当前位置:9136范文网>教育范文>教案>小数的意义教案

小数的意义教案

时间:2024-10-30 14:22:49 教案 我要投稿

【热】小数的意义教案

  作为一位无私奉献的人民教师,常常要根据教学需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。来参考自己需要的教案吧!以下是小编帮大家整理的小数的意义教案,仅供参考,欢迎大家阅读。

【热】小数的意义教案

小数的意义教案1

  学习内容:

  小数的意义和产生,课本32-33页内容。

  学习目标:

  1、我能通过观察知道小数的产生。

  2、我能通过分析明白小数的意义。

  3、我知道小数的计算单位及单位间的进率。

  学习重难点:

  小数的意义和计算单位及进率

  学习过程:

  课前谈话

  孩子们们,平时喜欢猜谜语吗?(喜欢)

  老师这里有一个谜语,大家想猜一猜吗?(可以)

  请竖起你的小耳朵,认真听,看谁能猜中?

  生来公平,拿在手中,要问长短,它最分明。打一度量器具。

  生猜尺子。

  师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!

  咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!

  一、教学小数的产生:

  首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--

  课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!

  师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子

  师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。

  师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。

  教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。

  在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。

  点击出示“你知道吗?”课件展示小数的历史。

  这节课就让我深入研究一下小数的意义。(板书课题)齐读课题。

  设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。

  二、探究小数的意义:

  1、认识一位小数

  师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。

  师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书

  师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的很好孩子,板书

  师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书

  师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。

  师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。

  师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?

  生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。

  生2:我发现,分母是10的分数可以写成一位小数。

  师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的分数。

  设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。

  2、认识两位小数

  师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?

  师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,

  找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01

  师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的想法?小数可以写为?说说你的想法孩子,说的不错!

  6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?

  师:这组分数的共同特点是怎样的?这些小数又有什么共同点吗?

  生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。

  设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。

  3、认识三位小数

  同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)

  师:孩子,那这样的12份呢?师板书。123份呢?师板书。

  师:指板书,从这里你们又发现了什么?

  生1:我发现分母是1000的分数可以写成三位小数。

  生2:三位小数表示千分之几。

  师:说的'非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师:请同学们想一想四位小数表示什么?五位小数呢?

  生:四位小数表示万分之几,五位小数表示十万分之几。

  师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?

  生1,:我认为分母是10,100,1000等的分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......

  设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。

  如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!

  4、学习小数单位

  孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;

  那么两位小数的计数单位是多少呢?请思考!

  师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。

  师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。

  师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,

  师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。

  5、学习单位进率

  以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?

  那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.

  三:巩固练习

  学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。

  1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。

  2、做一做,填空。

  0.3里面有()个0.1

  0.09里面有()个0.01。

  0.35里面有()个0.01.

  0.006里面有()个0.001。

  0.136里面有()个0.001.

  4个()是0.004.

  3、练一练

  四、课堂总结

  同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?

  同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!

小数的意义教案2

  【教学内容】

  【教学目标】

  【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

  难点:用“四舍五入”法按要求求出小数近似数。

  【教学过程】

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做期末复习第8题(1)、(2)、(3)。

  (1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.121

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么是小数的性质?

  2、做期末复习第9题,第1竖行两题。

  (1)学生在书上做,指名板演,集体订正。

  (2)让学生说一说怎样比较两个小数的大小。

  3、做期末复习第10题。

  (1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做期末复习第8题(4)、(5)。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的.近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  4、做期末复习第9题剩下的两题。

  (1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (2)学生练习,集体订正。

  (3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  5、做期末复习第11题。

  学生在书上做,并说明理由。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“”、“”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

小数的意义教案3

  【教材分析】

  《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。

  【设计理念】

  《课标》指出:学生的数学学习应当是一个生动活泼、主动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在看一看、想一想、说一说、做一做中动手、动脑、动口,逐步理解知识,掌握方法,学会思考,获得积极的情感体验。

  【教学内容】

  教科书P50~51小数的产生和意义及“做一做”,练习九部分习题。

  【教学目标】

  1、知识与能力:使学生通过观察、测量了解小数是如何产生的。理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

  2、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

  3、情感态度价值观:增强学生民族自豪感和培养学生学习的积极性。

  【教学重难点】

  1、重点:理解小数的意义。

  2、难点:探索分数与小数的关系,深刻理解小数的意义。

  【教学具准备】

  PPT课件、米尺、彩带两条(2米和0。9米)

  【教学过程设计】

  一、情景导入

  1、教师:同学们喜欢做游戏吗?今天老师带大家做一个游戏,游戏的名字叫“猜一猜,测一测。”

  2、师出示2米的彩带,同学们猜一猜有多长,指名回答后让学生测量验证。师再出示0。9米的彩带,让学生猜测,然后测量出结果是9分米。

  提问:9分米如果用米做单位用分数表示是多少米?(米)用小数表示是多少米?(0。9米)

  二、教学小数的产生

  1、课件出示老师收集的一些图片。

  看来生活中小数真是无处不在啊!人们进行测量和计算时往往得不到整数的结果,于是小数就产生了。(师板书:小数的产生)

  2、除了用整数,小数,我们还可以用什么样的数来表示?(分数)还是用米作单位,用分数表示又是多少米呢?(9/10米)

  师:刚才我们在表示第二条彩带的长度时,有的同学用分数表示,有的同学用小数表示,看来小数和分数之间一定有联系。那么分数和小数之间究竟有什么奥秘呢?今天老师就和同学们一起去探索他们的秘密。探索秘密需要一样工具就是直尺。

  【设计意图】利用学生喜欢游戏和活动的好奇心理,充分激发、调动学生学习的积极性,让学生再猜一猜、量一量的活动中经历知识的形成过程,体验到整数在生活中使用的局限性,使学生体会到在进行测量和计算时,往往得不到整数的结果,这时常用小数来表示,从而引入小数,让学生感受到小数是因为需要而产生的,从而激发学生的探究欲望,为新知的探究过程做好充分的铺垫。

  二、教学一位小数意义

  1、认识一位小数:大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?如果还用米做单位,用分数怎么表示?小数呢?

  板书:(1分米、1/10米、0.1米),谁能说说0.1米表示什么意思?

  (1)那如果3份、7份呢?分别用分数、小数表示是多少?

  (2)像这样的你能找一个让同学说说吗?(学生说老师补充板书)

  2、观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)

  (学生:分数和小数之间有着密切的关系,十分之几的分数用一位小数表示,一位小数表示十分之几。)学生有困难教师可引导。

  3、教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

  【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关,有意识地促进“迁移”,让学生体验成功,培养学生的'学习兴趣和信心。

  猜想一下两位小数与什么样的分数有关?

  三、教学两位小数意义。

  1、学习两位小数。

  (1)刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)取1份是几分之几米?用小数怎么表示?取3份呢?取6份呢?

  (2)仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的分数可以用两位小数表示)

  (通过学习迁移,引导学生自主学习二位小数。)

  教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几。

  猜一猜:下面老师要将1米平均分成多少份?

  (3)、教学三位小数意义。

  1、认识三位小数:同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?

  1毫米、 1/1000米、0.001米

  6毫米、 1/1000米、0.006米

  13毫米、 13/1000米、0.013米

  2、小结:分母是1000的分数可以用三位小数表示。

  是不是只有这三种小数呢?

  四、总结小数的意义

  1、教师:我们把1米平均分成10、100、1000份,用分数、小数都会表示了,如果老师再把1米平均分成10000份,这样的几份写成小数是几位小数;那么100000份呢?(万分之几是四位小数,十万分之几是五位小数)

  【设计意图】由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示……到通过联想认识四位小数、五位小数的意义,再到抽象概括小数和的意义,学生经历了知识的形成过程,在获取数学知识的同时,也获得了学习的方法,提高了学习的能力。

  2、教师引导学生观察这些分数和小数,然后讨论:分数和小数之间有什么联系呢?

  3、学生回答后教师小结:分母是10、100、1000……的分数可以用小数表示这就是小数的意义。(教师板书)

  4、反馈:教材第51页做一做。

  让学生独立完成,教师提醒学生要先看一看每一幅图平均分成了多少份?然后教师讲评。

  【设计意图:】教材在学生理解小数的意义之后,安排了“做一做”活动:通过用分数和小数表示出涂色部分,使学生进一步感知分数与小数的联系,加深对小数意义的理解。

  五、认识小数的计数单位和进率。

  (1)课件出示智慧闯关第一关

  0.3里面有()个1/10 0.5里面有()个1/10 0.07里面有()个1/100 0.09里面有()个1/100

  师:学生讨论完成,并说一说为什么这样想?

  师指名回答后小结:像0.3、0.5这样的一位小数,我们都可以看成有许多个1/10组成的,那么我们就说十分之一是一位小数的计数单位,写作0.1。同理,像0.07、0.09这样的两位小数,可以看成有许多个1/100组成的,那么我们就说百分之一是两位小数的计数单位,写作0.01。

  师:同学们猜一猜三位小数的计数单位是什么?写作?

  (2)课件出示智慧关第三关

  0.1米里面有()个0.01米

  0.01米里面有()个0.001米

  教师小结:每相邻两个计数单位之间的进率是10。

  (3)课件出示智慧关第三关

  0.8的计数单位是( ),里面有( )个()。

  0.06的计数单位是( ),有6个()。

  0.032的计数单位是( ),有()个( )。

  【设计意图:】通过设计有层次的强化巩固练习,有针对性地对使学生对所学知识进行练习、内化,使在课堂中探究所得的新知识、新概念在练习中逐步得到深化,从而内化为学生的知识和能力。

  三、课堂巩固

  1、练习九第2、5题

  2、判断(课件出示)

  【设计意图】在学生对小数的意义有了一定的理解以后,利用幻灯出示一组有一定深度的练习题,让学生通过新旧知识的对比,逐步加深理解,熟练运用。从而深刻地了解小数的意义、小数的计数单位以及小数与分数的相互关系,达到强化、内化、深化新知的目的。

  四、课堂小结:同学们顺利的闯过了关,在这节课上有什么收获?

  把你的收获告诉同学们。

  五、课堂延伸:课件《小数点的历史》

  【设计意图】通过学生自由阐述对于本节知识的理解情况,及时了解和掌握学生的学习反馈情况,再一次让学生通过自身的表现,体验学习取得成功的快乐。同时通过播放小数点的历史的视频让学生了解小数产生的背景,体会劳动人民以及以往一些数学上的伟大发现和发明,激发学生学习的动力,使学生加深对数学学习的乐趣,从而树立学好数学的信心,在以后的学学习道路上更加努力,表现的更加出色。

  【板书设计】

  小数的产生和意义

  米1分米1厘米1毫米

  9/10米1/10米1/100米1/1000米

  0.9米0.1米0.01米0.001米

小数的意义教案4

  教学内容

  小数的意义

  教学目标

  1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

  2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

  重点难点

  重点:体会十进制分数与小数的关系,初步理解小数的意义。

  难点:能够正确进行十进制分数与小数的互化。

  教具准备

  课件、正方形纸2张。

  教学过程

  一、情境导入。

  1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

  生:好。

  2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

  铅笔:0.1元一支圆珠笔:1.11元一支

  猪肉:9.5元一斤黄瓜:5.96元一千克

  教师:上面这些物品的价格有什么特点?

  学生:都不是整元数。(都是小数。)

  教师:还记得小数的读法吗?谁能读出上面的'小数?读小数时需要注意什么?

  学生依次读出:零点一、一点一一、九点五、五点九六。

  师:大家知道这些小数是几位小数吗?

  生:......

  2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  生:身高体重跳高跳远

  小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

  板书:小数的意义

  二、自主探究。

  1.一位小数的意义

  a.那么多的小数,我们今天就从0.1开始入手研究。

  b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

  学习单元角米分米网格图

  c.生反馈0.1表示什么意思。

  d.思考:我们选用的图都不一样,为什么都可以表示0.1?

  你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

  生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。

  生:......

  2.两位小数的意义

  师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

  a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

  学习单元分米厘米网格图

  b.生反馈0.01表示什么意思。

  c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。

  生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

  生:......

  3.三位小数的意义

  我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

  小数我们写的完吗?其实呀,小数的位数越多就分的越细。

  大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

  三、巩固练习

  教师:0.8可以表示成分数吗?可以表示成小数吗?

  学生:分别是和0.7。

  教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

  同学们在小组内进行游戏交流,教师巡视指导。

  四、探究结果报告。

  教师:通过刚才游戏,你们发现了什么?(出示课件)

  师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

  2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

  3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

  四、教师小结。

  小数中,每相邻两个计数单位间的进率都是10。

  五、课外拓展。

  分享最美数字0.618

小数的意义教案5

  教材分析

  本单元内容包括小数的意义和读写法,小数的性质和小数的大小比较,小数点位置移动引起小数大小的变化,小数和复名数的相互改写、求一个小数的近似数和把较大的数改写成用“万”、“亿”作单位的数。

  小数的意义是本单元的一个重点。这里教材把认数范围扩展到三位小数,加强了小数与分数的联系,使学生明确小数表示的书分母是10、100、10000……的分数,了解小数的记数单位以及单位间的进率,从而清楚地了解小数为什么可以仿照整数的写法。小数的性质也很重要。学生知道小数末尾添0、去0不改变小数的大小,就加深了对小数的理解。它还是小数四则计算的基础。应用它可以对小数进行化简,也可以根据具体运算的需要,在小数末尾添上0或者把整数改写成小数的形式。小数大小的比较也有助于加深学生对小数意义的理解。小数的性质已经涉及到小数大小的比较问题,但只是说明在什么情况下两个小数相等的。小数点位置的移动引起小数大小的变化是小数的又一性质。它是进行小数乘除法计算的基础,同时也是学习小数和复名数相互改写的基础。小数和复名数的相互改写以及求小数的近似数在实际中有广泛的应用,其中把较大的数改写成用“万”、“亿”作单位的数是本单元所学的几部分知识的综合应用。

  学情分析

  这部分内容是学生在学生熟练地掌握了整数的四则运算,以及在四年级上学期学习了分数的初步认识的基础上进行教学的。这部分内容是学生系统学习小数的开始。通过这部分内容的学习,使学生进一步理解小数的意义和性质,为今后学习小数的`四则运算打好基础。学生在学习小数和复名数的相互改写时,需要综合运用前面学过的计量单位和进率、小数的性质、小数点位置的移动引起小数大小的变化等知识,因此要求学生逐一扎实地学习。求一个数的近似数和把一个数改写成用“万”、“亿”作单位的数容易混淆,需注意区别。

  教学要求

  1、使学生理解小数的意义,认识小数的记数单位,会读、写小数,会比较小数的大小。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  3、使学生会进行小数和十进复名数的相互改写。

  4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。

  教学重点:小数的意义和小数点移动引起小数大小变化的规律。

  教学难点:小数和复名数的相互改写。

  教学关键:正确理解小数的意义及小数和复名数的相互改写。

小数的意义教案6

  教学目标

  1、 结合具体情境,进一步体会小数的意义及其与日常生活的密切联系。

  2、 会正确读写小数。

  3、 通过实际操作,体会小数与十进制分数的关系,并能进行互化。

  重点 了解小数的意义,会正确读写小数。

  难点 理解小数的意义。

  教具 课件、正方形卡纸

  教学过程

  复习导入:元6角4分=( )元

  10元5角=( )元

  =( )元

  7分=( )元

  谁能说出生活中还有那些小数。

  学习目标:

  1、理解小数的意义。

  2、会正确读写小数。

  3、小数与分数能进行互化。

  自主学习(方式)、教师指导方案:

  1、看书上第2页认一认。

  2、把“1”平均分成1000份,其中的.1份是( ) ,也可以表示( )。

  其中的59份是( ),也可以表示( )。

  3、读出下面的小数,并写出它们所表示的意义。

  0.9读作:

  表示:

  0.304读作:

  表示

  0.06读作:

  表示:

  展示方式:(学习目标中1、2……采取什么方式展示)

  1、 抽生回答,集体点评。

  2、 小组交流,抽生回答。

  3、 学生展示,集体交流。

  检测内容:

  填空:

  0.2 表示是( )位小数,它表示( )分之( )。

  0.15是( )位小数,它表示( )分之( )。

  0.008是( )位小数,它表示( )分之( )。

  0.3里面有( )个十分之一

  0.05里面有( )个百分之一

  0.009里面有( )个千分之一

  板书设计:

  小数的意义

  把1平均分成10份,其中的一份是1/10,也可以表示为0.1.

  把1平均分成100份,其中的一份是1/100,也可以表示为0.01.

  作业:

  6页2、3、4题

小数的意义教案7

  教学目标

  1.使学生理解小数降法的意义,理解小数除以整数的算理,并能够正确计算.

  2.提高学生迁移的能力.

  3.培养学生合作探究的意识.

  教学重点

  理解小数除法的意义、掌握小数除以整数的计算方法.

  教学难点

  理解小数除以整数中“商与被除数小数点对齐”的道理.

  教学过程

  复习铺垫

  (一)填空

  1.0.32里面含有32个( )

  2.1.2里面含有12个( )

  3.0.25里面含有( )个百分之一

  4.2.4里面含有( )十分之一

  5.8里面含有( )十分之一

  (二)列竖式计算2145÷15

  二、指导探究

  (一)理解小数除法的意义.

  1.(课件演示:小数除法的`意义)

  板书课题:小数除法的意义

  2.练习:(继续演示课件:小数除法的意义)

  (二)除数是整数的小数除法.

  1.(课件演示:除数是整数的小数除法)

  2.练习

  68.8÷4 85.44÷16

  三、质疑小结

  (一)教师提问

  1.商的小数点与被除数的小数点为什么要对齐?

  2.今天学习的除法与过去学习的除法有什么不同?它与整数除法有什么联系?

  将课题补充完整:除数是整数的小数除法

  (二)组织学生对今天所学的知识质题答疑.

  四、反馈练习

  (一)列竖式计算(分组完成)

  42.84÷7 67.5÷15 289.8÷18 79.2÷6

  (二)列式计算.

  1.两个数的积是201.6,一个因数是72,另一个因数是多少?

  2.把86.4平均分成24份,每份是多少?

  3.64.6是17的多少倍?

  (三)应用题

  一台拖拉机5小时耕3.55公顷地,平均每小时耕多少公顷?

  五、课后作业

  计算下面各题

  42.21÷18 6.6÷4 37.5÷6 15.36÷12

小数的意义教案8

  教学目标

  1、知识与技能目标:通过观察、比较、分析和归纳,初步了解小数的含义,会读、会写一位小数,知道小数各部分的名称,知道自然数和整数。

  2、过程与方法目标:在理解小数的过程中,培养学生观察、比较、分析和概括的能力。

  3、情感态度与价值观目标:让学生感受数与现实生活的联系。让学生体会,生活中处处有数学,从而激发他们热爱数学的情感。

  教学重点:

  1、能识别小数,正确读写小数

  2 、知道十分之几用一位小数表示,百分之几用两位小数表示。

  教学难点:

  知道以元为单位,以米为单位的小数的实际含义

  教学过程:

  一、创设情境,诱发兴趣

  同学们,你们去过超市购物吗?(去过)。大家看看这些物品的标价,

  (多媒体展示)

  像48、25、0、6、1、5、这样的数你们见过吗?(见过)。它们有个什么特点呢?(数中间都有一个小圆点)。像这样的数我们把它叫做小数。今天我们就一起来认识小数。(板书:认识小数)

  师:同学们观察一下,这些小数与我们学过的整数有什么不一样?

  生:都有个小圆点。

  师:真聪明,这个小圆点叫小数点,来,一起说说它的名字。(生齐读)你们别看小数点它小小的,圆圆的,它的作用可大了,它把小数点分成了两部分。

  师:小数点的左边是整数部分,右边是小数部分,小数点就写在整数部分个位的右下角的位置。

  二、联系实际,探究新知

  1、试读小数师:你们见过小数,那你们会读吗?(同桌试读)

  7。56 11。11 129。29

  9。05 500。50 1005。007

  2、总结小数的读法

  先让学生自己试试,再由老师总结读小数的方法。读小数的时候,整数部分按照整数部分读法来读,小数点读作点,小数部分通常要顺次读出每一个数位上的数字。(小数的读法学生可能读得不准确,学生在试读的过程中,老师了解情况,反馈时及时加以纠正,最后小结,给学生以准确的读法)

  3、写小数

  师:我们已经会读这些小数了,那这些小数是怎么写的呢?让我们动手来试一试。

  板书:六点七八、零点四九、一百五十点六零

  4、以“元”为单位的小数的现实意义建构

  师:同学已经会读写小数了,那么谁知道,这些以“元”为单位的小数分别表示多少钱?

  师放课件,学生回答。

  师:你是怎么知道的?

  (设计意图:这里不要求学生尽全尽美地回答,只要学生能提到点自上,就说明他对于小数价格的实际含义有所了解,但也要注意学生表达的逻辑性,培养准确完整的表述能力。)

  小结:这些以元为单位的小数,小数点的左边表示几元,小数点右边第一位表示几角,小数点右边第二位表示几分。

  5、同学们现在翻开书本第88页,把表填一填,填完后,师指名学生想报一报哪种商品的价格。

  6、练习价格之间的转换:

  (5。36)元=()元()角()分(109。06)元=()元()角()分

  (10)元(8)角(2)分=()元(79)元(9)角(9)分=()元

  7.下面我们来看一下这几个同学在干什么?(生答:量身高)

  二、王东身高1米30厘米,只用米作单位怎么表示?我们现在就来探讨一下这个问题。

  你们知道一米有多长吗?用手比画一下,一分米呢?

  1.感知“十分之几”可以用一位小数来表示

  师:这是一张1米长的尺子,把1米平均分成10份,每份是多少分米?每份是1米的几分之几?

  师:1分米是1米的几分之几,也就是几分之几米?(请学生回答)

  师:对了,1分米是1米的,也就是米。米写成小数是0。1米。

  板书:1分米=米=0。1米

  师:这一段是3分米,那3分米等于几分之几米,写成小数是多少呢?

  3分米=米=0。3米

  学生练习分米和米的转换。(口述)

  2、感知“百分之几”可以用两位小数来表示

  师:同学们,1厘米有多长呢,笔画一下,面对同样的事物,我们只要换个角度,就会有新的发现。

  多媒体展示:标有1—100的.米尺

  师:现在把1米平均分成了多少份?每份的长度是多少?(1厘米)

  师:1厘米用分数表示是几分之几米?()用小数表示是多少米?(0。01米)

  多媒体展示:1厘米=米=0。01米

  师:3厘米用分数表示是多少米?(米)用小数表示呢?(0。03米)

  多媒体展示:3厘米=米=0。03米

  师:我们出个有点难度的,那18厘米写成小数是多少米呢?(0。18米)

  板书:18厘米=0。18米

  学生练习米和厘米的转化。(口述)

  3、学生交流,探索规律。

  像0、1、0、3中的小数部分只有一个数字(小数点后面含有一位数),这样的小数是一位小数。

  像0、03、0、18小数点后面含有两个数字,这样的小数是两位小数。

  想一想:什么样的分数能用一位小数来表示?什么样的分数能用两位小数来表示?(同桌讨论)

  回答前问。

  王东身高1米30厘米,写成小数是()米。

  全班交流,写成1。30米和1。3米都是对的,(因为30厘米也就是3分米)

  完成89页做一做。

  三、实践应用,巩固提高

  1、判断下列说法是否正确,并说明理由。

  ①76、42读作七十六点()

  ②7厘米用小数表示为0。7米()

  ③5角用小数表示为0。5()

  2、填单位名称。

  8.47元=8()4()7()2.39米=2()3()9()

  20.06元=20()0()6()0.84米=0()8()4()

  2、把日记里的数据改成用小数表示

  叮铃铃!我要迟到了!我赶紧从2米2分米长的床上爬起来,用2分米长的牙刷刷完牙,迅速洗把脸。到校门口商店买了一个6角钱的鸡蛋和1元5角的面包后,飞奔到教室。

  4、仔细看图,说说哪个图中的涂色部分可以用0。3表示,为什么?

  (四)、知识拓展

  1、除了在价格多少,长度多少上,我们可以用到小数,你们还是什么哪里见过小数?(生答)播放多媒体小数的用述。

  你们知道在什么地方不能用小数吗?

  表示人的数量,植物、动物,物品等的数量时不能用小数。

  2、我国古代用小棒表示数,为了表示小数,就把小数点后面的数放低一格。

  在西方,小数出现很晚,最早使用小圆点作为小数点的是德国数学家克拉维斯。

  现在,有一部分国家用小圆点“ 。”表示小数点,还有一部分国家用逗号“,”表示小数点。

  总结:

  1、师:今天我们认识了小数,你有什么收获?

  师:其实,关于小数还有很多奥秘等着我们去发现、去探索,让我们在生活中多观察,挖掘更多关于小数的奥秘吧!

  板书设计

  认识小数

  48、25、 0、6、 1、5这样的数叫做小数。

  48 、 25

  整数部分o(小数点)小数部分

小数的意义教案9

  教学目标

  (一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

  (二)通过归纳整理,提高学生的概括能力。

  教学重点和难点

  熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

  教学过程设计

  (一)归纳整理小数乘除法的意义

  1口算下面各题,并说出各算式的意义。

  15×3 15×3 15×03 15÷3

  28×2 28×2 28×02 28÷2

  25×5 25×5 25×05 25÷05

  12×4 12×4 012×04 012÷04

  2思考:

  ①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

  ②小数除法的意义是什么?

  讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

  3比较归纳、整理:

  看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

  讨论完成下表:

  (二)复习小数乘除法的计算法则

  1小数乘法的计算法则。

  (1)说出下面各题的积中各有几位小数。

  23×05 214×07 275×1203 184×0026

  提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

  (2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

  ①04×25=(1);②0075×052=(0039)。

  提问:

  ①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

  (3)计算并验算:

  67×75= 836×25= 125×24=

  订正后回答:

  067×75= 836×025= 0125×24=

  小结:

  小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

  讨论得出:

  相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

  不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  (4)口算:

  08×4= 4×08= 005×20= 20×005=

  003×9= 9×003= 19×5= 5×19=

  观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

  练习:在下题的○中填上>,<或=。

  ①16×12○16; ②14×0○14;

  ③024×5○024; ④37×21○37;

  ⑤0×7○0; ⑥0×28○0。

  上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

  2小数除法的计算法则。

  (1)计算并验算(P34:6):

  189÷054= 71÷0125= 051÷022=

  计算后订正,提问:

  ①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

  ②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的.小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

  (2)口算:

  42÷06= 15÷5= 32÷08= 2÷4=

  哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

  (除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

  练习:在下面的○中填上>,<或=。

  30÷06○30 18÷9○18 0÷02○0

  36÷4○36 27÷03○27 0÷12○0

  上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

  (三)综合练习

  1口算:

  3978×1= 36÷36= 287×0=

  1×056= 78÷1= 0÷287=

  “1”与“0”有什么特性?

  2计算并求近似值:P35:2。

  小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

  3作业:P35:1,3。

  课堂教学设计说明

  复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

  通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

  板书设计

  整数乘法:

  4×25=100

  75×52=3900

  小数乘法:

  小数除法:

小数的意义教案10

  一、教学内容:小数的意义P32——P33

  二、教学目标:

  1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……

  2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。

  3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。

  三、教学重难点

  重点:理解小数的意义。

  难点:会用小数表示计量单位换算的结果。

  四、教学准备

  多媒体、米尺。

  五、教学过程

  (一)导入新授

  师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。

  师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)

  师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。

  师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。

  板书:小数的意义。

  (二)探索发现

  1、认识一位小数。

  (1)出示教材第32页例1米尺图。

  把1平均分成10份,每份长多少分米?1分米是1米的几分之几?

  教师介绍出示:“十分之一”米还可以写成0.1米。

  那2分米、3分米呢? 学生试着完成填空。

  学生在小组内交流后再全班交流,交流时说说每个分数表示的意义

  教师根据学生的回答板书:

  1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米 ……

  (2)观察上面的等式你能发现分数和小数之间的联系吗?

  学生观察并在小组内讨论。

  师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

  2、认识两位、三位小数。

  我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。

  (1)教师继续出示米尺的放大图。

  学生思考、小组交流后进行反馈:

  把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。

  1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一) 米,用小数表示就是0.001米。

  (2)小结。

  分母是100的.分数,可以写成两位小数。两位小数表示百分之几。

  分母是1000的分数,可以写成三位小数。三位小数表示千分之几。

  3、小数的意义。

  分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的进率是多少?

  学生交流说说对小数的理解。

  师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。

  4、阅读“你知道吗?”。

  师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?

  学生自学教材第33页“你知道吗?”。

  师生交流时,让学生说说小数的发展史。

  (三)巩固发散

  1、指导学生完成教材第33页“做一做”。

  让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。

  2、在括号内填上合适的小数。

  新人教版数学四年下第四单元小数的意义和性质教案(一)

  ( )元 ( )千克 ( )厘米

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。

  (五)板书设计

  小数的意义

  分母是10、100、1000……的分数可以用小数表示。

  小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  每相邻两个计数单位间的进率是10。

  六、教学后记

小数的意义教案11

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的'计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

小数的意义教案12

  教学目标:

  1.借助具体情景操作认识平角和周角,使学生建立平角、周角概念。

  2.通过操作活动,知道周角、平角形成过程及与各种角的关系,把钝角范围补充完整。

  3.能正确画平角和周角,找出生活中的平角、周角。发展学生空间观念。

  教学重点:

  平角、周角的特征。

  教学难点:

  知道平角、周角形成过程并会叙述。

  教学准备:

  活动角、纸扇、一张纸。

  教学过程:

  一、激发兴趣导入

  1、 ①师:老师想考考同学们的记忆力,拿出一张白纸,在黑板上演示,像老师这样对折一次,再对折一次。指着角问同学:这是什么角?你是怎么知道的?

  生回答:1、量角器量的 2、三角板对比的

  板书:直角等于90度

  ②师:比90度角小的角是什么角? 生回答后,板书 :锐角 小于90度

  ③师:比90度角大的角是什么角? 生回答后,板书 :钝角 大于90度

  2. 今天老师又给你们带来两位新朋友,今天我们继续学习角并板书:平角、周角(彩笔)。

  快来打声招呼吧!

  3.读一读,平角、周角。你知道什么?生回答:角的度数! 边在哪边?今天我带同学们一起走进平角周角。

  二、探究新知

  1.学习平角

  你们想当魔术师吗?

  举起纸,这是90度角,翻过来,指着角,这是什么角?你是怎么知道的?

  板书:画上直角符号,让同学们也画上直角符号。

  变!这就是平角,听!平角大声跟同学们说:我是平角,我愿意跟同学们交朋友。同学们,你们也变,认真看平角,讨论:你发现了什么?快说给同学们听,一定要认真听,互相补充。

  学生展示,板书:一平角=2直角=180度。两条边在第一次折痕上引导学生说,角的`两条边在一条直线上,这样的角就叫做平角。

  让学生拿出活动角,转动时,注意角的一边不动,另一边绕着角的顶点旋转成平角。让学生指出平角的顶点和两条边,板书:画平角。让学生也跟着画平角,齐读两遍平角的特征。

  2.学习周角

  我还会变呢,翻动平角纸,这又是什么角?说理由。画上符号,要求学生也画上两个直角符号,变!这就是周角,听!同学们好 我是周角,我愿意和同学们交朋友!

  讨论:和同桌说说你的发现!生按顺序展示后,教师板书:1周角=4直角=2平角=360

  定义:有四个直角组成一个新的角,这样的角叫做周角。

  让学生试着用活动角转动周角,画周角,然后,指出周角的顶点和两条边。

  齐读周角的特征,再齐读平角和周角的特征。

  三、进一步感受平角、周角。

  1.伸出一条胳膊。旋转平角、周角。同桌互相转,展示转。学生评价。

  四、补充钝角范围

  师:老师有个问题,180度,360度都比90度大,但他们不叫钝角,再平角上展示活动角,活动角的一条边,在0度90度区域形成的角是锐角,在90度180度形成的区域形成的角是钝角,请学生说一说钝角比谁大?比谁小?

  生回答后, 板书:而小于180度。

  五、让学生寻找生活中的周角、平角。

  互相说,展示说,评价。

  六、巩固练习.

  1.游戏,用纸扇摆角,同桌说角,老师摆角,考同学说角

  2.判断:⑴平角是一条直线,⑵周角是一条射线,⑶一个周角等于四个平角,

  3.抢答题:⑴从小到大排序:直角、钝角、平角、锐角、周角,⑵从大到小排序:直角、钝角、平角、锐角、周角。

  4.再出一个难一点的题:(要求说清理由)

  1=752=? 3=? 4=?

  七、总结

  你们知道了平角、周角,现在让你扮演角色,平角、周角,做个自我介绍吧!

  板书设计:

  角

  锐角 直角 钝角 平角 周角

  比90角小 比90角大 1平角=2直角=180

小数的意义教案13

  课题:人民教育出版社第八册《数学》第四单元第1课《小数的意义》

  教学目标:

  1、使学生知道小数的产生过程,理解分数与小数的联系。

  2、使学生明确小数的计数单位,认识小数并理解小数的意义。

  3、培养学生的观察能力、分析能力、抽象概括和迁移能力。

  教学重点:使学生通过分数与小数的联系从而理解小数的意义。

  教学难点:理解小数的意义。

  教具准备:多媒体课件、米尺。

  教学过程:

  一、设疑激趣、揭示课题。

  教师出示钢笔,写出价格13.50元。

  师:这是个什么数?(学生:小数)

  师:小数和我们学过的整数有什么不同?

  生:有圆点……

  师:小数是仿照整数写成的,用小数点隔开,左面是小数的整数部分,右面是小数部分。在日常生活中,有很多地方要用到小数。(教师和学生比身高并引出姚明的身高。)

  第一组数:1米7分米3厘米2米2分米6厘米

  第二组数:1.73米2.26米

  师:那一组数更简明?(学生:第二组数)

  师:对。小数是人们根据生活的需要而产生的。小数里有很多的奥秘,今天,我们就一起来研究小数的意义。

  二、探究新知

  1、认识一位小数。

  教师出示媒体。

  师:把1米平均分成10份,每份是多少?生:1分米1米=10分米

  师:那么反过来,1分米等于多少米呢?(生:米)师:

  师:还可以把米写成小数是0.1米。

  师:0.1米是由哪个分数得来的?(生:是由米得来的。)

  师:3分米是多少米?写成小数有是多少呢?(学生:米0.3米。)

  师:请同学们观察这一组数,你发现什么?

  教师引导:小数点后面有几位数?0.1、0.3分别是由那两个分数得来的?这两个分数的分母是多少?它们的计数单位是多少?

  学生:一位小数、分母是10的分数可以写成一位小数、计数单位是十分之一。

  师:0.7表示()个。

  2、认识两位小数。

  师:把1米平均分成100份,每份是多少?你能运用学习一位小数的方法、结合媒体上的`资料自己研究出新的小数吗?

  分数小数分数小数

  出示课件:1厘米=()米=()米15厘米=()米=()米

  学生自主研究,教师参与到学生的研究中。

  学生汇报研究的成果:

  首先填好空。

  师:你发现了什么?

  学生:这是二位小数、计数单位是百分之一、分母是100的分数可以写成二位小数……

  教师对学生没发现的给予引导启发。

  师:0.75表示()个。

  3、认识三位小数。

  师;你能继续研究出其他的小数吗?

  教师出示媒体:

  把1米平均分成1000份,每份是1毫米。

  分数小数分数小数

  1毫米=()米=()米63毫米=()米=()米

  学生自主研究后汇报交流:

  分母是1000的分数可以写成三位小数,计数单位是千分之一………

  教师对学生每发现的给予引导启发。

  师:0.63表示()个。

  4、抽象概括小数的意义。

  讨论:1、小数是由分母是多少的分数写成的?

  2、一位小数可以用来表示什么?二位小数、三位小数呢?

  3、什么叫小数?

  学生先自己说,教师再指明学生说。

  教师通过讨论第1、2两个问题引导学生归纳出:分母是10、100、1000……的分数可以仿照整数是写法,写在小数点的右面,用来表示十分之一、百分之一、千分之一……的数,叫做小数。

  教学例1:

  课件出示。学生独立完成后汇报交流。

  师:这个题你是怎样想的?

  三、实践应用。

  课件分别出示。

  1、0.5里有()个0.1,

  0.09里有()个0.01,

  0.013里有()个0.001。

  2、教师出示图,学生在书上完成后集体交流。

  3、连线,教师出示连线图,学生在书上独立完成后集体交流。

  四、应用拓展。

  0.425里有()个0.001

  0.20里有()个0.01

  用0、2、5、8这四个数和小数点你能组成什么样的小数?

  五、板书设计

小数的意义教案14

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  实验目标:

  1、利用多媒体课件,激发学生认识小数学习小数的欲望。

  2、通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义,感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学准备:

  课件、米尺、直尺等。

  教学过程:

  一、引入新知

  课件演示:学生测量黑板的长,课桌长、高的`过程

  1、学生自己动手量一量黑板的长,课桌长、高这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2、回忆、练习1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m

  教师:关于小数,同学们还想知道什么?板书课题:小数的意义

  二、探索新知

  1、教学例1

  (1)填一填,说一说。(课件出示例1第1个图)①此图用分数、小数该怎样表示?你是怎样想的?说一说:0?7表示把一个正方形平均分成()份,取其中()份。 0?7里面有()个0?1。②像0?1,0?3,0?5,0?7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(课件出示后面两幅图)①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2、教学例2(认识三位小数)

  (1)看一看,填一填。

  课件出示①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

小数的意义教案15

  教学内容:

  小数的意义P32P33

  教学目标:

  1、理解小数的意义,知道一位小数、两位小数、三位小数分别表示十分之几、百分之几、千分之几

  2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。

  3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。

  教学重点:

  理解小数的`意义。

  教学难点:

  会用小数表示计量单位换算的结果。

  教学准备:

  多媒体课件、米尺。

  教学过程:

  一、导入新授

  师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。

  师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按整米数和非整米数两类板书)

  师:这些不够整米数的部分,如果仍然要用米作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。

  师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。

  板书:小数的意义。

  二、探索发现

  1、认识一位小数。

  (1)课件出示教材第32页例1米尺图。

  把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?

  教师介绍出示:十分之一米还可以写成0.1米。

  那2分米、3分米呢? 学生试着完成填空。

  学生在小组内交流后再全班交流,交流时说说每个分数表示的意义

  教师根据学生的回答板书

  1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米

  (2)观察上面的等式你能发现分数和小数之间的联系吗?

【小数的意义教案】相关文章:

小数的意义教案03-28

《小数的意义》教案03-12

小数的意义教案【荐】03-01

【精】小数的意义教案03-01

【荐】小数的意义教案02-21

小数的意义教案【热门】02-22

【推荐】小数的意义教案03-06

小数的意义教案【推荐】03-06

【热门】小数的意义教案03-01