当前位置:9136范文网>教育范文>教案>五年级教案《解决问题》

五年级教案《解决问题》

时间:2024-06-14 22:46:04 教案 我要投稿

五年级教案《解决问题》

  作为一位优秀的人民教师,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?以下是小编精心整理的五年级教案《解决问题》,希望能够帮助到大家。

五年级教案《解决问题》

五年级教案《解决问题》1

  教学模式:

  先学后教 当堂检测

  关键词:

  有序地思考 不重复 不遗漏

  教学目标:

  1. 学生经历用列举的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。

  2. 学生在以自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3. 学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。

  难点重点:

  重点:能对所给信息,用“列举”法解决问题。

  难点:灵活运用列格、画图、连线等方法进行列举。

  教学准备:

  小棒、表格。

  教学步骤:

  一、游戏激趣,情境引入。

  1.游戏激趣。

  师:我这里有一叠扑克牌反扣在桌面上,请你从中找出数字最大的那张牌。

  【设计说明:让学生初步感受要想知道哪张牌的数字最大,只有翻出所有的牌,感受一一列举。】

  2.引入课题。

  师:在四年级的时候,我们曾经两次学习到解决问题的策略,(板书课题:解决问题的策略)策略是什么意思呢?(方法。)还记得学过的是哪两种策略?(画图法、列表法。)今天我在上学的路上看到一位王大叔打算用22根1米的木条长的木条围一个长方形花圃。可他遇到了一个问题,我们愿意帮帮他吗?

  二、组织探究,获取新知。

  1. 弄清题意,引发需求。

  ⑴出示例1及其情境图,引导学生自主观察、阅读。

  ⑵ 提问:从题目中你了解到哪些信息?(周长是22米,可以围成大小不同的长方形。围成的长方形的长和宽都是都是整数。)

  师:周长总是一定的,长和宽也是固定的吗?面积呢?怎样围面积最大呢?

  ⑶提出要求:如果用22根同样长的小棒表示这22根1米长的木条,你能先试着摆出一个符合要求的长方形吗?

  学生尝试操作后,组织交流,并把不同围法展示出来。

  ⑷启发:同学们通过动手操作找到了这么多围法,那么是否还会有其他围法呢?怎样围长方形的.面积才能最大呢?

  ⑸指出:要知道怎样围面积最大,就要把不同围法一一列举出来,计算面积后再进行比较。

  【设计说明:让学生用小棒先试着围一围,一方面可以使他们更加准确地理解题意,另一方面也能使他们明确认识到:按要求围出的长方形周长一定是22米,而长、宽以及面积则是不确定的。由此,学生就会产生“要知道怎样围面积最大,就要把各种不同围法一一列举出来”的心理需求。把学生在操作中的不同围法展示出来,既能进一步突出“围法是多样的”,又能把他们的思维从无序引向有序,从而初步体验有序列举对解决这一问题的必要性。】

  2.尝试列举,感受策略。

  ⑴出示如下

  长/米

  10

  宽/米

  1

  面积/平方米

  10

  ⑵提问:从表中看,你知道填表时是从长是几米的长方形开始想想的?为什么要从长是10米的长方形开始想起?(板书:有序的)

  提示:用22根1米长的木条会不会围成11米或21米以上的长方形?

  ⑶明确:因为围成的长方形的周长一定是22米,所以它的长与宽的和一定是22÷2=11(米)。由此可知,围成的长方形的长最长是10米。

  ⑷提出要求:你能把这张表接着填写完整吗?

  ⑸学生填表后,讨论:通过一一列举,你发现符合要求的围法一共有多少种?这个结果与黑板上展示出来的种数是否一样?你觉得用哪种方法求得的结果更加可靠?

  ⑹进一步讨论:根据列举的结果,你知道怎样围面积最大吗?

  ⑺指出:刚才,我们通过有条理地一一列举求出了答案,列举是解决这个问题的基本策略。(续写课题:——列举。)

  【设计说明:为了让学生更好地掌握的思考方法和具体操作过程,列表和画图等辅助手段的作用不可低估。另一方面,考虑到学生独立进行列举的思考时,不大可能想到列表,所以上述教学活动先让学生看表,再引导他们根据表中数据的获取过程照样子把表格填写完整,这样的安排有利于学生实实在在地经历过程、掌握方法。此外,在让学生填表格之前,赞引导他们思考“为什么要从长是10米的长方形想起”,则能使他们真正体会到选择合适的“序”进行思考,是保证列举活动展开的重要前提。】

  3.反思回顾,加深理解。

  ⑴提出要求:请大家回顾上面解决问题的过程,说说你有什么体会。在学生交流的过程中相机强调:列举能帮助无们解决一些问题,列举时要注意有条理地思考,对列举出兵结果要进行比较。

  ⑵进一步要求:在以前的学习中,我们曾经运用列举的策略解决过问题。

  让学生在小组内互相说说,并要求他们说清当时是怎样列举的。

  追问:用列举的策略解决这些问题有什么好处?运用列举策略时要注意什么?

  小结:列举可以帮助我们不重复、不遗漏地找出符合要求的所有答案,列举时要按照一晥的顺序进行思考。

  【设计说明:对解决问题过程的回顾,能使列举的策略意义得以凸显。也有利于学生初步掌握列举的思考方法。对以前应用列举策略解决问题的回顾,一方面使学生可以基于更多的应用案例进一步加深对策略应用过程和方法的认识;另一方面也能使他们感受到策略应用的广泛性,从而更好地体会策略的价值。】

  三、拓展应用,丰富体验。

  ⑴做“练一练”第1题

  ①学生读题后,启发:从题中告诉我们的条件中,你能知道什么?你打算用什么策略一来判断13:00、14:00、15:00、16:00这几个时刻中,哪些也会发出铃声?

  ②学生自主尝试解答后,组织交流反馈,重点让他们呈现解题过程,说说自己是怎样列举的。

  ⑵做“练一练”第2题

  ①学生讲师后,提问:你能看懂题中的表格吗:填表时首先选定的是哪种荤菜?列举完和各种素菜的搭配后,接着考虑的是哪种荤菜?你能把表格填写完整吗?

  ②学生各自填表解答后,交流反馈填表的情况,着重让他们说说是按照怎样的中顺序列举的。

  ③追问:如果先选定一种荤菜,你还能按顺序列举出各种不同搭配吗?

  【设计说明:通过解答与例题题材完全不同的实际问题,有助于学生在不同的问题情境中进一步体会策略的价值,巩固运用策略的方法,丰富运用策略的经验。】

  四、当堂检测

  1.做练习十七第1题。

  学生独立完成解答,集体订正。

  2. .做练习十七第2题。

  先适当帮助学生理解题意,再鼓励他们利用教材给出的表格寻找答案。

  2. .做练习十七第3题。

  先让学生说说付多少种不同的邮资?如果选3枚、4枚邮票呢?

  五、全课小结

五年级教案《解决问题》2

  设计说明

  1.联系生活实际,创设问题情境。

  《数学课程标准》中提出:“数学教学要紧密联系学生的生活实际,从学生的经验和已有的知识出发,创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境。”本教案精心设计了去秋游买车票的问题情境,不仅引起了学生对旧知识的回忆,同时也很自然地引出了估算。接着,又创设了帮妈妈解决问题的情境,使学生感受到学习估算是实际生活的需要,激起了学生学习的热情,调动了学生学习的积极性。整节课都是在紧密联系学生熟悉的生活情境的前提下进行教学的,学生置身在熟悉的问题情境之中,他们要解决问题的欲望油然而生,一个鲜活的课堂自然生成了,从而提高了学生学习估算的兴趣,使学生在乘法估算中感受数学的应用价值。

  2.注意培养学生多角度观察问题、解决问题的能力。

  本教学设计立足于让学生自主收集、理解数学信息,有意识地引导学生从不同的角度分析信息,寻找解决问题的`方法,激发学生的探索欲望。使学生逐步形成从多角度分析问题的习惯,逐步提高解决问题的能力。

  课前准备

  教师准备,PPT课件

  学生准备,带有表格的卡片、计算器

  教学过程

  ⊙复习旧知,引入新课

  1.秋季是旅游的好季节,学校准备组织大家去秋游,每套车票和门票49元,一共需要104套票。请同学们估算一下,大约需要多少钱?

  (学生估算,并汇报、交流自己的方法)

  2.揭题:刚才这道题是我们在四年级时学习过的内容

五年级教案《解决问题》3

  解决问题(1)第 课时 课型 新授

  学习目标 知识与技能:经历运用不同的估算方法来解决超市购物问题的过程,体会用估算解决购物问题的简便性

  过程与方法:学会解决乘加、乘减实际问题的方法,掌握乘加、乘减的运算顺序,并能准确地进行计算。

  情感态度与价值观:在解决有关小数的实际问题的过程中,体会小数乘法的应用价值。

  教学重点:会用估算解决实际问题,掌握乘加、乘减的运算顺序。

  教学难点:准确计算乘加、乘减

  教具运用:课件

  教学过程

  一、 情境导入

  1、 出示例8主题图

  妈妈带100元去超市购物。妈妈买了2袋大米,每袋30.6元。还买了0.8㎏肉,每千克26.5元。剩下的钱还够买一盒10元的鸡蛋吗?够买一盒20元的'吗?

  2、 引导学生读题,列表整理题中的数学信息

  单价 数量 总价

  大米 30.6 2

  肉 26.5 0.8

  鸡蛋 10 1

  20 1

  3、 理解题意,明确解题思路

  妈妈买了2袋大米和一块肉,还想买一盒鸡蛋。想要知道钱数够不够 ,只要把买到的所有商品的价格加在一起,与100进行比较就能知道结果,这样的题用估算的方法比较简便。

  二、分析与解答

  1、自主尝试解答

  学习要求

  (1) 请大家独立解答这个问题,在解答完之后想想还有其他的方法。

  (2) 想一想怎样才能把自己的解题方法给同学们讲清楚。

  学生独立完成

  2、 交流分析

  列举学生的解法,学生可能出现。

  ? 30.6×2=61.2(元)26.5×0.8=21.2(元) 61.2+21.2=82.4(元)

  100-82.4=17.6(元)因为10<17.6<20,所以够买一盒10无的鸡蛋,不够买一盒20元的鸡蛋。

  ? 1袋米不到31元,2袋一不到62元,肉不到27元,再买一盒10元的鸡蛋,总共不超过62+27+10=99(元),所以够买一盒10元的鸡蛋,不够买一盒20元的鸡蛋。

  师:第一种方法大家读懂了吗?

  生解释想法。

  师:第二种方法呢?

  学生阅读,并进行解读交流。

  小结:用“上舍入”的方法求得的和一定大于实际数。用“下舍入”的方法求得的和一定小于实际数。

  师:比较一下,你更喜欢哪种方法?

  学生汇报:我喜欢估算这种方法,因为它使计算更加的简单。

  3、用计算器验证估算结果的正误

  2袋大米的价钱 + 0.8kg肉的价钱 + 一盒鸡蛋的价钱

  30.6×2=61.2(元) 26.5×0.8=21.2(元)10元或20元

  三种商品的总价:

  (1)买10元的鸡蛋:61.2+21.2+10=92.4(元)

  (2)买20元的鸡蛋:61.2+21.2+20=102.4(元)

  因为

  ? 92.4<100,剩下的钱还够买一盒10元的鸡蛋。

  ? 102.4>100,剩下的钱不够买一盒20元的鸡蛋.

  所以估算的结果是正确的。

  三、回顾反思

  师:回顾这个解题过程,我们都做了什么?

  学生交流汇报的同时教师板书。

  第一步:理解整理(表格);

  第二步:分析解答;

  第三步:验证反思。

  师总结:大家总结得很好,我们就是按照这样的过程解题的,这的确是一种解决问题的好办法。

  四、巩固提升

  1、出示:有5种商品,它们的平均价格是9.86元,期中前4种商品的平均价格是5.37元,第5种商品的价格是多少钱?

  2、学生运用刚才的过程解题,然后交流想法

  分析:根据5种商品的平均价格是9.86元,可以求出5种商品的价格和。同理,根据前4种商品的价格和。用5种商品的价格和减去前4种商品的价格和便可求出第5种商品的价格。

  3、 汇报解答方法

  9.86×5-5.73×4

  =49.3-22.92

  =26.38(元)

  答:第5种商品的价格是26.38元。

  4、完成练习四,第2题。

五年级教案《解决问题》4

  第一课时

  教学内容:教科书第88~89页,例1、例2、练一练,练习十六第1~2题。

  教学目标:1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推向”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学过程:

  一、教学新课

  1、教学例1。

  (1)出示例1。如果把甲杯中的40毫升果汁倒入乙杯,这两杯果汁的数量分别会发生怎样的变化?进行操作演示。回顾操作过程,出示完整示意图。

  (2)解决实际问题。把甲杯中的40毫升果汁倒入乙杯后,两个杯子的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?知道了现在每个杯子中的果汁数量,可以怎样求原来两个杯子中的果汁数量?可以用怎样的方法来解决?小组讨论。

  (3)汇报方法。如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)。看来“再倒回去”是个好办法,用这个方法我们很容易就能想到原来两个杯子里各有多少毫升果汁。回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程把课本上的表格填写完整吗?边填边说每个数据各是怎样推算出来的。在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么优点?板书课题:解决问题的策略。

  2、教学例2。

  (1)理解题意,提出问题。用什么方法可以将题目的意思更清楚的表达出来?

  (2)解决问题。

  指出:可以按题意摘录条件进行。出示示意图。你能根据示意图说说题目的大意吗?你准备用什么策略来解决?你能仿照示意图的样四,表示出“倒过来推想”的过程吗?尝试画倒推的示意图。展示作业。根据示意图写出倒推后每一步的结果。你能列式解答吗?说说自己的想法。怎样才能知道我们推算出的结果是否正确呢?怎样验算?

  (3)归纳。

  解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  3、完成练一练。

  理解题意。尝试将题目中的条件,展示学生作业。你是怎样想的?你打算用什么样的策略角度解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种手法表示这样的意思吗?回列式解答吗?说说推想的过程。

  二、巩固练习

  1、完成练习十六第1题。

  你能通过列表的方法题目中的'信息吗?你会列式解答吗?说说你是怎么想的?

  2、完成第2题。

  你能画图题目中各个条件的示意图吗?学生根据示意图列式解答。交流汇报,说说是怎样想的?

  三、课堂

  这节课你学会了什么?你有哪些收获和体会?

  第二课时

  教学内容:教科书第90~91页,练习十六第3~8题。

  教学目标:1、通过练习,使学生进一步掌握用“倒过来推想”的策略解决问题的思路,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、引入上节课

  我们学习了什么内容?在解决问题时,可以应

  用什么策略?板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第3题。

  你能把题中的条件进行吗?可以运用什么策略解决呢?你能在图中标出其他几个景点和大门的位置吗?展示作业,说说自己的思路。

  2、完成第4题。学生独立完成。汇报交流方法,你是怎样解决的?应该怎样倒过来想呢?

  3、完成第5题。学生独立完成。汇报交流方法,说说你是怎么想的?怎样检验所填的数据是否正确?

  4、完成第6题。读题,理解题意。下午6时的气温是18℃,根据比中午下降了7℃,你能推算出中午12时的气温吗?你是怎样推算上午8时是多少℃的?

  5、完成第7题。理解每幅图中显示的相等关系:5个桃子的重量=2个梨子的重量3个梨子的重量=1个菠萝的重量1个菠萝重600克小组中交流思路。说说是怎样想的?

  6、完成第8题。你能根据题中的条件进行吗?根据的条件列式解答。应该怎样倒过来推想呢?

  三、课堂

  通过今天的练习,你有什么收获?在生活中,在解决很多实际问题时,都可以运用“倒过来推想”的策略解决。

  第三课时

  教学内容:教科书第92页,练习十六第9、10题、思考题。

  教学目标:1、使学生进一步掌握“倒过来推想”的策略解决实际问题,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、揭示课题板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第9题。

  理解对帐单每一栏的含义。4月份的结单余额和上月比,是多了还是少了?你是怎么知道的?怎样可以算出张阿姨信用卡3月份的结单余额是多少元?小组讨论方法。汇报交流想法。

  2、完成练习十六第10题。

  要知道这四张牌原来是怎么放的,可以运用什么样的策略?(逆推法)根据第四幅图,你能知道第三幅图中的牌是什么顺序吗?(10、9、7、8)原来的牌是什么顺序呢?(7、9、10、8)分组活动:拿出四张牌,任意交换两次位置,再翻开看结果,猜猜原来四张牌是怎样放的。小组活动。

  3、完成思考题。

  理解题意及关键词的意思。“遇店加1倍”,遇到店将加成壶中酒的2倍。你能根据题意画出示意图吗?原有?斗→加1倍→喝1斗→加1倍→喝1斗→加1倍→喝1斗(喝完)逆推为:0→1斗→0.5斗→1.5斗→0.75斗→1.75斗→1.75斗→0.875斗

  三、课堂

  你觉得“逆推法”对于解决生活中的实际问题有什么作用?

五年级教案《解决问题》5

  教材分析:

  1.课标中例1通过解答一个与长方形周长计算有关的实际问题,让学生初步感知一一列举的策略在解决问题过程中的作用。初步掌握运用一一列举的策略解决问题的基本思考过程和方法。在此之前学生已经学习过用列表和画图的策略决问题,对解决问题策略的价值已有了一些具体的体验和认识。通过这部分内容的学习,一面可以使学生进一步加深对现实问题增强分析问题贩条理性和严密性。

  2.本节结合场景图提出问题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?这场景图既有助于学生准确地理解题意,又有助于学生从数学的角度展开对问题的分析和思考。

  学情分析:

  1.让学生通过观察、分析、独立思考、动手摆小棒的操作、合作交流等方式进行学习,学生学得轻松愉快,而且学习效果好。

  2.解决本例题的问题关键有三个:第一,要认识到18根1米的栅栏的总长度就是围成的`长方形的周长;第二,用18根1米长的栅栏围成长方形,其围法应该是多样的;第三,要知道一共有多少种不同的围法,就需要把符合要求的长宽一一列举出来,这就是学生认知障碍点,在这方面学生学得有点困难,所以教材先引导学生用小棒摆一摆。

  3.通过摆小棒的操作,一方面可以使学生进一步明确围成的长方形的周长与它的长和宽的关系;另一方面也能使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举,再列表填一填。

  教学目标:

  1、 使学生经历用一一列举的策略解决简单实际问题的过程,能通过有条理的列举分析有关实际问题的数量关系,并获得问题的答案。

  2、 使学生在对解决简单实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3、 在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学重点和难点:

  重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。

  难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学环节:

  一、创设情境、探索策略

  1.预设学生行为

  提出不同的问题,活跃学生的思维。同学们能积极讨论融入到火热的课堂中。

  学生热情地投入各自的操作,组织展示、交流。

  学生回答不只,有很多种,使学生更进一步去探问题。

  学生很积极地说相信我们能。

  学生积极地参与活动中。

  学生回答:能!

  学生积极融入学习中。每个小组把活动中不同的围法有条理地画在黑板上。

  学生独立完成!积极回答老师提出的问题。

  积极,认真投入作业中去!

  2.设计意图

  激发学生的学习兴趣,调动学生的学习极性。培养学生独立思考的能力。

  积极地想展示自己的能力。体会成功的乐趣,培养学生的学习兴趣。

  培养学生勇于挑战的精神。

  培养学生的互相合作的精神。

  培养学生多动脑动手能力。

  能举一反三列举规律,解决生活中的实际问题。

  培养学生善于严准学习的习惯。使学生体会不重复,不遗漏的重要性。

  能独立完成作业,加深应用能力!

  二、动手操作验证策略

  1、出示例题及其场景图,指名读题。

  2、提问:你们能根据题意,用18根同样长的小棒先围成一个长方形吗?

  启发:用18根同样长的小棒是不是只能围成一种长方形呢?那有多少种呢?你们能不能有条理的操作把不同的围法都找出来吗?

  3、把学生分组活动,组织交流。

  谈话:同学们通过操作找到了这么多种不同的围法,真是了不起呀!但是否还会有其他的不同的围法呢?我们再作进一步的分析。

  三、联系实际,应用策略

  1、羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?

  2、从刚才解决问题的过程,能说说你们的体会吗?

  四、应用巩固

  你们能算出围成的每个长方形的面积,并比较它们的长、宽和面积吗?

  通过计算和比较你发现了什么?周长不变的前提下,面积有可能变化吗?什么情况下面积最大?什么情况下面积最小?

  五、课堂作业

  出示练一练和想想做做,让同学独立完成。做练习十一的第1~3题。

五年级教案《解决问题》6

  教学内容:

  教材第61页的例5、例6,及相应的“做一做”。

  教学目标:

  1、掌握用比例知识解答含有比例关系问题的步骤和方法。

  2、熟练地判断两种相关联的量是否成正、反比例,加深对正、反比例意义的理解。

  教学重点:

  能正确地运用比例知识解决问题。

  教学难点:

  正确判断比例数量之间的关系,并能根据正、反比例的意义列出方程。

  教学过程:

  一、复习导入

  1、判断下列每题中的两个量是不是成比例,成什么比例关系?

  (1)购买课本的单价一定,总价与数量。

  (2)差一定,减数与被减数。

  (3)总路程一定,速度与时间。

  (4)零件总数一定,生产的天数与每天生产的件数。

  2、如果用字母x和y表示两种相关联的量,用k表示定量,正比例和反比例关系可以用哪个式子来表示?(板书:正比例: =k(一定) 反比例:xy=k(一定))

  3、导入新课:今天我们就一起来研究用比例解决问题。

  二、自学互动,适时点拨

  【活动一】正比例的应用

  学习方式:小组合作、汇报交流

  学习任务

  1、出示例5主题图,阅读与理解。

  (1)阅读题目。

  (2)理解题意:已知条件是什么?所求的问题是什么?

  2、分析与解答。

  (1)提问:观察题目中的已知条件和所求的问题,大家认为这道题我们可以怎么进行思考呢?

  (2)小组交流

  ①要解决水费的问题,就要知道水价和用水量。

  ②水价虽然不知道,但它是一定的。

  ③可以先算出每吨水的价钱,再算出10吨水的`价钱;也可以用比例的方法解决。

  (3)用算术方法解答: 28÷8×10

  (4)交流用比例知识解决问题的方法。

  ①问题中有哪两种量?它们对应的数据分别是什么?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (5)学生独立解答,组织交流。

  解:设李奶奶家上个月的水费是x元。

  28/8=x/10

  8x=28×10

  8x=280

  x=280÷8

  x=35

  3、回顾与反思。

  (1)28:8和x:10分别表示什么?(水费单价)

  (2)如果列出的比例是8:28和10:x可以吗?为什么?(可以,因为8:28和10:x都表示1元可以用水多少吨,是一定的。)

  (3)你有什么方法检验自己的解答是正确的呢?

  4、即时练习:王大爷家上个月的水费是42元,上个月用了多少吨水?

  【活动二】反比例的应用

  学习方式:小组合作、汇报交流

  学习任务

  1、出示例6,阅读与理解。

  (1)题目中已知条件和所求的问题分别是什么?

  (2)题目中哪个量是一定的?(总用电量)

  2、分析与解答。

  (1)题目中的两种变化的量能组成什么比例?为什么?(因为“每天用电量×天数=总用电量”,所以每天用电量和天数成反比例关系。)

  (2)学生独立用比例知识解答,组织交流

  解:设原来5天的用电量现在可以用x天。

  25x=100×5

  25x=500

  x=500÷25

  x=20

  3、回顾与反思:解决这类问题的关键是什么?(找出哪两个量的乘积一定,只要两个量的乘积一定,就可以用比例关系解答。)

  4、即时练习:现在30天的用电量原来只够用多少天?

  三、达标测评

  1、课本第62页“做一做”第1、2题。

  先用比例知识解答,再说一说两道题数量关系有什么不同,是怎样列式解答的。

  四、课堂小结

  通过这节课的学习,你有什么收获?

五年级教案《解决问题》7

  一、课前游戏:

  文字游戏——说反话、做动作

  左、加法、乘法、上来、买进、给你、送出去、往南

  二、导入新课:

  1、快速抢答:

  课件出示:

  (1)我送给小红4张邮票,现在我有12张,我原来有( )张邮票。

  (2)一杯果汁再倒入40毫升后是200毫升,原来这杯果汁有( )毫升。

  (3)把甲杯里40毫升果汁倒给乙杯后,现在甲杯有100毫升,甲杯原来有( )毫升。

  同学们,你们为什么答得那么快呀?你能选一个说说你是怎么想的吗?你发现这几个题目有什么共同点吗?

  引导学生说出这几题都是已知现在,求原来。我们可以怎么想呢?相机板书:

  原来 倒过来 现在

  2、课件出示逆运算题:( ) ( ) (20)

  师:你能挑战一下这一题吗?

  学生试答,让他们说说自己是怎样想的?

  引出倒过来推算

  师:算出来的得数10对不对?我们有什么办法证明?

  生:顺着计算一遍。

  引导学生口头验算结果,然后回答第2小题。

  ( ) ( ) (54)

  3、小结。

  师:今天我们要学习的策略就是……?

  生答师板书:倒推

  三、教学例题:

  (一)、教学例

  1,学会基本的倒推思想。

  1、课件逐步出示例1情境图,生观察,并相机阅读条件和问题。

  师:你准备用什么策略来解决这个问题?(生自由汇报)

  师:你准备先从哪个条件入手解决这个问题?(生汇报)

  师:你准备怎么解决这个问题?(生自由汇报思考过程)

  2、画杯子图倒过来分析证明。(课件画图演示过程)

  3、填表分析。

  师:现在甲杯和乙杯各有多少毫升?你是怎么想的?原来甲杯和乙杯各有多少?你又是怎么想的?

  4、列式计算。

  师:你准备怎么列式计算?先算什么?再算什么?

  板书: 400÷2=200(毫升)

  甲杯 200+40=240(毫升)

  乙杯 400-240=160(毫升)

  师:为什么先算400除以2得到200,第二步为什么用200加40?算乙杯除了可以用400减去240,还可以怎样想?(板书:或200—40=160)

  5、学生检验。

  师:这个答案对不对,咱们想个办法证明一下。

  6、师:同桌说说解决这道题目的策略。(学生小组交流)

  7、出示练习十六第1题。(设计情境,收集上海世博会纪念卡)

  师:你准备怎样解决这个问题,用怎样的策略?

  学生根据题目中的条件信息,独立列式解答,教师巡视,注意后进生的答题情况,再汇报交流思考过程。

  师:第一步用60除以2算的是什么?根据什么条件这样算的?(生答)

  统计正确率,表扬与鼓励同步。

  师:有些题目在解答之前,我们可以先把重要的信息先整理出来。

  (二)、教学例2,学习如何收集、整理信息,再倒过来推想。

  1、课件播放例题2。

  读题,出示学习建议。

  学生同桌合作学习,教师巡视,挑选代表性作业实物投影交流。

  生汇报倒过来推想的策略,教师小结:

  课件倒过来逐个出示:

  探索简便思考过程

  师:我们也可以像上课开始做的那道逆运算题目一样,把题目简单化。

  课件出示:( ) ( ) (52)

  师:你会倒过来推算吗?(生口答)

  2、列式计算:

  师:先在小组里说说自己的想法,再列式解答。

  生答师板书方法一:52+30-24=58(张)

  师:还有什么思考方法可以找出答案?

  师:又收集的比送给小军的少6张,现在比原来就怎么样?

  生答师板书方法二:30-24+52=58(张)

  3、验算证明:

  师:根据求出的答案,再顺推过去,看看剩下的是不是52张?

  生口头检验。(58加收集的24张就有82张,送给小军30张减去30就还剩52张)

  4、小结:

  师:不管用哪种计算方法,咱们在解题之前的思考过程都用到了什么策略?

  生:倒过来推想的策略

  师:看来,倒过来推想的策略还真的很重要呢!

  (三)、教学练一练题型,理解“一半多一些”题目的思考策略。

  1、课件播放练一练题目。

  (1)学生自由读题,说说通过读题,哪些地方有疑惑?

  预设:学生会说出“一半多一张”不太明白,教师提示:你能用两个动作来解释一下这句话吗?提供一叠画片,操作演示,帮助学生分析理解。

  结合学生的理解,逐步出示题目的.变化信息,引导学生用简单的箭头图来表达。

  (2)师:根据摘录整理到的信息,你会倒过来推想吗?

  生汇报倒过来思考的过程,师相机课件出示。

  (3)师:根据这种倒过来推想的方法,你会列式计算吗?

  生独立列式解答,再汇报交流思考过程。

  (4)检验答案。

  四、巩固应用

  1、选一选:出示小刚买一个铅笔盒用去所带钱的一半,买一本笔记本又用去2元,这时还剩16元,小刚原来带了( )钱。(此题的安排目的主要是让学生能够巩固对“一半”题目类型的理解,并引导学生做选择题的方法还可以用答案代入法,其实也体现了学生的检验过程和与顺推思路的比较。)

  2、估一估、比一比:设计去苏州乘火车到上海参观世博会情境题,一种情况是家中8:20出发,到达苏州火车站约什么时刻?另一种情况是火车发车时间为8:20,从家到常熟客运站30分钟,再到苏州汽车站为1小时,从汽车站到火车站还需5分钟,为了不误车,最迟什么时候从家中出发?(让学生通过比较,进一步理解什么情况下适合用倒推策略来解决实际问题)

  五、总结谈话:

  今天你有什么收获?

  六、思维拓展:

  1、我来吟诗:古人用倒推作诗

  2、尝试做思考题“李白喝酒”。随音乐出示题目,教师先进行分析题意。

  借助箭头变化图帮助学生理解,让学生用今天所学的策略尝试解决。

  生课后讨论交流,然后汇报交流。夺取智慧星。

五年级教案《解决问题》8

  教材简析

  “解决问题———根据实际取商的近似值”是人教版数学五年级上册第三单元小数除法例10的教学内容。例题由玻璃瓶分装香油和红丝带包装礼盒两个问题组成,呈现“阅读与理解”“分析与解答”“回顾与反思”的结构思路,让学生经历“整理信息——分析关系——列式计算——检验反思”的全过程。由于两道题算出的结果都是小数,而需要准备的瓶子和包装的礼盒都必须是整数,因此都要取商的近似值。这样,“进一法”和“去尾法”的学习就渗透在解决分装香油和包装礼盒的问题中。在取近似值时,不能机械地使用“四舍五入法”,而是要根据具体情况确定是“舍”还是“入”。教材强调“在解决实际问题时,要根据实际情况取商的近似值”。

  学情分析

  五年级的学生经过四年的学习,已具有一定的观察分析、归纳总结、表达交流等这些能力,能从已有的知识和经验出发获取知识,抽象思维有了一定的发展。在学习本课之前,学生已掌握了小数除以整数,小数除以小数和用“四舍五入”法求近似值的相关知识。在此基础上学生再来学习本节课的内容,计算方面不会感到太困难。重点是引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似值。本节课注重培养学生根据实际情况灵活处理“商”,感受数学与生活的紧密联系。

  教学目标

  1.通过对不同生活情境的分析与思考,体会近似值的生活意义。

  2.在实际应用中,会灵活选择用“去尾法”和“进一法”取商的近似值,培养解决问题的能力。

  3.经历和探寻解决实际问题的过程,培养分析、比较、灵活解决问题的能力,并学会与他人合作交流。

  4.通过例题和习题的学习,感受数学与生活的紧密联系,体会数学的价值。

  教学重难点

  教学重点::体会用“进一法”和“去尾法”求商的合理性,并会根据实际情况运用“进一法”和“去尾法”求取商的近似值。

  教学难点:能根据实际情况运用“进一法”和“去尾法”求取商的近似值。

  教学过程

  一、复习引入,揭示课题。

  1.谈话引入:同学们,上节课我们我们学习了用计算器探寻规律。这节课我们来一起研究一下装香油和包装礼盒的事情。(课件出示装香油和包装礼盒的生活情境图。)(板书课题:解决问题)

  2.复习解决问题的三个步骤。师随生答板书:阅读与理解???分析与解答

  回顾与反思。

  【设计意图】利用生活中的事情直面问题,揭示数学来源于生活,又服务于生活。从而激发学生浓厚的学习兴趣。同时让学生回顾解决问题的三步骤,关注解决问题的过程和思路指导。

  二、互动新授,对比总结。

  (一)用“进一法”解决问题

  学习例题10的(1)(课件出示):

  1.生独立阅读理解,尝试解答,最后小组讨论交流。

  2.生汇报,师板书:2.5÷0.4=6.25(个)

  3.引导生思考:这题的结果是个小数,怎样取近似值?

  启发:6个瓶子能装下2.5千克的香油吗?

  预设:不可以,因为6个能装6×0.4=2.4(千克),还剩下0.1千克装不下,所以需要7个瓶子。

  4.追问:6.25用“四舍五入”法取近似数,不是≈6(个)吗?

  预设:瓶子都是一个一个的,不会出现0.25个瓶子。剩下的香油也要用一个瓶子来装,所以这题不能用“四舍五入”法。应该是在6个瓶子的基础上再加一个瓶子,≈7(个)。

  5.小结:虽然6.25的十分位的“2”比5小,但在这里仍然要向前一位进一。这种取近似数的方法称为“进一法”。(板书:进一法)

  6.你能举一个在生活中用“进一法”取近似值的例子吗?学生回答。(如:学校有650名学生去秋游,每辆客车限乘40人,需要几辆客车?)

  (二)用“去尾法”解决问题

  学习例题10的(2)(课件出示):

  1.生独立阅读理解,分析题意,尝试解答。

  随生汇报师板书:25÷1.5=16.666……(个)

  2.想一想:怎样取近似值?包装17个礼盒,这根丝带够吗?

  3.生讨论汇报。

  预设(1):25米是丝带包装了16个礼盒后,剩下的丝带不够包装一个礼盒。

  预设(2):?包装17个礼盒,即.5×17=25.5(米),25.5﹥25,丝带不够。

  4.引导小结:那只能取商的整数部分,小数点后的尾数应去掉。这种取近似值的方法你能给它取个名字吗?(板书:去尾法)

  5.说一说:生活中的哪些问题需要用到去尾法?

  【设计意图】例题的两道小题,数量关系和计算都比较简单,所以放手让学生自己经历整个解题过程,在汇报交流中着重捕捉生成,尤其是包装礼盒这一题,结果除不尽必然会引起学生的思考和质疑。经过分析说理,感受到取值的合理性,从而做出正确的`取值方法。

  (三)回顾与反思,整理除法中商的不同取值方法

  (课件出示)两个例题进行比较,看看有什么异同?

  1.相同点:

  (1)商都是小数,都要取近似值保留整数。

  (2)结合实际需要,小数部分都不需要考虑。

  2.不同点:

  (1)装香油时,剩下的香油仍然要装,所以要用“进一法”。

  (2)包装礼盒时,剩下的丝带不够包装一个礼盒,所以要用“去尾法”。

  3.归纳:解决实际问题时,“去尾法”、“进一法”、“四舍五入法”的选取,要根据实际情况来考虑,具体情况具体分析。如果求平均数或者计算题的近似值,就用“四舍五入”法。如果买东西或做成一个东西,只能舍去小数部分,买或做整个物品用“去尾法”。如果要装东西,比如用油桶装油,因为多的油都要用桶来装,所以即使余下的不多,也要多算一个用“进一法”。(板书:根据实际情况)

  【设计意图】通过比较,对前面的知识进行梳理,让学生既有认识上的提升,同时也有方法上的总结,根据实际取近似值,应如何“进一”如何“去尾”。相对于前面探索解决问题的过程,这里更侧重于总结解题策略,内化方法、选择方法,巩固拓展。

  1.如何取值合适。

  (1)需要(8.27)个桶才能装完。

  (2)做了(12.88)条裙子。

  2.判断。(说一说下面的题应该如何取值才合理。)

  (1)某公司有30.8吨的货物需要装运,每辆车最多可以装6吨,需要几辆汽车?

  (2)小明用彩纸折叠纸飞机,每5张纸折一架,34张纸可以折几架?

  (3)王奶奶家4个月用水45吨,平均每个月用水多少吨?(保留整数)

  (4)做一套衣服用布2.4米,28米长的布最多能做多少套衣服?

  (5)工人把1010个乒乓球装箱,每20个装一纸箱,需要多少个纸箱?

  【设计意图】创设生活中多种情境,引导学生根据实际问题思考,弄清楚用“进一法”和“去尾法”的具体情况。练习题从思考近似值的数据到思考取近似值的方法,层层递进,促使学生根据实际情况灵活运用“进一法”、“去尾法”或“四舍五入法”求近似值,正确解决问题。

  四、回顾总结,畅谈收获。

  这节课你有什么收获?

  五、分层作业,灵活应用。

  1.基础作业:书上完成第41页第7、8题。

  2.选做作业:结合生活实际,至少编两组“进一法”和“去尾法”的解决问题题目。

  教学过程:

  一、情景导入。

  (一)创设小强生日会的情景。

  1、老师:同学们,今天是几月几日?

  2、老师:今天,老师非常高兴,因为今天刚好是小强的生日,他邀请了我们全班一起去参加他的生日会。大家想去吗?

  3、(播放课件)进门后:瞧,小强好像有点烦恼,那我们去问一下他。小强说:“我的生日会六点开始,我的爸爸四点半才下班。他的公司离家有60千米。他下班开车回家,车每小时行驶50千米。我担心他不能准时赶到。”

  4、老师:你知道小强有什么烦恼吗?能帮助他解决吗?

  5、出示题目:爸爸的公司离家有60千米。他下班开车回家,车每小时行驶50千米。爸爸回家大约要多少小时?(保留整数)

  学生列式解答:

  60÷50=1.2(小时)≈1(小时)

  6、提问:小强的生日会在六点开始,他的爸爸四点半才下班,能准时赶到吗?(从爸爸下班到生日会开始要1.5小时,现在爸爸从公司回到家大约要1小时,所以爸爸可以准时到达。)

  7、老师:刚才,我们是根据用方法来求出商的近似值?(四舍五入法)

  8、导入:其实在日常生活中,我们经常会遇到利用商的近似值来解决问题。是不是所有商的近似值都用四舍五入法求出来呢?那我们到今天的解决问题中去寻找答案。板书课题:解决问题

  二、探究新知。

  1、教授教科书第33页的例题12的第(1)小题。

  (1)播放课件:(走进厨房)

  瞧,小强的妈妈王阿姨好像有什么困难,那我们也去问一下她。小强的妈妈说“今天为了给小强庆祝生日,特意买来了许多菜及一些调味料,准备做一顿美食大餐。但是,买来的香油太大瓶,不方便煮食,想把香油装入小玻璃瓶里。但是不知道需要准备多少个玻璃瓶装?”

  老师:能帮助她解决吗?

  (2)出示题目:小强妈妈要将2.5千克的香油分装在一些玻璃瓶里,每瓶最多可盛0.4千克,需要准备几个瓶?(先让学生自己独立审题,分析题目再列式解答。)

  2.5÷0.4=6.25(个)

  答:需要准备6.25个瓶。

  (3)提问:

  ①瓶子应该是一个一个的,能用小数表示吗?

  ②应该用什么数来表示?

  ③有什么方法可以保留整数?

  提问:如果用“四舍五入”法保留整数,应该是多少个瓶子?

  学生在练习本上做题,然后汇报。

  (6.25≈6要用6个瓶子。)

  (4)提问:根据实际情况,用6个瓶子能将2.5千克的香油全部装入瓶子吗?

  同桌讨论:随机点拔汇报。

  (因为6个瓶子只能装2.4千克香油,还有0.1千克香油,需要多一个瓶子装,所以要准备7个瓶子才能装完。)

  (5)老师:像这样的题目,我们要根据实际情况,采用“进一法”来求出商的近似值。方法就是在保留整数时,无论十分位上的数是多少,一律往整数部分进一。

  (板书:进一法)

  (6)示范教学:2.5÷0.4=6.25(个)≈7(个)

  答:需要准备7个瓶。

  2、教授教科书第33页例题12的第(2)小题。

  (1)播放课件:(客厅)

  小强妈妈说:“为了答谢大家刚才的帮助,我特意准备了一些小礼物送给大家。这些礼物我打算在生日会玩游戏的时候送给大家。为了增加神秘感,我想把礼物包装一下。准备了一些礼盒和红丝带,但我不知道这些红丝带可以包装几个礼盒?”

  (2)出示题目:王阿姨用一根25米长的红丝带包装礼盒,每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

  (3)学生独立审题,分析题目,列式解答。

  25÷1.5=16.66···(个)

  (4)提问:①礼盒数能够用小数来表示吗?

  ②如果用整数表示,根据“四舍五入法”或“进一法”保留整数,那么这些红丝带可以包装几个礼盒?

  (5)想一想:包装17个礼盒,丝带够吗?为什么?

  四人小组讨论,再向全班汇报:

  (因为1.5×16=24(米)包装16个礼盒24米剩下的1米丝带不够包一个礼盒,所以我认为只能包装16个礼盒。)

  (6)提问:你们认为能包装多少个礼盒?

  (7)老师:像这样的题目,我们要根据实际情况,采用“去尾法”来求出商的近似值。方法是在保留整数时,无论十分位数上的数是多少,一律去掉。

  (板书:去尾法)

  (8)示范教学:

  25÷1.5=16.66···(个)≈16(个)

  答:这些红丝带可以包装16个。

  3、看书质疑。

  请大家打开教科书的33页,先把例12上面的内容补充完整,再想一想,有什么不明白的地方就提出来。

  4、学生说说自己的学习心得。

  什么情况下采用哪种方法来求出商的近似值?举例说明一下。教师及时评点,概括归纳。

  5、小结:在解决实际问题时候,我们要根据实际情况可以用“进一法”、“去尾法”或者“四舍五入法”

  求出商的近似值。

  三、巩固练习。

  1、小强的爸爸回来了。小强的爸爸说:“非常感谢大家来参加小强的生日会,为了感激大家,我准备了一些小礼物要送给大家,想拿礼物请帮我一个小忙。平时,我忙于工作,很少有时间看小强的作业,现在就来考考大家的眼力,能否帮小强找出错误,并教他如何改正。

  ①学校食堂准备买进10千克菜油,并用每只能装4千克的油桶来装,需要几只桶去买油?

  10÷4=2.5(只)≈2(只)去尾法

  ②张华带了11元钱去买钢笔,每支钢笔2.5元,他最多可以买几支?

  11÷2.5=4.4(支)≈5(支)进一法

  ③美心蛋糕房特制一种生日蛋糕,每个需要0.32千克面粉。李师傅领了4千克面粉做蛋糕,他最多可以做几个生日蛋糕?

  4÷0.32=12.5(个)≈12(个)去尾法

  ④赵老师家4个月用水45吨,平均每月用水多少吨?(保留整数)

  45÷4=11.25(吨)≈12(吨)

  进一法

  2、说说以下各题用什么方法取商的近似值合适.

  (1)做一个奶油蛋糕要用8克奶油。60克奶油最多可以做多少个这样的蛋糕?

  (2)幼儿园买60个奶油蛋糕,每8个装一盒,至少要用多少个盒子?

  (3)每套衣服用布3米,29米布可以做多少套这样的衣服?

  (4)一列火车从南京到上海运行305千米,用了3.6小时,平均每小时约行多少千米?

  3、解决问题

  (1)、张老师带100元去为学校图书室买新词典,每本汉语词典18.5元,他可以买几本词典?

  (2)、仓库有18.6吨水泥,用载重2.5吨的卡车运到工地,需要多少辆卡车才能运完?

  (3)、一根木料长10.5米,先截取相等长度的5小段,共8.5米.剩下的要截成0.8米长的小段,最多还能截出几段这样长的木料?

  四、全课总结。

  1、同学们,今天你们觉得学得开心吗?同样,老师也觉得非常高兴,原因是同学们都乐于帮助别人。在这节课里,你们帮助了小强一家人解决了许多困难。希望在以后的生活当中,同学们继续发扬“助人为乐”精神。给点掌声表扬一下自己。

  2、今天的课快要结束了,看来大家的收获真不少。现在就请大家来谈一谈,你在这节课有那些收获?评价一下自己或者其他同学的表现,说说自己的体会、感受和想法!

五年级教案《解决问题》9

  教学目标:

  1、结合具体情境用分步算式和综合算式解决含有两步计算实际问题的过程,学会检验解答的正确性。

  2、初步培养在实际生活中分析问题和解决问题的能力。

  教学重点:

  1、掌握含有两步计算的实际问题的方法。

  2、用综合算式解决问题。

  教学过程:

  一、 复习

  读题、分析、列式。

  1、小兔采了20个蘑菇,送给小猴8个,小兔又采了10个蘑菇,小兔现在有多少个蘑菇?

  2、小明剪了37颗星星,小红剪了45颗星,他们送给幼儿园50颗星,现在还剩多少颗星?

  二、新课

  出示例4

  问:指名学生看图说题意。

  问:你知道了什么?怎样解答?

  (3) 没烤的面包有多少个?90-36=54(个)

  (4) 还要烤几次?54÷9=6(次)

  问:你会列综合算式吗?

  (90-36)÷9=6(次)

  问:解答正确吗?指名学生检验是否正确。

  归纳:如果一个问题需要多个步骤才能解决,要想好先解答什么,解答什么

  二、做一做

  1、让学生说一说题意,再说说怎样解答,让学生独立解答,订正时说说你是怎样解答的`,分步是怎样解答,综合算式是怎样解答的。

  2、了8行树苗,每行7棵,其中女生栽了28棵,男生栽了多少棵?

  3、动物园有10只黑鸽子,22只白鸽子,每个笼子里住4只,一共需要多少个笼子?

  独立完成,订正时说一说解题过程。

  板书设计:

  解决问题

  (1) 没烤的面包有多少个?90-36=54(个)

  (2) 还要烤几次?54÷9=6(次)

  综合算式:(90-36)÷9=6(次)

五年级教案《解决问题》10

  教学目标:

  1、进一步感受要根据实际需要求取商的近似值。

  2、进一步培养学生的应用意识。

  教学过程:

  一、基础训练

  完成P35第8题

  学生独立完成后交流分析过程,并讨论结果的处理?(为什么这样处理?)

  二、巩固练习,判断这几题如何处理结果?

  1、有110米的.布,做儿童套装,每套用布2.3米,能做多少套?

  2、有110吨的煤,用载重2.3吨的小车运,需运多少车?

  3、P345如何处理结果?组织学生讨论,鼓励他们说出理由,在交流中,自己发现不足校正。

  4、P359(先说出解题思路,再解答)同上

  5、P3510学生独立解答,全班交流不同方法

  6、,请学生说说感受。

  三、拓展练习

  教师可请学生编题,交换练习本解答。

  课后小记:v

五年级教案《解决问题》11

  教学内容

  教科书第104页例1。

  教学目标

  1.能在具体的情境中找出等量关系。

  2.初步掌握列方程解决问题的基本方法。

  3.会根据等量关系列出方程解决比较简单的实际问题。

  4.体验方程在解决实际问题中的作用。

  教学重点

  列方程解决问题的基本方法。

  教学难点

  找出情境中的等量关系。

  教学过程

  一、复习导入

  课件出示教科书第104页的主题图。

  师:刘叔叔去加油站加汽油,工作人员给他加了一些后,可刘叔叔说还不够,你能根据他们的对话求出工作人员第二次加了多少升汽油吗?

  生:能!

  师:请在本子上试一试。

  指名回答,根据学生的回答板书:

  50-28=22(升)。

  师:有和他不一样的方法吗?

  师:今天我们就要研究这类问题的另一种解决方法:列方程解决问题。

  (板书:列方程解决问题)

  二、走进新课

  1.图示信息,寻找等量关系

  师:从刘叔叔和工作人员的对话中可以知道:加了几次油?一共加了多少升?

  生:加了两次,一共加了50L油。

  师:请同学们用线段图表示出图上的数学信息。学生独立画线段图。

  师:谁来展示?

  指名在黑板上画出线段图:

  师:从图上你能发现哪些等量关系?

  学生自由讨论,教师巡视指导。

  指名汇报,教师板书:

  第1次加的油量+第2次加的`油量=总的加油量

  总的加油量-第2次加的油量=第1次加的油量

  总的加油量-第1次加的油量=第2次加的油量

  2.列出方程,解决问题

  师:同学们真能干!找到了3个等量关系。能根据第一个等量关系列出方程吗?试一试,写完

后和同桌说说你的想法。学生独立完成,教师巡视。根据巡视到的情况有针对性地指名板演。

  生1:28+x=50。

  生2:28+a=50。

  生3:28+b=50。

  师:这些方程都是根据同一个等量关系列出,它们有什么不同的地方?

  生:表示第2次加油量的字母不同。

  师:你们观察得真仔细!第二次加的油量没有告诉我们,可以用不同的字母来表示。因此我们在列方程前必须要先告诉别人你是用哪一个字母来表示这个未知数。格式可以这样写:(教师边讲解边板书)

  解:设第二次加了xL。

  列方程:28+x=50

  x=22

  答:第2次加了22L。

  师:这道题做正确了吗?我们来验算一下:

  28+22=50。

  师:通过验算,我们发现第一次加的28L油加上第二次加的22L油和总的加油量50L相等,符合题意,说明我们的计算正确,可以写上答语了。

  板书:

  答:第2次加了22L。

  师:用方程解决问题,也要验算答案对不对。验算时,应先检查方程是否符合题意,然后再检查"方程的解"是不是正确。

  3.讨论交流,步骤

  师:刚才我们列方程解决了一个数学问题。想一想,用方程解决问题的方法是什么?

  先独立思考,再在小组内交流。

  分组汇报,根据学生的汇报板书:列方程解决问题的一般步骤:

  (1)弄清题意。

  (2)寻找等量关系。

  (3)设未知数。

  (4)列方程。

  (5)解方程。

  (6)检验并写答语。

  三、尝试解决问题

  师:同学们,祝贺你们!你们通过自己的努力,又学到了一种解决问题的方法,想试一试吗?现在请同学们按照列方程解决问题的一般步骤列出不同的方程解决"第二次加了多少升汽油"这个问题。

  学生试做后,指名汇报,板书:

  解:设第二次加了xL。

  列方程:50-x=28

  x=22

  答:第2次加了22L油。

  解:设第二次加了xL。

  列方程:50-28=x

  x=22

  答:第2次加了22升油。

  让不同列法的学生说说自己是根据哪个等量关系列出的方程。

  师:我们列出不同的方程解决了"第二次加了多少升汽油"这个问题,请同学们比较一下这三个方程,你发现了什么?

  生:第一个方程好一些,因为这个方程的等量关系更容易找。

  生:第三个可以不用方程计算,直接用50-28就算出了第二次加的油量。

  师:同学们说得不错!第三个方程的未知数没有参与计算,所以我们一般不列这样的方程解决问题。

  四、全课

  今天,我们一起学习了解决问题的另一种方法,大家一起来说说,这节课你有什么收获?

五年级教案《解决问题》12

  教学内容:教科书第63~64页的例1、例2和随后的“练一练”,练习十一的第1~3题。

  教学目标:

  1、使学生经历用列举策略解决简单实际问题的过程,能通过不重复、不遗漏的列举找到符合要求的答案。

  2、使学生对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学习数学的信心。

  教学过程:

  一、导入:

  1、导入语:今天老师要带大家去参观生态园(出示图片),看,多漂亮啊!

  二、教学例1,感知一一列举

  1、出示例1

  园长叔叔想找我们同学帮一个忙,你们愿意吗?

  (出示图片)用18根1米长的栅栏围成一个长方形羊圈。

  师:你想可以怎样围?

  要求:独立思考,已经想好的可以和同桌轻声交流(教师参与讨论)

  还有这么多举手的同学,说明同学们还有不同的围法,那么这个长方形羊圈有多少种不同的围法呢?这就是我们今天要解决的问题(板书:解决问题)

  2、布置任务,小组合作

  提问:请你仔细想你想,把所有不同的围法都找出来,并且纪录在表格内,如果有困难,可以用18跟小棒摆一摆,填好后在小组中交流。

  长方形的长/米

  长方形的宽/米

  全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的写法)

  比较:有序和无序的两种,你更喜欢哪一种?为什么?

  3、 揭示课题

  师:同学们,通过大家的努力,我们解决了园长叔叔的难题,回顾一下,我们怎样找出4中不同围法的呢?(表格—一个一个写下来)

  指出:在我们解决一些实际问题的.时候,可以像刚才这样把事情发生的可能按照一定的顺序,有条理的一个一个列举出来,从而找到问题的答案,这就是我们今天研究的解决问题的一个重要策略——一一列举。(板书:策略、一一列举)

  4、 园长叔叔的羊圈问题我们已经找到了4种不同的围法,你能算一算各种围法的面积吗?

  ① 指名口答

  ② 比较一下它们的长、宽、和面积,你有什么发现?

  指出:周长相等的长方形,面积不一定相等

  周长一定时,长与宽的数值越接近,面积就越大。

  师:如果你是园长,你会采用哪种围法?

  三、教学例2

  1、出示例2

  图书角有3本书,最少借1本,最多借3本。一共有多少种不同的借阅方法?

  ① 你是怎么理解最少借1本,最多借3本的?

  ② 引导学生说出可以借1本 (师板书)

  借2本

  借3本

  ③ 师:一共有多少种不同的借法呢?你准备怎样找出不同的借法?(列表,一个一个写下来,一一列举)

  2、布置任务,小组交流

  用你喜欢的表示方法有序地分析一共有多少种不同的借法。

  先独立思考,把你的想法或者表格写在自备本上,再在小组里交流(请各个组长组织安排好交流的顺序)

  全班交流

  (把不同的表示方法分别展示在实物投影上,并说说你是怎样想的)

  提问:如果只订阅1本,有几种不同的方法?具体说一说。

  如果订阅2本,有几种不同的方法?你是怎样想的?

  如果订阅3本呢?

  那么一共有多少种不同的方法?(分别板书)

  2、那么为了不遗漏、不重复,解决这个问题我们也可以利用这样的表格一一列举。

  ① 出示表格

  ① 出示表格

  只订1本 订2本 订本

  《科学世界》

  《七彩文学》

  《数学乐园》

  ② 指导生用划√的方法表示订阅的种类

  先指导只订1本的

  再指导订2本的(让生自己先分析怎么划√,再让生形成共识,划两个√代表一种订法)

  最后指导订3本的

  ③ 看表格找出共有几种不同的订法(竖行数出)

  4、:刚才用了一一列举的策略解决了这个问题,想一想要想得到全部答案,列举时要注意什么?(既不重复,也不遗漏)

  四、巩固新知

  生活中有很多类似的问题,我们也能够用一一列举来解决。

  1、P64练一练:

  一张靶纸共3环,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?(列举出所有可能的答案)

  你打算用什么策略解决这个问题?你会列举吗?

  试一试(注意有序性)

  2、练习十一第一题:

  课件显示问题:

  先分析题意(红色标出部分表示什么)

  生完成表格(完成在书上P66)

  用你喜欢的方法,标记出几时几分第二次同时发车。(并和同桌轻声交流)

五年级教案《解决问题》13

  设计说明

  这部分内容是在学生学习了简易方程的基础上,复习解方程的过程及用方程解决实际问题。

  1.关注学生的整体发展。

  本节课结合复习题,引导学生对方程的知识进行整理和复习,深化了学生对列方程解应用题这类题型的理解,促进了学生原有认知结构的优化。不仅实现了知识的巩固,还培养了学生的应用意识和解决实际问题的能力。

  2.注重知识间的内在联系。

  加强知识间的内在联系,帮助学生构建合理的知识体系,进一步明确用方程解决问题的解题思路,掌握寻找题中等量关系的方法。培养学生用方程解决问题的能力,并能由基本题型拓展开,解决类似的问题,培养学生灵活运用知识的能力。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙导入,全面回顾

  1.同学们,我们已经学过了用方程解决问题这部分知识,这节课我们就对这一部分知识进行整理和复习。

  2.课件出示学习要求。

  (1)关于用方程解决问题,你学习了哪些内容?

  (2)你认为哪些内容比较难,容易出错?

  (3)你还有什么问题?

  3.小组进行汇报,全班交流,互相评价。

  4.回顾用方程解决问题的关键和步骤。

  (1)说一说,用方程解决问题的关键是什么?

  (用方程解决问题的`关键是找到等量关系式)

  (2)说一说,用方程解决问题的步骤是什么?

  ①理解题意,找到等量关系式。

  ②找出题中的未知量,设为x,根据等量关系式列出方程。

  ③解方程。

  ④检验。

  ⑤写答语。

  设计意图:通过谈话质疑,引入复习内容,通过学习纲要,明确学习目标。

  ⊙复习,分项整理

  1.复习“和倍”“和差”类型题的解法。

  (1)课件出示相关练习题,组织学生独立解答后,交流解题过程。

  小明和妈妈一起集邮,妈妈的邮票数是小明的6倍,妈妈比小明多100张邮票,妈妈和小明各有多少张邮票?

  学生独立解答后汇报解题步骤。

  ①画线段图理解题意。

  ②找出题中的等量关系式。

  妈妈的邮票数-小明的邮票数=100

  小明的邮票数+100=妈妈的邮票数

  妈妈的邮票数-100=小明的邮票数

  ③列式解答。

  解:设小明有x张邮票,则妈妈有6x张邮票。

  6x-x=100

  5x=100

  x=100÷5

  x=20

  6x=20×6=120

  答:小明有20张邮票,妈妈有120张邮票。

  (2)引导学生小结:在列方程的过程中,有两个未知数时,需要确定一个未知数为x,再根据两个未知数之间的关系,用含有x的式子表示另一个未知数,再根据题中的等量关系式列出方程。

  3.复习“相遇问题”中的方程的解题方法。

  课件出示复习题:甲、乙两车同时从A、B两地相向而行,已知甲车每时行驶75千米,乙车每时行驶85千米。已知A、B两地相距960千米,求甲、乙两车几时后相遇。

  (1)引导学生找出题中的已知条件和所求问题。

  (2)找出题中的等量关系式。

  ①甲车行驶的路程+乙车行驶的路程=A、B两地的总路程

  ②(甲车和乙车的速度和×相遇时间)=A、B两地的总路程

  ③A、B两地的总路程÷甲、乙两车的速度和=相遇时间

五年级教案《解决问题》14

  教学目标

  1.通过创设问题情景,使学生在解决简单的实际问题的过程中,学会用“倒过来推想”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。

  2.通过动手实践、自主探索、合作交流等学习活动,使学生在不断反思的过程中,进一步发展分析、综合和简单推理的能力。

  3.通过对实际问题的探索,使学生进一步积累解决问题的经验,感受“倒过来推想”的策略对于解决特定问题的价值,获得解决问题的成功体验。

  重点难点

  重点是:体会适合用“倒过来推想”的策略来解决的问题的特点,学会用“倒过来推想”的策略解决问题的思考方法,能正确合理地运用倒推法进行问题解决实际生活问题。

  难点是:根据具体的问题确定合理的解题步骤,从而有效地解决问题。

  教学准备

  实验用具(水杯),作业本,多媒体课件

  教 学过程

  教学环节

  过程目标

  教 师活动

  学 生活动

  教 学反思

  创设

  情境

  体会

  倒过

  来想

  通过创设情境使学生从简单的事情中理解倒过来思路.

  1.创设学生春游乘车情境

  出示从苏州去南京沿途经的城市,提问回苏州时沿途依次经过哪些城市

  明确日常生活中常常应用到“倒过来想”的'策略。

  师生交流

  观察

  独立思考

  自主

  探索

  学会

  新策

  略

  借助学生感兴趣的实验操作和熟悉的收作业本情境来代替教材例2,使学生在亲历过的问题中受到启发,自主探索用画直观图的方法、引导学生有序思考,用“倒过来推想”的策略解决问题,在解决问题过程中体会适用新策略解决的问题特点。

  一.初步理解“倒过来推想”的方法

  1、出示两只盛有不等果汁的杯子,信息:两杯共装果汁400毫升,提出问题:怎样才能使两只杯中的果汁同样多?

  2、配合演示从甲杯倒入乙杯40毫升使两杯同样多。然后组织学生猜一猜原来两杯果汁各有多少毫升?

  3、引导学生有序思考:倒水前后两只杯子里果汁的总量有没有变化?

  4、组织学生说说解决这个问题的主要策略是怎么样的?从而揭示“倒过来推想”的策略。

  5、板书课题。

  二.体会适用新策略解决的问题特点

  1、创设学生交作业情境,出示一叠作业本,有关信息:如果又新收到12本,发下去25本,剩下总数是20本。

  2、呈现箭头图,帮助学生理顺数量变化方向。

  3、提问:你准备用什么策略来解决这个问题?呈现学生的列式计算方法。

  4、联系倒推的两步过程启发学生思考总体变化来思考。

  5、引导学生检验,用顺推的方法看剩下的是否为20本,使学生体会到用“倒过来推想”的策略解决问题是一种有效的方法和策略。

  观察思考

  学生交流

  说说自己的想法。

  尝试用画直观图和填表格的方法来更清楚展示数量关系的变化情况

  推理解答,说说倒推计算思路

  估测一下本数

  尝试用自己方法信息,并展示出来。

  说说“倒过来推想”策略

  思考“发下去25本”倒过来想要怎样?“新收到12本”倒过来想要怎样?

  列式

  顺推检验

  生活中有许多可以应用倒过去推想思路的实际问题,要引导学生从实际情况中去理解倒过去推想的思路.

  实践

  应用

  体会

  价值

  通过对实际问题的探索,使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。帮助学生进一步掌握本课知识,形成技能,并调动他们的学习乐趣

  1、组织完成练习十六的第1题

  组织学生和同桌交流自己的表达方式和思路

  投影学生作业过程,请学生介绍自己的方法。

  2、组织完成练习十六的第2题

  组织学生组内交流自己的表达方式和思路

  投影学生作业

  3、组织完成独立完成练一练。

  提问学生思考怎么理解小军拿出画片的一半还多一张送给小明?如果你是小军你会怎么做?

  出示10支粉笔,提问拿出粉笔的一半还多一支可以怎么拿?以此帮助学生理解关键句含义,明确可以分成两步理解

  独立完成

  仿照例1用列表方法

  独立完成

  仿照例2用箭头表达数量变化方向

  介绍自己的方法。

  理解先拿出一半,然后再拿一支。

五年级教案《解决问题》15

  教学内容:

  P33解决问题

  教学目标:

  1、通过组织学生讨论,充分让学生感受到在解决实际问题时,要根据实际情况取商的近似值。

  2、培养学生灵活应用的意识。

  教学过程:

  一、引入新课。

  谈话引入:生活中处处蕴含着数学问题。你能帮助小强的妈妈,王阿姨,解决她们遇到的问题吗?

  (教师可根据实际情况,将例题创设为实际情景)。

  二、组织学生辩论,以辩明理。

  1、出示例12

  ①学生独立思考,解答,(展示可能出现的.三种答案,6.25个、6个、7个)。

  ②组织学生进行辩论,鼓励学生说出自己的看法及理由,大胆地与同学进行交流。

  同学们 充分 发表意见,明确瓶数取整数,6.25按四舍五入法应舍去25,但实际装油时,6个瓶子不够装,因此瓶数应比计算结果多1个。

  2、再来看看王阿姨遇到的问题,如何解决?

  ①先独立思考。

  ②全班交流答案,组织学生讨论,强调以理服人,使学生明确,盒数取整数,16.66…计算结果按四舍五入法本应进1,但实际包装时,丝带不够包装第17个,因此个数应比计算结果少1。

  3、生谈感受。

  师小结:看来,四舍五入取近似值只适用于一般情况,在解决问题时,有时要根据实际情况取商的近似值,有时要多一点,有时要少一点。

  4、生质疑

  三、运用新知,解决问题。

  1、P33“做一做”

  如何处理的结果?为什么这样处理?

  2、P35 6、7 生独立解答,全班交流。

【五年级教案《解决问题》】相关文章:

《 解决问题》教案03-03

解决问题的策略教案05-26

解决问题数学教案04-04

小学数学解决问题的教案05-15

五年级数学教案《解决问题的策略》04-11

解决问题的练习数学教案04-12

《解决问题的策略》数学教案04-13

苏教版五年级上册《解决问题的策略2》数学教案06-04

【精选】解决问题数学教案15篇04-12