当前位置:9136范文网>教育范文>教案>《完全平方公式》教案

《完全平方公式》教案

时间:2024-11-13 09:51:25 志彬 教案 我要投稿

《完全平方公式》教案(精选8篇)

  作为一名专为他人授业解惑的人民教师,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?下面是小编收集整理的《完全平方公式》教案,仅供参考,大家一起来看看吧。

《完全平方公式》教案(精选8篇)

  《完全平方公式》教案 1

  学习目标:

  1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

  2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

  3、数形结合的数学思想和方法。

  学习重点:会推导完全平方公式,并能运用公式进行简单的计算。

  学习难点:掌握完全平方公式的结构特征,理解公式中a.b的广泛含义。

  学习过程:

  一、学习准备

  1、利用多项式乘以多项式计算:(a+b)2 (a-b)2

  2、这两个特殊形式的多项式乘法结果称为完全平方公式。

  尝试用自己的语言叙述完全平方公式:

  3、完全平方公式的几何意义:阅读课本64页,完成填空。

  4、完全平方公式的'结构特征:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  左边是 形式,右边有三项,其中两项是 形式,另一项是

  注意:公式中字母的含义广泛,可以是 ,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△2

  5、两个完全平方公式的转化:

  (a-b)2= 2=( )2+2( )+( )2=

  二、合作探究

  1、利用乘法公式计算:

  (1) (3a+2b)2 (2) (-4x2-1)2

  分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b

  2、利用乘法公式计算:

  (1) 992 (2) ( )2

  分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化( )2,( )2可以转化为( )2

  3、利用完全平方公式计算:

  (1) (a+b+c)2 (2) (a-b)3

  三、学习

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?

  四、自我测试

  1、下列计算是否正确,若不正确,请订正;

  (1) (-1+3a)2=9a2-6a+1

  (2) (3x2- )2=9x4-

  (3) (xy+4)2=x2y2+16

  (4) (a2b-2)2=a2b2-2a2b+4

  2、利用乘法公式计算:

  (1) (3x+1)2 (2) (a-3b)2

  (3) (-2x+ )2 (4) (-3m-4n)2

  3、利用乘法公式计算:

  (1) 9992 (2) (100.5)2

  4、先化简,再求值;

  ( m-3n)2-( m+3n)2+2,其中m=2,n=3

  五、思维拓展

  1、如果x2-kx+81是一个完全平方公式,则k的值是

  2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是

  3、已知(x+y)2=9, (x-y)2=5 ,求xy的值

  4、x+y=4 ,x-y=10 ,那么xy=

  5、已知x- =4,则x2+ =

  《完全平方公式》教案 2

  一、教材分析

  完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。

  本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。

  二、学情分析

  多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

  三、教学目标

  知识与技能

  利用添括号法则灵活应用乘法公式。

  过程与方法

  利用去括号法则得到添括号法则,培养学生的逆向思维能力。

  情感态度与价值观

  鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。

  四、教学重点难点

  教学重点

  理解添括号法则,进一步熟悉乘法公式的合理利用.

  教学难点

  在多项式与多项式的'乘法中适当添括号达到应用公式的目的

  五、教学方法

  思考分析、归纳总结、练习、应用拓展等环节。

  六、教学过程设计

  师生活动

  设计意图

  一、提出问题,创设情境

  请同学们完成下列运算并回忆去括号法则.

  (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:

  去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.

  也就是说,遇“加”不变,遇“减”都变.

  二、探究新知

  把上述四个等式的左右两边反过来,又会得到什么结果呢?

  (1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

  (3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?

  (学生分组讨论,最后总结)

  添括号法则是:

  添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.

  也是:遇“加”不变,遇“减”都变.

  请同学们利用添括号法则完成下列练习:

  在等号右边的括号内填上适当的项:

  (1)a+b-c=a+( ) (2)a-b+c=a-( )

  (3)a-b-c=a-( ) (4)a+b+c=a-( )

  判断下列运算是否正确.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

  (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.

  三、新知运用

  有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.

  例:运用乘法公式计算

  (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

  (3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四、随堂练习:

  1.课本P111练习

  2.《学案》101页——巩固训练

  五、课堂小结:

  通过本节课的学习,你有何收获和体会?

  我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.

  我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.

  六、检测作业

  习题14.2: 必做题: 3 、4 、5题

  选做题:7题

  知识梳理,教学导入,激发学生的学习热情

  交流合作,探究新知,以问题驱动,层层深入。

  归纳总结,提升课堂效果。

  作业检测,检测目标的达成情况。

  《完全平方公式》教案 3

  教学目标:

  1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

  2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

  3、了解完全平方公式的几何背景,培养学生的数形结合意识。

  4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

  教学重点:

  1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

  2、会用完全平方公式进行运算。

  教学难点:

  会用完全平方公式进行运算

  教学方法:

  探索讨论、归纳总结。

  教学过程:

  一、回顾与思考

  活动内容:复习已学过的平方差公式

  1、平方差公式:(a+b)(a—b)=a2—b2;

  公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

  右边是两数的平方差。

  2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

  二、情境引入

  活动内容:提出问题:

  一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

  用不同的形式表示实验田的'总面积,并进行比较。

  三、初识完全平方公式

  活动内容:

  1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

  2、引导学生利用几何图形来验证两数差的完全平方公式。

  3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

  结构特点:左边是二项式(两数和(差))的平方;

  右边是两数的平方和加上(减去)这两数乘积的两倍。

  语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

  四、再识完全平方公式

  活动内容:例1用完全平方公式计算:

  (1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

  2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

  五、巩固练习:

  1、下列各式中哪些可以运用完全平方公式计算。

  1、6完全平方公式:

  一、学习目标

  1、会推导完全平方公式,并能运用公式进行简单的计算。

  2、了解完全平方公式的几何背景

  二、学习重点:会用完全平方公式进行运算。

  三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

  四、学习设计

  (一)预习准备

  (1)预习书p23—26

  (2)思考:和的平方等于平方的和吗?

  1、6《完全平方公式》习题

  1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

  2、已知(a+b)2=24,(a—b)2=20,求:

  (1)ab的值是多少?

  (2)a2+b2的值是多少?

  3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。

  《1.6完全平方公式》课时练习

  1、(5—x2)2等于;

  答案:25—10x2+x4

  解析:解答:(5—x2)2=25—10x2+x4

  分析:根据完全平方公式与幂的乘方法则可完成此题。

  2、(x—2y)2等于;

  答案:x2—8xy+4y2

  解析:解答:(x—2y)2=x2—8xy+4y2

  分析:根据完全平方公式与积的乘方法则可完成此题。

  3、(3a—4b)2等于;

  答案:9a2—24ab+16b2

  解析:解答:(3a—4b)2=9a2—24ab+16b2

  分析:根据完全平方公式可完成此题。

  《完全平方公式》教案 4

  学习目标:

  1、会推导完全平方公式,并能用几何图形解释公式;

  2、利用公式进行熟练地计算;

  3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的'认知规律。

  学习过程:

  (一)自主探索

  1、计算:(1)(a+b)2 (2)(a-b)2

  2、你能用文字叙述以上的结论吗?

  (二)合作交流:

  你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。

  (三)试一试,我能行。

  1、利用完全平方公式计算:

  (1)(x+6)2

  (2)(a+2b)2

  (3)(3s-t)2

  (四)巩固练习

  利用完全平方公式计算:

  A组:

  (1)( x+ y)2

  (2)(-2m+5n)2

  (3)(2a+5b)2

  (4)(4p-2q)2

  B组:

  (1)( x- y2) 2 (2)(1.2m-3n)2

  (3)(- a+5b)2 (4)(- x- y)2

  C组:

  (1)1012

  (2)542

  (3)9972

  (五)小结与反思

  我的收获:

  我的疑惑:

  (六)达标检测

  1、(a-b)2=a2+b2+ .

  2、(a+2b)2= .

  3、如果(x+4)2=x2+kx+16,那么k= .

  4、计算:

  (1)(3m- )2 (2)(x2-1)2

  (2)(-a-b)2 (4)( s+ t)2

  《完全平方公式》教案 5

  一、教材分析

  本节内容在全书及章节的地位:《完全平方公式》是人教版数学八年级上册第十四章的内容。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。

  作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。

  二、学情分析

  学生刚学过多项式的乘法,已具备学习和运用完全平方公式的`知识结构,但是由于学生初步学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。

  三、教学目标

  知识与技能

  1.完全平方公式的推导及其应用。

  2.完全平方公式的几何证明。

  过程与方法

  经历探索完全平方公式的过程,进一步发展符号感和推理能力。

  情感态度与价值观

  对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。

  四、教学重点难点

  教学重点

  完全平方公式的推导过程;结构特点与公式的应用。

  教学难点

  完全平方公式结构特点及其应用。

  五、教法学法

  多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  六、教学过程设计

  师生活动

  设计意图

  一.复习多项式与多项式的乘法法则

  1、多项式与多项式的乘法法则内容。

  2、多项式与多项式的乘法练习。

  二.讲授新课

  完全平方公式的推导

  1、利用多项式与多项式的乘法法则和几何法推导完全平方(和)公式

  附:有简单的填空练习

  2、利用多项式乘法则和换元法推导完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、总结完全平方公式的特点

  介绍助记口诀:首平方,尾平方,首尾两倍乘积放中央。

  三、课堂练习

  1、改错练习

  2、例题讲解(总结利用完全平方公式计算的步骤)

  第一步选择公式,明确是哪两项和(或差)的平方;

  第二步准确代入公式;

  第三步化简。

  计算练习

  (1)课本110页第一题

  (2) (x-6)2 (y-5)2

  四、课堂小结:

  1、应用完全平方公式应注意什么?

  在解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不能少乘以2。

  2、助记口诀

  复习多项式与多项式的乘法法则为新课的学习做准备。

  利用不同的的方法来推导完全平方公式,让学生认知数学中的不同解题方法。

  利用助记口诀帮助学生更加准确的掌握完全平方公式的特点。

  通过课堂练习,使学生掌握用完全平方公式计算的步骤,加强学生解题的准确率。

  强调应用完全平方公式解题的注意点和助记口诀,提高学生解决问题的能力和解题的准确率。

  《完全平方公式》教案 6

  一、教学目标

  知识与技能:

  学生能够理解并掌握完全平方公式的推导过程。

  学生能够熟练运用完全平方公式进行简单的代数计算。

  过程与方法:

  通过观察、分析、讨论和练习,培养学生的符号感和推理能力。

  引导学生体会数形结合的思想,通过几何图形解释代数公式。

  情感态度与价值观:

  激发学生对数学的兴趣和好奇心,培养学生主动探索的精神。

  培养学生的团队合作精神和交流能力。

  二、教学重难点

  重点:完全平方公式的推导和应用。

  难点:理解完全平方公式中字母的含义,以及公式的灵活运用。

  三、教学过程

  1. 情境导入

  计算以下表达式,并观察结果:

  (x+1)^2

  (x-1)^2

  (a+b)^2

  (a-b)^2

  提问:你发现了什么规律?

  2. 合作探究

  类型一:直接运用完全平方公式

  计算以下表达式:

  总结完全平方公式:(a±b)^2 = a^2±2ab+b^2,并巧记为“首平方,末平方,首末两倍中间放”。

  (5-a)^2

  (-3-4n)^2

  (-3a+b)^2

  类型二:构造完全平方式

  如果36x2是一个完全平方式,求m的值。

  解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m的值。

  类型三:运用完全平方公式进行简便计算

  计算以下表达式:

  解析:利用完全平方公式,将数写成整十或整百的数与另一个数的和或差,然后进行计算。

  99^2

  102^2

  类型四:灵活运用完全平方公式求代数式的值

  若x+y2=1,求:

  解析:通过整体代入和变形,求出代数式的'值。

  x2的值

  x2+1的值

  类型五:完全平方公式的几何背景

  利用几何图形面积之间的数量关系对完全平方公式做出几何解释。

  类型六:与完全平方公式有关的探究问题

  观察杨辉三角系数表,指导学生按规律写出形如(a+b)^n(n为正整数)展开式的系数。

  3. 运用公式,解决问题

  给出一些练习题,让学生运用完全平方公式进行计算。

  4. 学生小结

  让学生总结完全平方公式在应用过程中需要注意的问题。

  5. 作业布置

  布置一些相关练习题,让学生巩固所学知识。

  四、教学评价

  通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识。

  通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

  《完全平方公式》教案 7

  一、教学目标

  知识与技能:

  学生能够理解并掌握完全平方公式的推导过程。

  学生能够熟练运用完全平方公式进行简单的计算。

  过程与方法:

  通过观察、分析、讨论和练习,培养学生的符号感、推理能力和计算能力。

  引导学生体验科学探究的过程,培养学生的创新精神和实践能力。

  情感态度与价值观:

  激发学生对数学的兴趣和热爱。

  培养学生的合作意识和团队精神。

  二、教学重难点

  教学重点:

  完全平方公式的推导和理解。

  运用完全平方公式进行简单的计算。

  教学难点:

  从广泛意义上理解公式中的字母含义。

  判明要计算的'代数式是哪两数的和(差)的平方。

  三、教学过程

  情境导入

  (x+1)^2

  (x-1)^2

  (a+b)^2

  (a-b)^2

  计算以下表达式,并观察结果:

  提问:你发现了什么结论?

  合作探究

  示例:992

  解析:利用完全平方公式进行计算。

  方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算。

  示例:如果36x2是一个完全平方式,求m的值。

  解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m的值。

  方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式。

  示例:(5-a)^2, (-3-4n)^2, (-3a+b)^2

  解析:直接运用完全平方公式进行计算。

  方法总结:完全平方公式:(a±b)^2=a^2±2ab+b^2

  类型一:直接运用完全平方公式进行计算

  类型二:构造完全平方式

  类型三:运用完全平方公式进行简便计算

  运用公式,解决问题

  (m+n)^2

  (m-n)^2

  (-m+n)^2

  (-m-n)^2

  (a+3)^2

  (-c+5)^2

  (-7-a)^2

  (0.5-a)^2

  口答以下表达式的结果:

  学生小结

  提问:你认为完全平方公式在应用过程中,需要注意哪些问题?

  学生回答并总结。

  冒险岛

  (-3a+2b)^2

  (-7-2m)^2

  (-0.5m+2n)^2

  (3/5a-1/2b)^2

  (mn+3)^2

  (a2

  (2xy^2-3x^2y)^2

  (2n^3-3m^3)^2

  练习以下表达式的结果:

  学生自我评价

  提问:通过本节课的学习,你有什么收获和感悟?

  学生回答并自我评价。

  四、作业布置

  完成随堂练习和课后习题。

  五、教学反思

  在教学过程中,关注学生的参与程度和学习效果。

  根据学生的反馈,及时调整教学策略和方法。

  反思教学过程中的不足,以便在今后的教学中加以改进。

  《完全平方公式》教案 8

  一、教学目标

  【知识与技能】

  能够运用完全平方公式对简单的多项式进行因式分解

  【过程与方法】

  通过对实例的探究与合作,锻炼公式推导与总结能力

  【情感态度与价值观】

  在合作探究中,体会到数学学习的`乐趣,加强交流合作能力

  二、教学重难点

  【教学重点】

  完全平方公式

  【教学难点】

  完全平方公式的推导过程与应用

  三、教学过程

  (1)情景设置,设疑导入

  老师展示正方形广场图片,并告知已知条件:边长为a的正方形广场两个邻边有5米宽的道路,形成一个较大的正方形广场,尝试用不同方法求解整个广场(包括道路)的大小。

  预设:①(a+5)(看作一个整体)

  ②a+5+2×5×a(看作几个部分)

  (2)师生合作,新课教学

  由学生板书得出等式:(a+5)=a+5+2×5×a,提出问题:如果将5米宽,换成b米宽又能得到什么呢?(小组交流讨论)

  得出结论:

  进行证明:

  得到完全平方公式,记忆口诀:首平方,尾平方,首尾两倍放中央。

  (3)巩固提升,深化新知

  (4)小结作业,及时反思

  小结:请同学们谈一谈今天这节课的收获:

  1.学会了完全平方公式

  2.学会了简易计算平方式的能力

  3.提高了与同学们合作探究的能力,体会到了合作的乐趣

  作业:

  公式拓展:a+b=(a+b)+()

【《完全平方公式》教案】相关文章:

《完全平方公式》教案07-13

完全平方公式教案10-21

数学《完全平方公式》教案11-28

《完全平方公式》教案【精选15篇】07-04

《完全平方公式》教学反思05-31

《完全平方公式》的教学反思08-10

完全平方公式教学反思07-23

数学《完全平方公式》教案15篇【精选】10-19

《完全平方和差公式》教学反思09-01