《比的基本性质》教案
作为一位杰出的教职工,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?以下是小编整理的《比的基本性质》教案,希望能够帮助到大家。
《比的基本性质》教案1
一、教学目标
1、知识目标:
(1)通过天平实验让学生探索等式具有的性质并予以归纳。
(2)能利用等式的性质解一元一次方程。
2、能力目标:通过实验培养学生探索能力、观察能力、归纳能力和应用新知的能力。
3、情感目标:通过实验操作增强合作交流的意识。
二、教材分析:
1、地位与作用:在掌握了一元一次方程的概念及其初步应用后,需要解决的是一元一次方程的解法,借助于等式的性质来解一元一次方程。为下几节的学习铺平道路.首先通过天平的实验操作,使学生学会观察、尝试分析、归纳等式的性质。然后,利用等式的基本性质解一元一次方程。通过解方程的学习提高了学生观察问题、解决问题的能力.
2、重点:利用等式的性质解方程。
3、难点:对等式的性质的理解及应用。
三、教学准备:天平,砝码.
四、教学过程:
动(一):温故知新: 实验一:天平一边放重300克的一本书,另一边放50克的砝码多少各个才能使天平保持平衡?准备天平,让学生边做边观察边思考
活动(二):提出问题、解决问题:问题一:你能解决这个问题吗?在天平平衡后,两边分别同时放上两个砝码,天平还能保持平衡吗?试一试。问题二:如果把天平看成等式,你能得到什么规律,试一试用文字语言叙述后再用字母表示先合作、交流,后找多名学生归纳规律,在学生都理解后教师出示:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。设x=y,则:X+c=y+cx-c=y-c(c为一个代数式)问题三:如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?你能得到什么规律?并用字母表示。小组进行实验,总结规律。等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。设x=y,则:cx=cyx/c=y/c(c为一个不为零的`数)
活动(三)拓展运用:例1解下列方程:(1)X+2=5(2)3=X-5第一题教师领学生完成,给出解方程的完整步骤,逐步培养学生推理能力。第二题学生口答,教师板书,锻炼学生组织语言能力。例2解下列方程:(1)-3X=15(2)-N/3-2=10学生独立完成(两生黑板练习),后两生给与评价。
活动(四):议一议:通过对以上两个方程的求解,请你思考一下,用什么方法可以知道你的解对不对?合作交流并回答
活动(五):练一练:课本随堂练习。
活动(六):小结反思:通过上面的学习,你有什么收获?另外你有什么感触?活动(七):布置作业:必做题推荐作业:
《比的基本性质》教案2
教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:CAI课件
教学过程:
一、复习、导入
1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、 课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、 指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的'比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、 综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
《比的基本性质》教案3
教学目标:
1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的方法来验证的.。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、 自主练习 巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。
课堂小结 :
一生小结,他生补充,教师评判。
《比的基本性质》教案4
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的'运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
《比的基本性质》教案5
教学目标
一、知识目标
1、使学生理解比例的意义和比例的基本性质.
2、认识比例的各部分名称,会组成比例.
二、能力目标
1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.
2、培养学生的观察能力和判断能力.
三、情感目标
1、对学生进一步渗透辨证唯物主义观点的启蒙教育.
2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学对象分析
低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。
教学策略及教法设计
教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的`主体作用.
1.多媒体教学
运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.
2.动手操作法
引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.
教学步骤
一、铺垫孕伏
1、什么叫做比?
2、什么叫做比值?
3、求下面各比的比值:
4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)
教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )
二、探究新知
(一)比例的意义
例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1、教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
或 .
3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4、练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
① 和 ② 和
③ 和 ④ 和
填空
①如果两个比的比值相等,那么这两个比就( )比例.
②一个比例,等号左边的比和等号右边的比一定是( )的.
(二)比例的基本性质
1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2、练习:指出下面比例的外项和内项.
3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以 为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4、学生自己任选两三个比例,计算出它的外项积和内项积.
5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
(板书课题:加上“和基本性质”,使课题完整.)
6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7、练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
三、课堂小结
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习
1、说一说比和比例有什么区别.
比是表示两个数相除的关系,有两项;
比例是一个等式,表示两个比相等的关系,有四项.
2、在 这个比例中,外项是( )和( ),内项是( )和( ).
根据比例的基本性质可以写成( )×( )=( )×( ).
3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
(1) 和 (2) 和
(3) 和 (4) 和
4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业
根据3×4=2×6写出比例.
六、板书设计
《比的基本性质》教案6
教学目标:
1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。
教学重点:
理解分数的基本性质。
教学难点:
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学过程:
一、创设情境,激趣引新,
1、师:故事引入,揭示课题
同学们,你们听说过阿凡提的故事吗?今天老师这里有一个 老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)
故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的 ,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
3、学生猜想后畅所欲言。
4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?
二、探究新知,解决问题
1、 动手操作、形象感知
(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?
(2)学生独立操作验证。
方法1、涂、折、画的方法
方法2、计算的方法。
方法3:商不变的性质。
(3)观察,说说你发现了什么?
2、出示做一做(1)
(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。
(3)观察,说说你发现了什么? = = (课件揭示)
(4)交流:你还有什么发现?
分数的分子和分母变化了,分数的大小不变。
分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以相同的数)(课件演示)
3、出示做一做图片(2),学生独立填写分数。
(1)说说你是怎么想的?
(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)
4、想一想:引导归纳分数的`基本性质
(1)从刚才的演示中,你发现了什么?
板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。
(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词都、
相同的数、0除外。 都可以换成哪个词?同时。
板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。
(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)
5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?
师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=34=(33)(43)=912=9 /12)(课件揭示)
师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?
6、趣味比拼,挑战智慧
给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。
交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?
三、多层练习,巩固深化。
1、考考你(第43页试一试和练一练第2题)。
2/3=( )/18 6/21=2/( )
3/5 =21/( ) 27/39=( )/13
5/8=20/( ) 24/42=( )/7
4/( )=48/60 8/12=( )/( )
2、涂一涂,填一填。(练一练第1题)
3、请你当法官,要求说出理由.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )
(2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )
(3)3/4的分子乘3,分母除以3,分数的大小不变。( )
(4) 10/24=102/242=103/243 ( )
(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )
(6)3/4=30/4 0=30/4 0 ()
4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。
5、(1)把5/6和1/4都化成分母是12而大小不变的分数;
(2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
四、拾捡硕果,拓展延伸。
1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?
(或用分数表示这节课的评价,快乐和遗憾各占多少?)
2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)
3、拓展延伸
师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?
比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?
五、动脑筋退场
让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。
《比的基本性质》教案7
教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。
教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。
教学重点:理解比例的意义和基本性质。
教学难点:用比例的意义或性质判断两个比成不成比例。
教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。
教具、学具准备:小黑板,教学课件
教学步骤
一、复习铺垫
l.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)
二、导入新课
1.教学比例的意义。
让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
(1) 3 :5 24 :40 (2) :7.5 :3
追问:比值相等,说明每组里两个比怎样?
指出:表示两个比相等的式子叫做比例。
说一说,上面两个等式表示的是怎样的式子?
2.下面两个比之间的哪些○里能填“=”,为什么?
1 :2○3 :6 0.5 :0.2○5 :2
1.5 :3○15 :3:2○:1
提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
3.教学例1。
出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。
让学生根据比例的意义,在( )里填上适当的数。
3 :6=5 :( ) 0.8 :( )=1 :
4.教学比例的基本性质。
向学生说明比例各部分的名称。
让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。
5.判断能否组成比例。
出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?
强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的.积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?
让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
三、巩固练习
1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?
2. 完成“练一练”。
指名4人板演.集体订正.说说是怎样判断的?
3.做练习六第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。
4.做练习六第2题。
让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)
5.完成练习六第3题。
学生先观察、计算,然后口答,说明理由。
四、全课小结
这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?
五、布置作业
练习六第4、5题。
《比的基本性质》教案8
教学内容:
教科书第50、51页的内容,做一做,练习十一第4-6题。
教学目标:
1、掌握比的基本性质,能根据比的基本性质化简比。
2、联系商不变的性质和分数的基本性质迁移到比的基本性质。
教学重点:
理解比的基本性质。
教学难点:
能应用比的基本性质化简比。
教学过程:
一、激趣定标
1、20÷5=(20×10)÷( × )=( )
2、
想一想:什么叫商不变的规律?什么叫分数的基本性质?
3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。
二、自学互动,适时点拨
【活动一】比的基本性质
学习方式:小组合作、汇报交流
学习任务
1、启发诱导,发现问题:6:8和12:16这两个比不同,可是它们的比值却相同,这里面有什么规律呢?。
6:8=6÷8=6/8=3/4 12:16=12÷16=12/16=3/4
2、观察比较,发现规律。
(1)利用比和除法的关系来研究比中的规律。(商不变的规律)
(2)利用比和分数的关系来研究比中的规律。
3、归纳总结,概括规律。
(1)总结:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
(2)追问:这里“相同的数”为什么要强调0除外呢?
【活动二】化简比
学习方式:尝试训练、汇报交流
学习任务
1、认识最简单的整数比。
(1)提问:谁知道什么样的比可以称作是最简单的整数比?
(2)归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
(3)指出几个最简单的整数比。
2、运用性质,掌握化简比的方法。
(1)分别写出这两面联合国国旗长和宽的比。
(2)思考:这两个比是最简单的整数比吗?为什么?(前项和后项除了公因数1还有其他的公因数。)
(3)尝试化简。
(4)汇报交流:只要把比的前、后项除以它们的最大公因数。
(5)想一想:这两个比化简后结果相同,说明了什么?(这两面旗的.大小不同,形状相同。
(6)出示例题,组织交流
①乘分母的最小公倍数:1/6:2/9=(1/6×18):(2/9×18)=3:4
②前后项先化成整数,再化简:0.75:2=(0.75×100):(2×100)=75:200=3:8
③用分数除法的方法计算:1/6÷2/9=1/6×2/9=3/4
(7)小结:如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。
三、达标测评
1.完成课本第51页的“做一做”,集体订正。
2、完成课本第52页练习十一的第2、4、5、6题。
四、课堂小结
这节课我们学习了什么?你有什么收获?
《比的基本性质》教案9
教学目标:
1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。
2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:
理解比例的意义基本性质。
教学难点:
应用比例的意义和性质判断两个比是否成比例。
教学过程
一、导入新课
1、什么叫比?
2、求出下面各比的比值(小黑板)
12:16 1/4:1/3 和9:12 4.5:2.7 10:6
二、教学新课
1、教学比例的意义
(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?
(2)归纳比例的意义
(3)2:5和80:200能组成比例吗?你是怎样判断的?
(4)完成第45页“做一做”
2、教学比例的基本性质
(1)在一个比例里,有四个数,这四个数分别叫什么名字?
(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。
(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?
(4)指导学生归纳后,在比例里,两个外项的'积等于两个内项的积。这就是比例的基本性质。
(5)指导学生完成第一46页“做一做”第1题。
三、巩固练习
四、课堂小结
这节课你学到了哪些知识?
创意作业:
有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。
《比的基本性质》教案10
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知
(一)比的基本性质
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)
(1)4人小组交流(2)全班交流
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?
3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的'整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)
1、小组交流
2、全班交流
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习
3:8=(3+6):(8+)
(让学生分小组讨论方法)
三、课堂总结
这节课有哪些收获?师生共同总结。
()年()班姓名
比的基本性质小研究
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
方法一
方法二
方法三
方法四
我的发现:
聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?
序号
比
我的方法
(写出过程)
1
14:21
2
36:15
3
1/6:2/9
4
2/3:3/4
5
1.25:2
6
5.6:4.2
我的发现:
《比的基本性质》教案11
一、 教材
根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:
1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:
一是基于对课程标准的理解。
《义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。
二是基于对教材的.认识。
《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
三是基于对学情的认识。
作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。
据此,
我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。
二、教法
课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。
三、说学法
学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
四、说教学过程
本着让学生
“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。
环节一:联系旧知,质疑引思。
“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。
环节二:操作体验,概括规律
1.观察发现,提出猜想。
通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想
2.举例操作,验证猜想。
课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。
3.概括性质,深化理解
通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。
4.运用规律,完成例2
尝试运用发现的规律,解决问题。
环节三:知识应用,巩固提高
在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。
环节四:回顾总结,完善认知
通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。
有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。
《比的基本性质》教案12
一、创设情境,导入新课
1、提问
师:除法、分数和比之间有什么联系?
2.做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?
3.导入课题:
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
二、学习新课
1.教学例3比的基本性质。
(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?
(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.
(4)师:你觉得哪些词语比较重要? 0除外你怎样理解得?
2.教学例4应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比
(1)12:18 (2) (3)1.8:0.09
(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。
(2)化简 (2)
师:这个比的`前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?
(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。
(4)化简(3)1.8:0.09
师:想一想如何化简小数比呢?
让学生独立在书上化简,指名板演
师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?
三、巩固练习
1.练一练,填完整
2.做练习十三第5-8题。
3.补充练习
选择
1.1千米∶20千米=( )
(1)1∶20 (2)1000∶20 (3)5∶1
2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )
(1)20∶21 (2)21∶20 (3)7∶10
四、课堂小结
师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
《比的基本性质》教案13
第一课时
教学内容:P32~34 比例的意义和基本性质
教学目的:1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。
3、使同学初步感知事物间是相互联系、变化发展的。
教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把同学举的例子板书出来,并注明比的各局部的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。
12:16 : 4.5:2.7 10:6
同学求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5: 2.4:1.6 60:40 15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象这样表示两个比相等的`式子叫做比例。
比例也可以写成: = =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
指名同学读题。
教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”
根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)
(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
同学判断后,指名说出判断的根据。
②做P33“做一做”。
让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。
③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。
《比的基本性质》教案14
教学目的:
理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好实现知识教育与思想教育的有效结合。
教学难点:
理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。
教学准备:
板书有关习题的幻灯片。
教学过程:
一、复习
1.出示
在括号里填上适当的数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1.自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)
怎样找出相等的分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的点找出来。指名板演。
2.自主练习第5题。
先让学生独立做,教师巡视。个别指导。
指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。
教师根据学生的.回答选择几个题目进行板书。
3.自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4.自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5.自主练习第8题。
学生先独立做。
集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?
《比的基本性质》教案15
教学内容
比的基本性质
教材第50、第51页的内容及练习十一的第4~8题。
教学目标
1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。
3、初步渗透事物是普遍联系的辩证唯物主义观点。
重点难点
重点:理解比的基本性质,推导化简比的方法,正确化简比。
难点:正确化简比。
教具学具
练习题投影片。
教学过程
一 导入
1、比与分数、除法的关系。
老师:我们已经学习了比的意义,知道比和分数、除法之间有着密切的联系,哪位同学愿意说说比和分数、除法之间有什么联系呢?
如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。
2、复习分数的基本性质和商不变的规律。
老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?
(指名学生发言)
二 教学实施
1、猜想。
老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。
汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。
引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、验证。
以小组为单位,讨论、验证一下刚才的猜想是否正确。
学生汇报。
3、小结。
经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。
板书课题:比的基本性质
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。
出示例1(1)。
老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。
学生反复读几遍。
提问:你怎样理解“最简单的整数比”这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
15∶10=(15÷5)∶(10÷5)=3∶2
180∶120=(180÷60)∶(120÷60)=3∶2
出示例1(2)。
学生尝试把下面各比化成最简单的整数比。
0、75∶2=(0、75×100)∶(2×100)=75∶200=3∶8或(0、75×4)∶(2×4)=3∶8
老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
5、反馈练习。
(1)完成教材第51页的“做一做”,集体订正。
(2)完成教材第53页练习十一的第4题。
提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?
(3)完成教材第53页练习十一的第5题。
(4)完成教材第53页练习十一的第6~8题。
让学生说明理由,注意思维的逻辑性和语言的条理性。
三 课堂作业新设计
1、把下面各比化成最简单的整数比。
四 思维训练参考答案
课堂作业新设计
1、6∶7 3∶1 3∶8 5∶6 7∶5 4∶1 4∶5 10∶1
2、 (1)4∶5 (2)3∶2 (3)7∶4 (4)5∶2
思维训练
板书设计
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简
单的整数比,叫做化简比。
备课参考教材与学情分析
比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的`规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想—验证—应用,让学生理解比的基本性质,应用性质化简比。
课堂设计说明
1、运用转化的思想,类推出比的基本性质。
我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。
2、教学中强调观察得出运用比的基本性质来化简比。
根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。
【《比的基本性质》教案】相关文章:
《分数的基本性质》教案08-25
比例的意义和基本性质教案02-16
分数的基本性质教案7篇08-21
精选分数的基本性质教案4篇09-21
关于分数的基本性质教案三篇10-21
分数的基本性质说课稿04-08
《比的基本性质》教学反思04-17
《分数的基本性质》教学反思11-15
分数的基本性质教学反思10-26