3)。

  教法说明

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

  教法说明

  由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

  师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

  师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)教师强调法则:

  (1)减法转化为加法,减数要变成相反数。

  (2)法则适用于任何两有理数相减。

  (3)用字母表示一般形式为:。

  教法说明

  结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。

  3、例题讲解:

  [出示投影1 (例题1、2)]

  例1 计算(1)(-3)-(-5); (2)0-7;

  例2 计算(1)7.2-(-4.8);(2)()-。

  例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:

  (1)转化,

  (2)进行加法运算。

  例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

  教法说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

  师:组织学生自己编题,学生回答。

  教法说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

  (三)尝试反馈,巩固练习

  师:下面大家一起看一组题。

  [出示投影2 (计算题1、2)]

  1、计算(口答)

  (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

  (4)(-4)-9 (5)0-(-5); (6)0-5。

  2、计算

  (1)(-2.5)-5.9; (2)1.9-(-0.6);

有理数教案15

  一、学情分析:

  1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

  2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

  二、 教材分析:

  教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

  本节课的数学目标是:

  1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

  2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的.符号方法以及有一个数为零积是零的情况:

  三、教学过程设计:

  本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂;第六环节:布置作业。

  第一环节:问题情境,引入新课

  问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

  (2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

  设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

  第二环节:探索猜想,发现结论

  问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

  (-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

  (-3)×0=_____。

  (2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

  (-3)×(-1)=_____;

  (-3)×(-2)=_____;

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。

  教后反思事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

  (2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

  第三环节:验证明确结论

  问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

  (—4)×0=_____;

  (—4)×1=_____;

  (—4)×2=_____;

  (—4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

  一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

  教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

  (2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

  (3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

  第四环节:运用巩固,练习提高

  活动内容:

  (1)1。计算:

  ⑴(-4)×5; ⑵(5-)×(-7);

  ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。计算:

  ⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

  (4)计算:

  ⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

  ⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

  教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

  (2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

  (-1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

  第五环节:感悟反思课堂

  问题

  1.本节课大家学会了什么?

  2.有理数乘法法则如何叙述?”

  3.有理数乘法法则的探索采用了什么方法?

  4.你的困惑是什么

  教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

  教后反思事项:学生时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

  第六环节:布置作业

  巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

  预习作业;略

  四、教学反思:

  1、设计条理的问题串,使观察、猜想、验证水到渠成

  2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

  3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。

【有理数教案】相关文章:

《有理数的乘法》教案02-26

有理数乘法教案11-30

有理数的加法教案07-31

有理数优秀教案09-19

有理数的减法教案01-01

有理数的乘方教案07-13

有理数的加法与减法教案01-28

《有理数的乘方》优秀教案08-17

有理数的加法教案优秀10-12