当前位置:9136范文网>教育范文>教案>公倍数与最小公倍数教案

公倍数与最小公倍数教案

时间:2023-02-26 14:17:41 教案 我要投稿

公倍数与最小公倍数教案

  作为一名人民教师,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么教案应该怎么写才合适呢?下面是小编为大家收集的公倍数与最小公倍数教案,仅供参考,欢迎大家阅读。

公倍数与最小公倍数教案

公倍数与最小公倍数教案1

  教学目标

  使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。

  教学重点、难点

  重点、难点:学会求三个数的最小公倍数的方法。

  教具、学具准备

  教 学过程

  备 注

  一、复习准备

  1、回答下列每组书的最大公约数和最小公倍数:

  6和712和3656和14

  4和915和457和13

  提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?

  2、已知10=2×515=3×5,那么10和15的最小公倍数是()

  谁能说一说最小公倍数的质因数有何特点?

  3、求12和18,30和45的最小公倍数。

  (1)全体笔练,两个做在投影片上。

  (2)反馈(投影片)失声共同。

  (3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)

  二、教学新知

  1、教学例3:求12、16和18的最小公倍数。

  (1)学生尝试练习(两人板演,有困难可以看书)

  (2)师生共同讨论(并纠正)板演:

  A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?

  (因为每个数独有的质因数也是最小公倍数的质因数)

  B、除到什么时候可以不必再除?

  C、最后这个最小公倍数怎么求?为什么?

  (3):因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称“两两互质”)为止,并把除数和商全部连乘起来。

  (4)练习:求下列每组数的最小公倍数

  16、8和1215、30和408、9和12

  A、学生练习。

  B、投影反馈。

  C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最

  教学过程

  备 注

  公约数有什么不同?

  明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到“两两互质”为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。

  (5)练习:求下列每组数的最小公倍数

  4、12和169、18和2712、15和18

  (学生练习后反馈,并互相检查)

  2、探求规律

  出示:(1)15、30和60(2)3、4和7

  8、10和402、5和9

  9、7和631、和15

  (1)学生练习:求每组数的最小公倍数

  (2)反馈练习结果(生报教师板书)

  [15、30、60]=60[3、4、7]=84

  [8、10、40]=40[2、5、9]=90

  [9、7、63]=63[1、8、15]=20

  (3)第(1)组中每组数的最小公倍数有什么特点?每组中的三个数又有什么关系?第(2)组呢?

  谁能用自己的'话把你的发现说一说?

  (4)讨论后:

  若三个数中较大数上另外两个数的倍数,则较大数既是它们的最小公倍数;

  若三个数两两互质,则它们的乘积就是它们的最小公倍数。

  (注意加“。”内容的强调)

  (5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)

  (6)综合练习课本P62练一练3(当堂反馈,矫正错误)

  三、课堂

  1、这节课学习了什么?怎样求三个数的最小公倍数?

  2、通过这节课的学习,并还知道了什么?

  3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。

  四、作业《作业本》

  求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。

公倍数与最小公倍数教案2

  教学内容:教科书五年级上册第81——82页及练习。

  教学目标:

  1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。

  2、了解最小公倍数,学会用短除法求两个数的最小公倍数。

  3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。

  教学重点:学会用短除法求两个数的最小公倍数。

  教学过程:

  一、课前活动——对口令

  师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。

  2、对出一个数,它既是2的倍数也是3的倍数。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?

  请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。

  师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。

  出示教材上的情境图。

  师:从两个人的对话中了解到哪些数学信息?

  生1:聪聪用了5/6小时。

  生2:红红用3/4小时就打完了。

  师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。

  学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?

  师:谁来说说是怎样比较的?谁打得快呢?

  学生交流,教师进行板书。

  生1:因为6×4=24,我先把和进行通分,都化成分母是24的'分数,然后再进行比较。

  5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24

  20/24>18/24,所以5/6>3/4。

  红红打得快。

  生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。

  5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12

  10/12>9/12,所以5/6>3/4。

  ……

  如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。

  师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?

  学生可能有不同的表达方式,概括一下,应有如下回答:

  ●相同的地方

  (1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。

  (2)两种方法通分时用的分母12和24都是6和4的公倍数。

  教学预设

  ●不同的地方

  (1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。

  (2)24是12的2倍。

  ……

  师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。

  学生自己找,教师巡视。

  师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数

  4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,

  师:如果让你继续找下去,4的倍数还有没有?用什么表示?

  生:还有无数个,用省略号表示。

  生:6的倍数有:6,12,18,24,30,36,42,48,

  师:如果让你继续找下去,6的倍数还有没有?用什么表示?

  生:还有无数个,也用省略号表示。

  生:然后找4和6的公倍数有:12,24,36,48,……。

  教师根据学生的回答出示课件。

  师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?

  学生可能会说:

  生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。

  师:60后面还有没有?还有多少个?

  生:还有无数个,用省略号表示。

  师:有没有最大公倍数?

  生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。

  师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?

  生:12。

  师:还有比12小的公倍数吗?

  生:没有了。

  师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)

  师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。

  学生之间互相交流。

  教师引导学生出概念(出示课件)让学生读一读。

  师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)

  用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。

  板书设计:

公倍数与最小公倍数教案3

  教学目标:

  1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  2.培养学生的观察能力、分析能力和归纳概括能力。

  3.培养学生良好的学习习惯。

  教学重点:

使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  教学难点:

使学生学会并理解求两个特殊数的最小公倍数的方法。

  教学实录:

  一、引入:

  师:同学们,现在是什么季节?

  生:春天。

  师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。

  点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值

  二、新授

  1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?

  生①:解决了。

  生②:没有解决,过一段时间,它们会一起回来的。

  师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。

  (2)学生讨论

  (3)学生汇报

  师:哪个小组来展示你们的研究成果?

  生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。

  师:这种方法形象直观,非常好,还有不同和方法吗?

  生②:用数轴证明。(学生在展台演示)

  师:大家认为这种方法怎么样?

  生:简洁清楚。

  师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?

  生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。

  板书:30的倍数:30 60 90 120

  40的倍数:40 80 120

  (4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。

  [点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]

  2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。

  学生验证。

  学生汇报。

  生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。

  师:恩,还是不行,我们发现60和90也有公倍数。

  3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。

  生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。

  师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?

  生:两个数公有的倍数就是他们的公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。

  点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。

  4.找最小公倍数

  4和8 5和10 6和15 6和9 4和5

  让学生找出每组数的公倍数。

  师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?

  生:大数要是小数的倍数,大数就是它们的公倍数。

  师:你们还能发现了什么?

  小组讨论,之后汇报。

  生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生②:5和10的最小公倍数是10,并不是它们的乘积。

  生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。

  点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。

  三、总结

  师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。

  设计思路:

  “最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的.过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。

  评析:本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣。

  1. 结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。

  2. 让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中,教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。(作者:山东省济南市市中区教研室 董惠平 山东省济南市胜利大街小学 唐忠亮 吴颖昕 王婷)

公倍数与最小公倍数教案4

  课题:找最小公倍数

  教学目标:

  1.结合具体情境,体会公倍数和最小公倍数的应用,并会利用例举法等方法找出两个数的公倍数和最小公倍数。

  2.培养学生分析归纳能力以及主动探究的精神。

  教学重点:理解两个数的公倍数和最小公倍数的意义

  教学难点:探究赵公倍数和最小公倍数的方法

  教具:多媒体课件

  教学过程:

  一.创设情境、引入新课

  1.课件展示蜜蜂采蜜

  师:同学们看看这是什么?

  生:蜜蜂。

  师:蜜蜂在干嘛呀?

  生:在采蜜。

  师:嗯,是的。那你们看现在蜜蜂王国日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来都非常拥挤,这可怎么办呢?

  (生自由发表意见,各抒己见)

  2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。

  (片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用 把6的倍数标出来。

  两分钟之后展示一位同学所标出来的。

  3.师:那4的倍数有哪些?

  生:4、8、12、16、20、24、28、32、36、40、44、48。

  师:那6的倍数又有哪些呢?

  生:6、12、18、24、30、36、42、48。

  又标了的有哪些?

  生:12、24、36、48。

  师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。

  师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?

  生:12分钟。

  师:12是4和6的最小公倍数。

  4.师:刚才我们是在50以内(包括50)的数中找4和6的倍数,如果继续找下去,还有吗?有多少个?

  生:有,有无数个。

  师:你能找出最大的一个吗?

  生:不能。

  师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的内容——最小公倍数。

  二.巩固练习

  1.师:现在如果把蜜蜂分成两组,一组6分钟回来一次,一组9分钟

  回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)

  师:50以内6的倍数有哪些?

  生:6、12、18、24、30、36、42、48。

  师:50以内9的倍数又有哪些?

  生:9、18、27、36、45。

  师:50以内6和9的公倍数有哪些?

  生:18和36。

  师:它们的最小公倍数是多少呢?

  生:18。

  师:我们的两组蜜蜂最快在18分钟的时候相遇了。

  2.小猴子要过河了,小猴子现在要做从三块石头上走过去,可是石头都有密码的,你们可以帮助小猴子顺利过河吗?

  (出示课件,50以内9的倍数、50以内5的倍数、50以内9和5的公倍数)学生 独立完成再汇报。(书上61页练一练的第2题) 师:刚刚我们都是用的`什么方法来找最小公倍数的?

  生:列举法。

  师:那现在还有一种方法找最小公倍数,短除法。

  2 18 24

  9 12

  3 4

  18和24的最大公因数就是:2×3=6.

  18和24的最小公倍数就是:2×3×3×4=72。

  3.求下列数的最小公倍数

  3和6 10和89和4

  4.联系实际,解决问题

  师:看看,这是什么?

  生:跑道。

  师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。

  (1)我跑一圈用6分钟

  (2)我跑一圈用4分钟

  (3)我跑一圈用8分钟

  师:你能提出问题吗?

  生1:他们同时出发男孩和女孩最快什么时候相遇?

  生2:他们同时出发男孩和老师最快什么时候相遇?

  生3:他们同时出发老师和女孩最快什么时候相遇?

  (独立完成)

  三.本堂小结

  师:通过这节课的学习你有什么收获?

  生先谈收获师再总结

  1.同学们都很好的掌握了用列举法找两个数的公倍数和最小公倍数的方法。

  2.学会了用短除法求两个数的最小公倍数。

公倍数与最小公倍数教案5

  教材分析:

  该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

  学情分析:

  五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  教学目标:

  1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

  2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

  3、渗透集合思想,培养学生的抽象概括能力

  教学重点:

  公倍数与最小公倍数的.概念建立。

  教学难点:

  运用公倍数与最小公倍数解决生活实际问题

  教法学法:

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

  教学过程:

  一、任务导学

  师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

  师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

  师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

公倍数与最小公倍数教案6

  关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流

  内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。

  课堂实录:

  一、复习:

  1、求两个数的最大公约数和最小公倍数的方法各是什么?

  2、求出每组数的最大公约数和最小公倍数(用短除法)

  20和2436和5428和1413和40

  [评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]

  二、导入新课:

  前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不

  是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。

  [评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]

  三、新授:

  1、电脑出示下面几组数,让学生判断每组数成什么关系?

  7和218和912和3614和19

  生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。

  师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短

  除法大家能很快求出来吗?

  生:能

  生:不能

  生:能

  师:下面我们共同来研究一下,看哪些同学说的对。

  师:请分别找出8,9的约数和倍数。韩晓斌严春花

  学生回答完后电脑出示:

  8的约数:1,2,4,8

  9的约数:1,3,9

  8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……

  9的倍数:9,18,27,36,45,54,63,72,81……

  师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。

  生:8和9的最大公约数是1。

  生:8和9的最小公倍数是72。

  师:请同学们再观察8,9,72这三个数之间有什么关系?

  生:8和9都是72的约数。

  生:72是8的倍数,也是9的倍数。

  生:8×9=72,即:72是8和9的乘积。

  师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?

  生:8和9的最小公倍数是它们的乘积。

  师:又因为8和9成互质关系,那么我们从中能得出什么呢?

  生:成互质关系的两个数的最小公倍数是它们的乘积。

  师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?

  师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。

  例如:7和94和53和5

  最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?

  生:成互质关系的两个数的最大公约数是1。

  同样让学生自己验证,最后讨论得出:

  如果两个数是互质数,它们的最大公约数就是1。

  2、请同学们分别找出7、21的约数和倍数。

  学生回答完后电脑出示:

  7的约数:1,7

  21的约数:1,3,7,21

  7的倍数:7,14,21,28,35,42……

  21的倍数:21,42,63……

  师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。

  生:7和21的最大公约数是7。

  生:7和21的最小公倍数是21。

  师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,

  想一想,有什么规律?

  生:7和21的最大公约数和最小公倍数就是这两个数。

  生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。

  生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。

  对

  生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数。

  生:求成倍数关系的两个数的最大公约数和最小公倍数时,大小,

  对

  小大。

  这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?

  这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的'最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。

  同时,让学生自己举例验证得出的结论是否正确。

  最后让学生打开课本,阅读完书上的结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。

  [评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]

  四、反馈练习:

  很快说出每组数的最大公约数和最小公倍数。

  9和367和1329和3013和5236和725和17

  [评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]

  五、总结:

  你有什么感想和收获?

  [评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]

  六、作业:(略)

  教学反思:

  数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。

  学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。

  反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。

  教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!

公倍数与最小公倍数教案7

  教学内容:

  最小公倍数

  教学目标:

  1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  2.培养学生的观察能力、分析能力和归纳概括能力。

  3.培养学生良好的学习习惯。

  学习目标:

  1、理解最小公倍数的意义

  2、初步学会求两个数的最小公倍数。

  学习任务:

  任务一 理解最小公倍数的意义

  任务二 求两个数的最小公倍数

  教学过程:

  一、激情导课

  1、师:同学们,看今天我们要学习什么?(最小公倍数)

  看到这个题目,你会想到我们以前学过的什么知识?(倍数)

  2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

  3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

  二、民主导学

  任务一

  一、任务呈现

  师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

  要求:先独立思考,不会的小组商量。

  提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

  二、自主学习

  教师巡视学习情况

  三、展示交流

  1、师:他们可选那几日外出?(12、24)

  你是怎样选出来的?根据回答板书;

  妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数

  爸爸的休息日:6 12 18 24 30 -----6的倍数。

  共同的休息日:12 24 -----4和6的公倍数

  最近的一天:12------4和6的最小公倍数

  还可以用集合图来表示,

  2、仔细观察两组数据有什么特征?

  3、再次强调 4 的公倍数就是妈妈的休息日

  6 的公倍数就是爸爸的休息日

  4 和6的公倍数就是爸爸和妈妈的共同休息日

  4、最近是哪一天? 12

  12也是这公倍数中最小的一个,叫做最小公倍数。

  5、集合图还可以这样表示 出示课件

  问:和前面的图有什么不同?中间的部分表示什么?(重合的.、公共的)

  你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

  这样我们可以一眼看出4 和6的公倍数是12、24.

  6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

  7、89页做一做

  二、那如何求最小公倍数呢?

  任务二

  求两个数的最小公倍数

  一、任务呈现

  1、求6和8的最小公倍数

  2、想一想

  1.你还能想出几种求法?

  2.公倍数有多少个?你能找出最大的公倍数吗?

  3.两个数的公倍数和最小公倍数之间有什么关系?

  二、自主学习

  三、展示交流

  1、把不同求法板书

  2、交流以上三个问题

  (三)检测导结

  1、目标检测

  求下列每组数的最小公倍数(要求5分钟)

  2和7 4和8

  3和5 6和15

  2、结果反馈

  一次正确5分,自己改正4分,帮助改正3分,

  3、反思总结 谈谈收获和不足

公倍数与最小公倍数教案8

  教材分析:

  本课教学内容是要让学生学会用数学的眼光来思考并分析身边的问题,教材中的铺砖这一实际生活离学生的实际生活还有一定的距离,课前我特意创造性加入了课前的游戏将公倍数知识蕴藏在游戏活动中,让学生在解决实际问题前能够感悟知识与生活的紧密联系。

  学情分析:

  五年级下学期的学生已经具备了一定的生活实际经验,但是铺砖的生活情境离学生还是有一定的距离,让学生在课堂当中动手操作,可以给学生更多的思考和交流空间。让抽象的数学知识更形象。

  教学内容:

  人教版数学五年级下册70页以及相关练习。

  教学目标:

  1.学会用公倍数和最小公倍数的知识解决简单的现实问题,体验数学与生活的密切联系。

  2.结合解决问题理解公倍数和最小公倍数的现实意义,进一步熟悉求两个数的公倍数和最小公倍数的方法。

  3.在学生愉快的活动过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神,感受到数学学习的快乐和价值,让学生学会用数学的眼光分析并解决生活实际问题。

  教学重难点:

  重点:学会用公倍数和最小公倍数的知识解决简单的实际问题。

  难点:体会公倍数和最小公倍数的现实意义。色圃中小

  课前准备:

  多媒体课件,方格纸,长方形学具,水彩笔。

  教学过程:

  一、课前引入

  1.师课前谈话:各位亲爱的同学,我们已经认识了最小公倍数和公倍数,而且还学会了如何找两个数的最小公倍数和公倍数。为了表示对你们在学习上的收获。周老师在今天的这节课带给大家一首最原生态的歌曲,看看我们在共同庆贺的时候,还能在学习上得到什么!

  2.师出示歌唱要求:一起来看歌唱要求:男生每2秒唱出歌词“嘿”,而女生则每3秒唱出歌词“哈”。师:大家已经明白要求了吗?一起来试一试。让我们一起关注时钟上跳动的数字,按照要求一起唱出歌词。

  3.在学生完成第一次试唱后,教师提问:根据要求,在哪些时钟数字时男生会唱出歌词?大家同意吗?师板书,同时小结(2的倍数)然后继续提出:男生已经找到了他们的时钟数字,看一看在下一次的歌声中,女同学也能找到属于你们的时钟数字吗?一起准备,请关注滚动的时钟数字。女同学们,你们是否已经找到了属于你们的时钟数字。请告诉我们,大家同意吗?师板书,同时小结(3的倍数)现在我们把歌声中再加入一点配乐,一起来看。能够做到吗?设计意图欢快的歌声让抽象的数学知识瞬间变得触手可及。而在欢快的歌声中,学生能够很自然地运用倍数的知识来说明并解决问题。让学生在不知不觉中建立起数学知识和活动要求的联系。以达到润物无声的效果。欢快的歌声也会激发出学生的学习兴趣和欲望,同时这样的数学课堂也别具感染力。能够增强学生参与课堂学习的积极性。

  二、新授

  1.看看我们的歌声中,加入了配乐会有多么的雄壮。并播放课件出示要求:男生每2秒唱出歌词“嘿”,同时拍桌子,而女生则每3秒唱出歌词“哈”同时击掌。

  2.学生在完成歌唱后,教师提出:在我们的歌声中,只有男同学齐唱,女同学齐唱的歌声吗?(不是),那还有什么?对,还有男女生的合唱。你能找出男女生在哪些时候会一起唱出歌词呢?师板书数字,同时小结(2和3的公倍数)

  3.在学生指出合唱时间后,教师相机提出:看来我们在歌声中还找到了关于倍数和公倍数的知识。接下来,让我们带上知识走入生活,一起解决实际问题。一起来看。

  三、引入新知

  师:出示张叔叔要用长3分米,宽2分米的长方形瓷砖在外墙铺一个正方形。(用的都是整块),你觉得可以铺出边长是多少分米的正方形?边长最小是多少分米?

  1.阅读与理解师:请孩子们仔细读题,你知道了哪些数学信息?抽生回答,老师提取有价值的数学信息帮助学生理解。

  2.分析与解答师:这个正方形的边长可能是多少?最小是多少?师:让我们带着自己的猜想分小组合作探究,教师出示活动要求:

  (1)请你通过画一画,铺一铺或者写一写等方式去验证自己的猜想。

  (2)小组长组织小组成员分工合作,积极参与,并讨论交流各自的操作发现。

  (3)小组长对本组交流意见进行整理,填好记录单。

  学生分小组操作(教师巡视,参与其中)师:哪些小组使用摆的方法,哪些小组使用了画的方法。请小组内成员展示自己组内的摆或者画的成果。配以记录单进行说明或者讲解。

  (1)汇报铺出的.正方形边长是多少?

  (2)对铺出正方形的过程加以说明

  (3)使用记录单,说明铺出的图形各边长度的变化

  (4)确定正方形的边长数字是多少?

  3.回顾与反思。

  师提出:就只有这几种铺法吗?难道就要这样一直画下去、摆下去吗?

  生:不需要,只要是2和3的公倍数都可以是正方形的边长。

  师:看来,我们要把铺砖的实际问题转化成公倍数的问题,就能很容易地解决了。

  师:用这样的瓷砖能铺出边长是4分米的正方形吗?能铺出边长是9分米的正方形吗?

  师:看来要解决生活中这样的问题,首先要找到什么?

  设计意图本环节的教学注重了学生对于解决问题的思考步奏,让学生在充分的活动中体验知识的生成过程,达到知其然而所以然的效果。学生的铺砖环节能够充分感受问题转化的过程,而记录单上数据的变化过程能够进一步提高学生归纳和总结的准确性和科学性。在回顾与反思中,让学生中我解决此类问题的基本方法和基本过程。既对知识进行了总结,还对解决问题的策略进行了渗透。

  四、练习巩固

  1.练习一看来,我们在歌声中再一次认识了公倍数和最小公倍数,而且也帮助张叔叔铺砖的实际问题。现在让我们带上知识走入生活,体会数学学习的价值!并出示:xx班同学参加植树活动,每6人一组,每9人一组都刚好完。而人数在40人以内,人数肯能是多少人?一起来看大屏幕,根据你的阅读并理解,你知道了哪些数学信息?现在呢?请告诉我们你的结果。

  2.练习二

  (1)出示练习二。xx班共有学生40人,参加植树活动,每4人一组,每6人一组都要刚好分完。如果全班同学都要参加,至少还要从别的班借多少人?

  (2)阅读收集数学信息。

  (3)抽生根据数学信息分析并解答。

  3.走入生活第二季:

  (1)出示:李老师生日的月份数是2的倍数,又是5的倍数,李老师可能出生在几月份?

  (2)师提出:根据阅读,你作出了怎样的分析?在学生回答后,继续提出:现在我们可以把问题当中的一个词换作哪一个词?师:月份数一定是在10月,那日期数又是哪一天呢?继续探秘:

  (3)出示:生日的日期数比4的倍数多1,比6的倍数也多1,李老师生日的日期数可能是多少?现在你如何分析呢?抽生回答。

  五、课堂总结

  在学生回答后,教师小结并赞美,顺势提出:让我们再一次走入歌声中,一起找到属于数学的快乐。一起题前祝愿李老师生日快乐。在学生的歌唱后继续追问:

  第1次合唱是几秒?

  第3次合唱是多少秒?

  第101次合唱是多少秒?

  现在怀着快乐的心情,你想告诉所有的同学和老师一点什么?

  在学生总结后,出示结束语。

  设计意图:

  本环节使用歌声让学生来作为课堂总结的前奏,既能够让数学课堂充满乐趣,还能够让课堂教学首尾照应。快乐的歌声能够让学生在祝福的同时再一次提升对于公倍数知识的理解和认识,同时也是对学生在思想情感上的一次感悟,达到了知识渗透与情感育人并行的目的。

  板书设计:

  解决问题

  长边铺出2,4,6,6,8,10,…(2的倍数)

  宽边铺出3,6,9,12,15,…(3的倍数)

  正方形边长6,12,18,…(2和3的公倍数)

公倍数与最小公倍数教案9

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。

  教学过程:

  复习

  今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?

  那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?

  看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。

  一、经历操作活动,认识公倍数

  1、操作活动

  提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看

  拿出手中的图形,动手拼一拼。

  学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。

  提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)

  引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)

  铺边长8厘米的正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)

  2、想像延伸

  提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。

  生可能的想法:

  ⑴、能正好铺满边长12厘米、18厘米、24厘米......的正方形。

  在学生回答后,提问:你是怎么想的?(引导学生明确:12、18、24......除以2和3都没有余数)

  ⑵、能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。

  如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?

  3、揭示概念

  讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。

  引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的.公倍数)为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,然后在小组里交流。

  生可能想到的方法:

  ⑴依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ⑵、先找出6和倍数,再从6的倍数中找出9的倍数。

  ⑶、先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:第⑵种和第⑶种方法有什么相同的地方?你觉得哪一种方法简捷一些?

  2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)

  3、用集合图表示。

  说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?

  引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、做“练一练”

  要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。

  集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、做练习四的第1题

  要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?

  2、做练习四第2题

  要求:先在表中分别写出两个数的积,再填空。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、做练习四的第3题

  要求:自己找出每组数的最小公倍数。

  集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。

  四、全课小结

  提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

  引导:你还有什么疑问吗?

  五、游戏活动

  要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。

  提问:涂色的方格里写的数与3和4有什么关系?

公倍数与最小公倍数教案10

  教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。

  教学重点 掌握求两个数的的方法。

  教学难点 正确、熟练地求出特殊情况下两个数的。

  教学过程

  一、创设情境

  1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。

  2.回答问题:什么是公倍数?什么是是?

  3.求24和32的。

  4.说说下面每组中的两个数有什么关系?

  12和36 4和5

  二、揭示课题

  我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)

  三、探索研究

  1.教学例3

  (1)先让学生用上节课学的方法分别求出这两组数的。

  (2)观察结果:通过这两组数的,你发现了什么?

  (3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。

  (4)尝试练习。

  做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。

  四、课堂实践

  1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。

  2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。

  3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。

  五、课堂小结

  学生小结今天学习的内容、方法。

  六、课堂作业

  做练习十五的第8题。

  课题三:求三个数的

  教学要求 使学生在理解的基础上学会求三个数的。

  教学重点 求三个数的与求两个数的的区别。

  教学难点 会求三个数的。

  教学过程

  一、创设情境

  求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)

  5和8 7和28 12和16

  二、揭示课题

  我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)

  三、探索研究

  1.教学例4。

  (1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)

  8=222

  12=223

  30=2 35

  (2)分组讨论。

  ①8、12、30的必须包含哪些质因数?

  ②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?

  ③8、12和30的是多少?

  (3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。

  (4)求三个数的的方法。

  求三个数的与求两个数的的方法大同小异。(板书短除式)

  8 12 30

  ①先用什么数作除数去除?

  ②再用什么数作除数去除?(重点指导:另一个数要移下来)

  ③一直除到什么时候为止?

  ④最后怎样做就可以求出三个数的?

  (5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)

  相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。

  不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。

  四、课堂实践

  1.做教材第75页的做一做。

  2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。

  3.做练习十五的第13题,学生口答。

  五、课堂小结

  学生小结今天学习的内容、方法。

  六、课堂作业

  1.做练习十五的第10、11、14题。

  2.有兴趣、有余力的学生可做练习十五的第21*~23*题。

  课题四:最大公约数和的比较

  教学要求 通过比较,使学生进一步分清求最大公约数和的'相同点和不同点,并能正确地求出几个数的最大公约数和。

  教学重点 比较求两个数的最大公约数和的不同点。

  教学用具 在投影片上画好教材第80页的表格(留空备用)

  教学过程

  一、创设情境

  1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。

  2.很快说下面每组数的。

  5和7 9和45 9和12 2、3和11 8、10和40 3、4和6

  二、探索研究

  1.教学例5。

  (1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):

  28 42 28 42

  7 14 6 7 14 6

  2 3 2 3

  28和42的最大公约数是: 42和28的是:

  27=14 2723=84

  (2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)

  (3)出示留空的表格。

  先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。

  (4)看表上的不同点回答。

  为什么它们在计算时不相同?

  使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。

  (5)尝试练习。

  做教材第80页的做一做,然后点几名学生说一说是怎样做的。

  三、课堂实践

  做练习十六的第2题。

  四、课堂小结

  学生小结求两个数的最大公约数和的异同点。

  五、课堂作业 。做练习十六的3、4、5、6*题。

公倍数与最小公倍数教案11

  教学目标

  1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。

  2、理解分倍数和最小公倍数的含义。

  3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。

  教学重点

  教学难点理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。

  教学方法合作学习法、小组探究法、知识迁移法

  教学准备复习题

  教学过程:

  一、温故知新

  1、什么叫公因数?

  2、什么叫最大公因数?

  3、写出下列各组的最大公因数

  3和7 4和6 9和18 12和30

  引出新课

  二、师生共研

  1、公倍数和最小公倍数的认识。

  以4和6这组数为例,就在50以内数表中找一找。你发现了什么?

  (1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。

  (2)6的倍数:6、12、18、24、30、36、42、48。

  (3)两个都有的:12、24、36、48。

  引出课题:公倍数和最小公倍数

  2、怎样找出两个数的`最小公倍数介绍短除法

  (1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。

  (2)反馈时围饶着以下几个方面交流:

  短除式中除数是2的什么数?

  为什么在得出商2和3时不再往下除?

  4和6的最小公倍数是怎么计算的?

  (3)师生共同探究与交流。

  (4)试一试:你能找出12和16的公倍数和最小公倍数吗?

  让学生用自己喜欢的方式找一找,再用另一种验证。

  重点反馈短除法。

  3、探究特殊关系的两数怎样确定它们的最小公倍数。

  先让学生独立完成

  思考后交流自己的发现

  三、全课总结

  1、这节课我们交的新朋友是什么?你现在对它知道多少?

  2、怎样找两个数的最小公倍数?

  (1)先定关系

  (2)确定用什么方法找

  3、有什么问题或发现?

  四、布置作业:

  2、3、4、5

公倍数与最小公倍数教案12

  教学目标

  1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

  2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

  3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

  教学重难点

  重点难点:求两个数最小公倍数的方法。

  教学过程

  (一)、小组长汇报“前置小研究”完成情况怎样求3和2的最小公倍数?

  第一步:3的倍数有:()

  2的倍数有:()

  第二步:3和2的公倍数有:()

  第三步:3和2的最小公倍数是:()

  (二)、小组交流、探讨“前置小研究”

  1、要求小组内互相解决出现的错误,并能说说自己的方法;

  2、要求学生说说:

  (1)什么是公倍数和最小公倍数?

  (2)两个数的公倍数的个数是怎样的?

  (三)引课:今天我们就来探究最小公倍数(板书课题)

  出示书例1题一种墙砖长3 dm,宽2 dm。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?

  1.请仔细看看小明家装修的要求,你获得了哪些有价值的信息?

  ①要用这种长是3dm,宽是2dm的墙砖铺一个正方形。

  ②使用的墙砖必须都是整块的,不能切割开用半块的。

  ③问题是铺好的正方形的边长可以是多少分米,最小是多少分米?

  2.我们先来研究正方形的边长可以是多少分米。你有办法解决这个问题吗?

  3.学具:长是3dm,宽是2dm的长方形纸片

  动手来实践。

  (1).要求:

  ①用长方形纸片代替墙砖拼一个正方形。

  ②和你的同桌进行交流,说说你摆出的正方形边长是多少。

  (2).探究结果交流。

  ①我第一行摆了2个长方形,摆了这样的3行,拼成了一个边长是

  6dm的正方形。

  ②我第一行摆了4个长方形,摆了这样的6行,拼成了一个边长是

  12dm的正方形。

  你还能拼成不一样的大正方形吗?

  学生进行讨论:

  (3).如果我们有足够多的小长方形的话,还可以拼出边长是其他数的正方形吗?

  (4).用这样的小长方形可以拼出边长是18dm,24dm,30dm……的正方形吗?小组内讨论一下。

  (5).我们长2dm、宽3dm的长方形可以拼出多少个边长不一样的大正方形呢?说说理由。

  (6).用这样的长方形可以拼成边长是8dm的正方形吗?说说理由。

  ①不能,因为8是2的倍数,不是3的倍数,拼不成边长是8的正方形。

  ②实际动手操作。

  (7).在拼成的所有正方形里边长最小是几分米?你怎么知道的?

  (8).总结提升:通过解决这个问题你有哪些收获?

  ①求3和2的最小公倍数,还可以用用集合圈的方法表示

  ②全班交流并板书。

  3的倍数

  2的倍数

  可以铺出边长是6 dm,12 dm,18 dm,···的正方形,最小的正方形边长是6 dm。

  6,12,18,···是3和2公有的倍数,叫做它们的公倍数。其中,6是最小的公倍数,叫做它们的'最小公倍数。

  4、考考你:用新学的知识解决问题:完成P89做一做

  5、教学例2:怎样求6和8的最小公倍数?

  (1)学生独立完成,全班交流。

  (2)学生交流方法有(交流时课件演示)

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6的倍数:6,12,18,24,30,36,42,48,

  8的倍数:8,16,24,32,40,48,

  6和8公倍数:24,48,

  6和8的最小公倍数:24

  ②用图表示也很清楚。

  ③6的倍数中有哪些是8的倍数呢?

  你还有其他方法吗?和同学讨论一下。

  教师介绍:

  ①大数翻倍法:8,16,24,

  6和8的最小公倍数:24

  ②分解质因数法:8=2×2×2

  6=2×3

  8和6的最小公倍数= 2×2×2×3 = 24

  8和6的最小公倍数包括8和6的公有质因数和各自独有的质因数的乘积。

  6、通过观察,想一想:

  ①两个数的公倍数的个数是怎样的?

  ②两个数的公倍数和它们的最小公倍数之间有什么关系?

  5、考考你会求两个数的最小公倍数吗?

  完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现?

  3和6 2和8 5和6 4和9

  7、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  8、我能很快说出每组数的最小公倍数。

  8和9()24和8()30和5()4和12()36和4()48和6()17和13()14和15()23和24()

  (四)加强应用,巩固练习

  1.有一堆糖,4颗4颗地数,6颗6颗地数,都能刚好数完。这堆糖至少

  有多少颗?

  2.如果这些学生的总人数在40人以内,可能是多少人?

  3.李阿姨给月季和君子兰同时浇水,至少多少天以后要再给这两种花同时浇水?

  知识应用:练习

  布置作业:

  作业:第72页练习十七,第10题、第11题。

  (五)全课总结:通过这节课的学习,你有什么收获?

  板书设计

  最小公倍数

  公倍数:两个数公有的倍数

  最小公倍数:两个数公有的倍数中最小的那个数

  找“最小公倍数”的方法:

  1、一般情况:

  先写出一个数的倍数,再写出另一个数的倍数,从两个数的公倍数中找出两个数的最小公倍数

  2、特殊情况:

  ①当两数成倍数关系时,这两个数的最小公倍数就是较大的数;

  ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。

公倍数与最小公倍数教案13

  一、教学内容 :

  课本 P88~90 例 1、例 2。

  二、教学目标

  1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

  2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

  3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

  三、重点难点:

  求两个数最小公倍数的方法。

  四、教学设计

  (一)、小组长汇报“前置小研究”完成情况

  怎样求3和2的最小公倍数?

  第一步:3的倍数有:()

  2的倍数有:()

  第二步:3和2的公倍数有:( )

  第三步:3和2的最小公倍数是:()

  (二)、小组交流、探讨“前置小研究”

  1、 要求小组内互相解决出现的错误,并能说说自己的方法;

  2、要求学生说说:

  (1)什么是公倍数和最小公倍数?

  (2)两个数的公倍数的个数是怎样的?

  (三)引课:今天我们就来探究最小公倍数(板书课题)

  1、出示书P88例1题

  一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?

  (1)、学生进行讨论:

  (2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画

  (3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。

  (4)、还可以怎样表示求3和2的最小公倍数?

  ①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。

  可以铺出边长是 6 dm,12 dm,18 dm,··· 的正方形,最小的正方形边长是 6 dm。

  3的倍数 2的倍数

  6, 6 是最小的公倍数,叫做它们的最小公倍数。

  2、考考你:用新学的知识解决问题:完成P89做一做

  3、教学例2:怎样求 6 和 8 的最小公倍数?

  (1)学生独立完成,全班交流。

  (2)学生交流方法有(交流时课件演示)

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?

  8 的倍数:8,16,24,32,40,48,?

  6 和 8 公倍数:24,48,?

  6 和 8 的最小公倍数:24

  ②用图表示也很清楚。

  ③6 的倍数中有哪些是 8 的倍数呢?

  你还有其他方法吗?和同学讨论一下。

  教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:

  数的乘积。

  4、通过观察,想一想:①两个数的`公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?

  5、考考你会求两个数的最小公倍数吗?

  完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9

  6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  7、我能很快说出每组数的最小公倍数。

  8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )

  (四)巩固练习 :书P91第1题。

  (五)全课总结:通过这节课的学习,你有什么收获?

  板书设计 最小公倍数

  公倍数:两个数公有的倍数

  最小公倍数:两个数公有的倍数中最小的那个数 找“最小公倍数”的方法:

  个数的公倍数中找出两个数的最小公倍数

  2、特殊情况:

  ①当两数成倍数关系时,这两个数的最小公倍数就是较大的数; ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。

公倍数与最小公倍数教案14

  设计说明

  1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

  结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

  2.放手让学生自主探究,获取新知。

  著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 若干张长3 dm、宽2 dm的卡片

  教学过程

  ⊙创设情境,引入新课

  1.引导学生回忆。

  师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

  2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?

  设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

  ⊙小组合作,解决问题

  1.拼一拼。

  (1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

  (2)在印有格子的纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

  2.说发现。

  师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的'公倍数)

  3.解决问题。

  师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

  4.回顾解决“铺墙砖”问题的关键。

  把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

  ⊙学习公倍数的应用

  1.解决教材72页11题。

  爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

  2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

  预设

  生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

  (3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

  生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

  (4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

  生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

公倍数与最小公倍数教案15

  教学内容:教科书第30页,练习五第12~14题、思考题。

  教学目标:

  1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。

  2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。

  教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。

  教学难点:弄清公倍数和公因数联系与区别。

  教学过程:

  一、揭示课题

  今天我们继续完成一些公因数、公倍数的.有关练习。

  二、基础训练

  1.写出36和24的公因数,最大公因数是多少?

  2.写出100以内10和6的公倍数,最小公倍数是多少?

  学生独立完成,汇报交流。

  说说自己是用什么方法找到的?

  三、综合练习

  1.完成练习五第12题。

  谁能说说什么数是两个数的公倍数?两个数的公因数指什么?

  在书上完成连线后汇报方法。

  你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?

  2.完成第13题。

  独立完成。交流各自方法。

  3.完成第14题。

  独立完成。交流各自方法。

  求最大公因数和最小公倍数的方法有什么相同和不同?

  什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的最小公倍数?

  4.完成思考题。

  (1)小组讨论方法。

  (2)指导解法。

  把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。

  5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法

  四、课堂

  大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。

【公倍数与最小公倍数教案】相关文章:

最小公倍数教案01-20

《最小公倍数》教案03-03

最小公倍数教学反思11-17

最小公倍数教学设计01-12

《最小公倍数》教学设计04-05

公倍数和公因数教案12-19

公倍数的教学反思12-08

教案中班教案02-23

教案幼儿中班教案02-15