当前位置:9136范文网>教育范文>教案>七年级数学下册相交线教案

七年级数学下册相交线教案

时间:2025-01-23 10:15:44 林强 教案 我要投稿
  • 相关推荐

七年级数学下册相交线教案(精选11篇)

  作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是小编为大家收集的七年级数学下册相交线教案,仅供参考,希望能够帮助到大家。

七年级数学下册相交线教案(精选11篇)

  七年级数学下册相交线教案 1

  在本次活动中,教师应重点关注:

  (1)学生从简单的具体实物抽象出相交线、平行线的能力.

  (2)学生认识到相交线、平行线在日常生活中有着广泛的应用.

  (3)学生学习数学的兴趣.

  教师出示剪刀图片,提出问题.

  学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.

  教师提出问题.

  学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的'两对邻补角与两对对顶角.

  在本次活动中,教师应关注:

  (1)学生画出两条相交线的几何图形,用语言准确描述.

  (2)学生能否从角的位置关系上对角进行分类.

  (3)学生是否能够正确区分邻补角、对顶角.

  (4)学生参与数学学习活动的主动性,敢于发表个人观点.

  《相交线与平行线》单元测试题

  25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D

  (1)若点C恰在EF上,如图1,则∠DBA=_________

  (2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由

  (3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)

  《第五章相交线与平行线》单元测试题

  一、选择题(每题3分,共30分)

  1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()

  A.50°B.60°C.140°D.160°

  七年级数学下册相交线教案 2

  一、创设情境,引入课题

  先请同学观察本章的章前图,然后引导学生观察,并回答问题.

  学生活动:口答哪些道路是交错的,哪些道路是平行的

  教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的.工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

  二、探究新知,讲授新课

  1.对顶角和邻补角的概念

  学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

  【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

  学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?

  学生口答:∠2和∠4再也是对顶角.

  紧扣对顶角定义强调以下两点:

  (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

  (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

  2.对顶角的性质

  提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

  学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

  【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

  ∴∠l=∠3(同角的补角相等).

  黄麓镇中心学校 七年级数学教学设计 备课人:唐宗禹 注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

  或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

  ∴∠1=∠3(等量代换).

  学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

  解:∠3=∠1=40°(对顶角相等).

  ∠2=180°-40°=140°(邻补角定义).

  ∠4=∠2=140°(对顶角相等).

  三、范例学习

  学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题. 变式1:把∠l=40°变为∠2-∠1=40°

  变式2:把∠1=40°变为∠2是∠l的3倍

  变式3:把∠1=40°变为∠1:∠2=2:9

  四、课堂小结

  学生活动:表格中的结论均由学生自己口答填出.

  五、布置作业

  课本P3练习,课本P7第1、2、8、9题.

  七年级数学下册相交线教案 3

  摘要:

  初中数学对于很多初中生来说是最难的一门学科,有多少学生在数学上花费了太多的经历和时间,但数学还是没有进步,这也是很多初中数学老师头疼的问题。随着新课标的改革,数学老师们研究出了一种新的教学方法,它就是导学互动教学方法,通过这种方法学生们对数学知识有了进一步的理解。本文对导学互动教学模式在初中数学教学中的应用进行了研究,希望通过这种教学模式可以提高学生们学习数学的主动性,提高他们的创新和独立思考的能力,促进学生全方面的发展。

  关键词:

  导学互动;初中数学;教学;应用

  1、前言

  初中生大多数处于贪玩、好奇心大、顽皮的年纪,具有一定难度的数学本身自带枯燥感,这就使得初中生对于数学更加没有好感,有很多学生在课堂上听着数学老师讲课就像听天书一样,有的就算认真听也只知道怎么做题,但解题的每一步骤都只是知其然而不知其所以然,这是很多传统数学教学当中遗留下的问题。在新课标的改革下,教育工作者研究出了新的教学模式,那就是互动导学,即在教学过程中以老师的引导为主,鼓励学生之间互动思考,以此来提高学生解决问题的能力,也使学生们对数学知识有了更深的认识,从而达到更高的教学效果。

  2、导学互动教学模式的应用研究

  2.1引导学生互动活跃课堂气氛:

  在以往的数学课堂上,数学老师是整个课堂的主角,所有学生都安静的坐在自己的座位上安静的听老师讲课,没有人说出自己的观点和看法,老师怎么讲大家就怎么记,导致数学课堂没有一点生机,而互动导学最大的优点就是老师只负责引导学生,真正的研究探讨要交给学生们自己解决,当学生真的无法解决问题时,老师再稍微提醒拨正一下学生们的思路。例如,老师在讲一个新的知识点时可以先不讲,让学生们分成几组比赛,小组成员相互讨论研究,然后选学生到台上按照自己的思路和方法讲解新知识,最后老师听取学生讲解后作出相关总结,为学生们小组的研究成果打分,并提出自己的建议改进学生们的不足。导学互动教学模式改变了以往单一枯燥的教学课堂,由于学生们都有不服输的心理,所以通常都表现的非常积极,这样使得课堂气氛更加活跃,学生们可以在轻松自在的环境中学习到知识,同时对数学知识有了更清楚的认识。

  2.2创造一定情景牵出教学内容:

  由于初中的数学知识具有一定的抽象性和较高的逻辑,学生们仅靠老师的讲解和自己的理解,很难真正懂得知识的含义,所以老师在教学中就要花心思根据课本的内容创造一定情景,从而使学生能够形象的了解知识,甚至可以利用知识解决生活当中的问题。创造的情景一定要贴近学生们的生活或者自然现象、生动故事,一定要吸引学生们的兴趣,这样才能够激发学生们的.求知欲和想象力。例如在学习三角形知识的时候,一个学生身高一米五,另一学生一米四五,那么两个学生与地面形成一个周长为六米的三角形吗?这时候就可以让学生们先猜测,最后找学生来试验,再找学生测量,这样学生们就了解到三角形第三边永远小于另外两边之和。另外在在求同等周长什么图形面积最大时,可以发给学生们同等长度的绳子,让学生们自己拼出不同图形然后再计算面积,最后自己说出自己的答案。随后老师再告诉学生们答案,对学生们的努力做出鼓励,增强学生学习的兴趣,引导学生进入知识的世界。

  2.3鼓励学生合作、交流、分析培养学生团队精神:

  以往课堂都是老师在讲堂上讲,学生们乖乖地坐在下面听讲,导致学生们思维上养成懒惰的习惯,也是因为这种教学模式导致学生们一直是单独学习,没有和小伙伴们团队作战的机会,在以后的学习生活上不能与他人很好的合作,即使被分到一组也不能明确分、工团结合作,使整个团队工作效率大大降低。导学互动教学模式就是培养学生们从小养成团队意识和合作精神,学生们合作解决小组遇到的一切难题,具有一定的科学性、开放性、实践性和互动性的教学模式。在互动导学教学模式中学生们可以畅快的讨论问题,大胆的提出自己的疑问,然后与同学们积极交流,最终得出自己小团队的答案。这一方面提高了学生们对学习的兴趣,激发了学生们的求知欲和主动性,使学生们在自由、和谐、愉快的环境下快乐的学习知识,另一方面也发挥了学生们的主观能动性和创新思维,开阔了学生们的想象空间,了解到自身的不足和其他人身上的优点,使学生的综合能力大大提高。

  2.4归纳总结及时反馈:

  导学互动教学模式不仅需要老师的引导和学生自身之间、学生与老师之间的互动,还需要老师在最后对学生们的表现和成果进行一定的评价与改正,归纳总结整个课堂内容。同时学生们也要进行自我归纳,从中找出自己的不足和问题,找到解决问题的办法,在下次的学习中能够尽力避免,此时老师不要干涉是,让学生们自己思考,锻炼自己的思考和总结能力。学完一段课程后,老师还应该对学生们的学习情况进行一定的测试,能够得到相应的反馈。老师才能知道学生们有没有真的学会知识。例如,老师可以让学生们自己出题收集起来,然后将顺序打乱,再随机发给学生们,让他们自己做题,这样不仅能了解学生们对知识的掌握情况,还可以考察学生们的实际运用能力。

  3、结语

  经过导学互动教学模式的推广和应用,一定能够引起学生们对数学的喜爱,同时能够培养学生们的自主创新能力和团结协作的团队精神,这对学生们的学习和生活都有很大的帮助。作为教育工作者的我们,有责任将这种教学模式带到学习中,提高学生们的学习效率,为培养新一代的人才而努力。

  七年级数学下册相交线教案 4

  教学目标:

  1.使学生能抓住关键找出相对应的量,去分析数量关系,把握解题思路。

  2.渗透对应的数学思想,提高学生分析解决实际问题的能力。

  3.萌发学生的辩证思维,学习全面地分析、考虑问题。

  教学过程:

  一、以旧引新,促进迁移。

  1.提问:

  (1)甲买4本练习本,乙买6本练习本,谁付的钱多?为什么?

  (2)买的本数多,付出的钱也一定多吗?当每本价钱相同时,买的本数多,付出的钱怎样?付的钱少,说明买的本数怎样?

  【评析:这里(1)题的设计颇具匠心,题中有意不说乙和甲买的是同样的练习本,让学生判断谁付的钱多。估计学生中会有两种反馈,一种认为乙买的本数多,付的钱也多;另一种认为不一定乙付的钱多,因为没有说明是同样的练习木。然后在(2)题里,运用反问句强化每本价钱相同这个必要条件。这样的设计,使学生感受到看问题要仔细、全面,不能粗略作出结论。】

  2.出示:(同种铅笔)

  小红买:///

  小刚买://///

  (1)知道哪两个条件可以求出每支铅笔的价钱?若告诉小红付出1元2角,怎样计算出每支铅笔的价钱?(板书:12÷3=4(角)。)

  (2)还可告诉哪些条件,也能计算出每支铅笔的价钱?

  (让学生补条件。估计会有:①小刚付出2元。20÷5=4(角);②两人共付出3元2角。32÷(3+5)=4(角)③小刚比小红多付8角。8÷(5-3)=4(角)。)

  (3)(结合所补条件①、②的解答)提问:求每支铅笔的价钱,关键要找出什么?(铅笔支数及相对应的价钱。)(结合所补条件③)请把条件和问题连起来说一遍。教师出示:同一种铅笔,小红买了3支,小刚买了5支,小刚比小红多付8角钱,每支铅笔多少钱?

  二、尝试练习,归纳思路。

  1.学生独自思考,尝试解答上面的例题。

  2.同桌交流,展示解题的思维过程。

  3.指名学生列式,并结合算式“8÷(5-3)”提问:为什么用8除以2呢?(让学生根据铅笔实物图说理。)

  4.进行鼓励性评价:同学们想得真好。小刚比小红多付8角钱,小刚比小红多买2支铅笔,从这两个相差的数量中找到了相对应的量,即“2支铅笔的价钱是8角钱”。这样就很容易算出每支铅笔的价钱。

  【评析:在上面讨论的基础上,运用形象直观而又简明通俗的实例,提出要求的问题,让学生独立思考,展开想象,在教师的点拨下,补出各种不同的条件。然后从学生所补的条件中,选择一种,组成一个完整的应用题,放手让学生自己去解答。这样的教学能引导学生参与学习的意向,主动地掌握这类问题的结构以及解题的关键,完全改变了教师一步一步发问,学生跟随教师一步一步回答的那种被动学习的状态。从学生的思维来看是变通型、创造型的。】

  5.练一练。

  一辆汽车用同样的速度行驶,上午行了120千米,下午行了200千米,下午比上午多行2小时,平均每小时行多少千米?

  (1)让学生画线段图表述题意,借助线段图找出对应量,进行解答。

  (2)由学生展示思维过程,进行评析。

  【评析:练习题的情节变了,数量之间的关系未变,要求学生画线段图找对应量进行解答,组织学生自己展示思维过程,相互评议,教师只起一个组织者的作用。充分发挥学生的群体作用,使学生的心态处于学习主体的位置,感受到互助合作与成功的愉快。】

  三、分层练习,发展思维。

  第一层:

  选择正确算式的编号(用手势表示)。

  1.同一种自行车,第一天卖出8辆,第二天卖出的比第一天多2辆,第二天收款1500元。每辆自行车多少元?

  (1)1500÷2(2)1500÷(8+2)(3)1500÷(8+2+8)

  先让学生独立思考,画图分析,进行选择。在作出正确选择后,教师继续引发学生深入思考:

  ①若选算式

  (1),应怎样改变条件?

  ②若选算式

  (3),应怎样改变条件?从中突出关键是要找相对应的量。

  2.水果店运来若干箱苹果,每箱苹果一样重。一共运来250千克。已经卖出4箱苹果,卖出100千克。每箱苹果重多少千克?

  (1)10O÷4(2)(250-100)÷4

  先让学生独立思考作出选择,再引导学生画出线段图,并提问:若要选择算式(2),条件该怎么改?从中强调根据所求问题选择有关信息,关键是找出对应量。

  【评析:这两题都采用选择算式的形式,在学生作出正确判断后,教师再次要求学生,根据所给的算式改变应用题的条件,使算式与题目的要求相符合。这种练习方式,既有利于辨析应用题条件与问题的关系,强化解题思路,防止思维负定势,又渗透了事物之间的千变万化,学会具体问题具体分析的科学态度,这确是一种较好的练习形式。】

  第二层:发展题。

  学校新买来10盒羽毛球。如果从每盒中取出2只,剩下的羽毛球正好等于原来的8盒。买来的10盒羽毛球共有多少只?

  在学生独立思考的基础上,让学生前后四人为一组进行讨论,再指名展示思维过程,师生一起作评价,突出解题关键在于“取出的羽毛球相当于原来的'2盒”这个对应量。

  四、课堂小结。

  提问:今天所学的应用题,解题的关键是什么?

  【总评:潘小明老师的这节课,曾在本市和外省市借班上课,教学效果甚佳,表现在学生学得主动,思维活跃,甚至于有些学生不愿意下课,还要讨论下去。究其原因,一是摆正了教与学的关系,千方百计让学生主动地学,使学生真正成为学习的主体。二是改革了应用题传统的教学方法,将原来的“读题→分析(或画线段图)→列式计算→写答句”的模式,改变成“直观形象的实例→提出问题→分析解答→组成语言文字的应用题→完整解答→变化条件或问题→深化认识”的认知过程模式。这种教学模式更贴近学生的认识规律。三是紧紧把握住题目里数量之间的关系,突出解题思路,训练学生思考力。当然,要做到这些还必须具有正确的教学思想和教育观念,承认儿童具有巨大的智力潜在力,力求提高他们的数学素养,培育他们良好的心理素质等宏观上的信念,才能组织好一堂课。从这堂课里还可以看出教师的教学艺术也起到重要的作用。】

  七年级数学下册相交线教案 5

  【学习目标】

  了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.

  【学习重点】

  邻补角、对顶角的概念,对顶角性质与应用.

  【学习难点】

  理解对顶角相等的性质.

  【学习过程】

  一、学前准备

  各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,

  二、探索思考

  探索一:完成课本P2页的探究,填在课本上.

  你能归纳出“邻补角”的定义吗? .

  “对顶角”的定义呢? .

  练习一:

  1.如图1所示,直线AB和CD相交于点O,OE是一条射线.

  (1)写出∠AOC的`邻补角:____ _ ___ __;

  (2)写出∠COE的邻补角: __;

  (3)写出∠BOC的邻补角:____ _ ___ __;

  (4)写出∠BOD的对顶角:____ _.

  2.如图所示,∠1与∠2是对顶角的是( )

  探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.

  请归纳“对顶角的性质”: .

  练习二:

  1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______

  2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______

  3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.

  三、当堂反馈

  1.若两个角互为邻补角,则它们的角平分线所夹的角为 度.

  2.如图所示,直线a,b,c两两相交,∠1=60°,∠2= ∠4,求∠3、∠5的度数.

  3.如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?

  4.探索规律:

  (1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角;

  (3)四条直线交于一点,有 对对顶角;

  (4)n条直线交于一点,有 对对顶角.

  七年级数学下册相交线教案 6

  教学建议

  1.知识结构

  2.重点和难点分析

  (1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

  (2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

  3.教法建议

  (1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

  (2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

  (3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解对顶角和邻补角的概念,能在图形中辨认.

  2.掌握对顶角相等的性质和它的推证过程.

  3.会用对顶角的性质进行有关的.推理和计算.

  (二)能力训练点

  1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

  2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

  (三)德育渗透点

  从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

  (四)美育渗透点

  通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

  二、学法引导

  1.教师教法:教具直观演示法启发引导、尝试研讨.

  2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

  三、重点、难点及解决办法

  (一)重点

  (二)难点

  在较复杂的图形中准确辨认对顶角和邻补角.

  (三)疑点

  对顶角、邻补角的图形识别.

  (四)解决办法

  强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

  六、师生互动活动设计

  1.通过实例创设情境,引导学生进入课题.

  2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

  3.通过学生研讨、练习巩固完成性质的讲解.

  4.通过学生总结完成课堂小结.

  5.通过随堂练习,检测学生学习情况.

  七年级数学下册相交线教案 7

  教学建议

  一、知识结构

  二、 重点、难点分析

  本节教学的重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础。

  1、平方差公式是由多项式乘法直接计算得出的:

  与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项。合并同类项后仅得两项。

  2、这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

  只要符合公式的结构特征,就可运用这一公式。例如

  在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了。

  3、关于平方差公式的特征,在学习时应注意:

  (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数。

  (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方)。

  (3)公式中的和可以是具体数,也可以是单项式或多项式。

  (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算。

  三、教法建议

  1、可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力。

  2、通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的'平方差,而另两项恰是互为相反数,合并同类项时为零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2。

  这样得出平方差公式,并且把这类乘法的实质讲清楚了。

  3、通过例题、练习与小结,教会学生如何正确应用平方差公式。这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2。

  这样,学生就能正确应用公式进行计算,不容易出差错。

  另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性。

  教学目标

  1、使学生理解和掌握平方差公式,并会用公式进行计算;

  2、注意培养学生分析、综合和抽象、概括以及运算能力。

  教学重点和难点

  重点:平方差公式的应用。

  难点:用公式的结构特征判断题目能否使用公式。

  教学过程设计

  一、师生共同研究平方差公式

  我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

  让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

  两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

  (当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)

  继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

  在此基础上,让学生用语言叙述公式。

  二、运用举例?变式练习

  例1?计算(1+2x)(1-2x)。

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2。

  教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

  例2?计算(b2+2a3)(2a3-b2)。

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4。

  教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

  课堂练习

  运用平方差公式计算:

  (l)(x+a)(x-a);(2)(m+n)(m-n);

  (3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

  例3?计算(-4a-1)(-4a+1)。

  让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1。

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1。

  根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

  课堂练习

  1、口答下列各题:

  (l)(-a+b)(a+b);(2)(a-b)(b+a);

  (3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

  2、计算下列各题:

  (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

  教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

  三、小结

  1、什么是平方差公式?

  2、运用公式要注意什么?

  (1)要符合公式特征才能运用平方差公式;

  (2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

  四、作业

  1、运用平方差公式计算:

  (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

  (5)(2x 3 +15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

  2、计算:

  (1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4)。

  七年级数学下册相交线教案 8

  学习目标:

  知识:对顶角邻补角概念,对顶角的性质。

  方法:图形结合、类比。

  情感:合作交流,主动参与的意识。

  学习重点:

  对顶角的概念、性质。

  学习难点及突破策略:

  “对顶角相等”的探究;小组讨论

  教学流程:

  【导课】

  同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的.角的问题(板书课题)。

  【阅读质疑,自主探究】

  请大家阅读课本P,回答以下问题(自探提纲):

  1、两条相交的直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的位置关系?存在怎样的大小关系?

  2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?

  3、对顶角有什么性质?你是怎样得到的?

  【多元互动,合作探究】

  同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:

  1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。

  2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。

  3、“对顶角相等”的推导过程。

  七年级数学下册相交线教案 9

  相交线

  教学目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.

  2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用.

  难点:理解对顶角相等的性 质的探索.

  教学过程

  一、读一读,看一看

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、观察剪刀剪布的过程,引入两条相交直线所成的角

  教师出示 一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?

  学生观察、思想、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪 刀刃之间的角也相应变大.

  三、认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的'位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  当学生直观地感知 角有相邻、对顶关 系时, 教师引导学生用几何语言准确地表达,如:

  AOC和BOC有一条公共边OC, 它们的另一边互为反向延长线 .

  AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线.

  2.学生用量角器分别量一量各个角的度 数,以发现各类角的度数有什么关系,学生得出有相邻关系的两角互补,对顶关系的两角相等.

  3.学生根据观察和度量完成下表:

  两直线相交 所形成的角 分类 位置关系 数量关系

  教师再提问:如果改变AOC的大小, 会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念.

  (1)师生共同定义邻补角、对顶角.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  (2)初步应用.

  练习1:下列说法,你同意吗?如果错误,如何订正.

  ①邻补角的邻就是相邻,就是它们有一条公共边,补就是互补,就是这两角的另一条边共同一条直线上.

  ②邻补角可看成是平角被过它顶点的一条射线分成的两个角.

  ③邻补角 是互补的两个角,互补的两个角也是邻补角?

  5.对顶角性质.

  (1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.

  (2)教师把说理过程,规范地板书:

  在图1中,AOC的邻补角是BOC和AOD,所以AOC与BOC互补,AOC 与AOD互补,根据同角的补角相等,可以得出AOD=BOC,类似地 有AOC=BOD.

  教师板书对顶角性质:对顶角相等.

  强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.

  (3)学生 利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.

  四、巩固运用

  1.例 :如图,直线a,b相交,1=40,求3,4的度数.

  教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.

  2.练习:

  (1)课本P5练习.

  (2)补充:判断下列图中是否存在对顶角 .

  五、作业

  1.课本P9.1,2,P10.7,8.

  2.选用课时作业设计.

  课时作业设计

  一、判断题:

  1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

  2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

  二、填空题:

  1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_______,COF 的邻补角是________.若AOC:AOE=2:3,EOD=130,则BOC=_________.

  (1) (2)

  2.如图2,直线AB、CD相交于点O,COE=90AOC=30FOB=90, 则EOF=________.

  三、解答题:

  1.如图,直线AB、CD相交于点O.

  (1)若AOC+BOD=100,求各角的度数.

  (2)若BOC比AOC的2倍多33,求各角的度数.

  2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

  课时作业设计答案:

  一、1. 2.

  二、1.AOF,EOC与DOF,160 2. 150

  三、1.(1)分别是50,150,50,130 (2)分别是49,131,49,131.

  七年级数学下册相交线教案 10

  一、教学目的:

  1.知识与技能:

  理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。

  2.过程与方法:

  能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。

  3.情感态度价值观:

  培养识图能力,发展空间想象能力,和逻辑推理能力。

  二、教学重难点

  1.重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。

  2.难点:理解对顶角相等的性质的探索。

  三、教学过程

  1.创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。

  2.尝试活动:让同学们提前准备道具,在课上用剪刀剪纸,并且提出问题,在剪纸过程中如果把剪刀看成两条线,则在剪纸的过程中剪刀发生了哪些变化?

  3.抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。

  4.尝试探究:任意画两条相交的直线,形成四个角,让同学们把形成的四个角两两一组结对,一共能有几种,并且提问角一和角二有什么样的位置关系?角一和角三呢?

  5.尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的.定义。

  6.在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。

  7.进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。

  四、总结拓展

  引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。

  五、布置作业

  第七页,第二题,第六题,第十题

  七年级数学下册相交线教案 11

  教学目标:

  知识与技能:能结合图形准确地辨认对顶角、邻补角;理解对顶角、邻补角性质并会利用其进行简单说理及有关计算。

  过程与方法:通过观察、讨论、猜想、验证、推理、交流等探究活动,让学生从中获得对顶角相等的结论,发展空间观念、培养识图能力和语言表达能力。

  情感态度与价值观:让学生认识到数学与生活紧密相连、数学活动充满着探索与创造,体验学习过程中获得的成功,提高学习数学的兴趣和自信心,从而使学生更加热爱数学,学好有价值的数学。

  教学重点:对顶角的概念、对顶角的性质。

  教学难点:对对顶角相等性质的理解与应用。

  教学方法:探究、启发教学法。

  教具准备:多媒体、一把剪刀、一块布片、两根相交的木条(相交线模型)、三角板、量角器、白纸等。

  教学过程:

  一、创设情境,导入课题。

  用多媒体演示图片:图片略。

  老师提问:这是合肥市金寨路高架桥,同学们知道这是哪段吗?

  学生(异口同声):知道,这是我们学校附近的高架桥。

  老师:对,同学们注意到十字形路口了吗?它犹如两根相交的木条(出示事先准备好的相交线模型,要求学生用两支笔代替木条与老师一起演示)。若把两根木条想像成两条直线,则此模型可看作两条直线相交,两条直线相交时能形成哪些角呢?这些角又有什么特征呢?(问而不答,为下面的学习作铺垫)。这就是我们今天这节课要研究的内容:10.1相交线中的角(课件显示课题)。

  二、互动探究,研究课题。

  首先请同学们观察电影片段(多媒体播放):几位老奶奶正在用剪刀为部队加工布鞋的劳动场景。(老师解说)看,这些老奶奶正是用这样的剪刀在为我们的军人服务,为国家作出一点儿贡献。出示一把剪刀和一块布片,演示剪布过程。让学生观察,然后显示大屏幕上的第1个问题。

  问题1:剪布时,用力握紧把手,引发了什么变化?从而使什么也发生变化?

  学生活动:小组讨论、交流。然后老师启发学生:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角相应变小;如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。若把剪刀的构造看作两条相交的直线,以上就关系到两条直线相交所成的角的问题。我们可把剪刀张开时的情境抽象为几何图形:两条相交的直线。老师在黑板上画出图形,学生在草稿纸上画出图形,如图1示。再次出示相交线模型,让一根木条不动,转动另一根,使木条的.位置不断变化。让学生仔细观察图1和模型,然后显示大屏幕上的问题2。

  问题2:AOC与BOD的位置和大小始终保持怎样的关系?

  在图1中,我们可以观察到:AOC与BOD、AOD与BOC是相对的角。还有AOD与AOC从位置来说是相邻的,图中还有哪些相邻角呢?这些相对角与相邻角分别有哪些特点呢?先小组讨论(以同桌的两个同学为一组),再在全班交流小组观点。小组中的两个成员一个留在原位,接受其他小组成员的采访,另一个出去采访其他小组,搜集观点。老师也走进学生中间,倾听学生的心声。然后老师对同学们在合作交流中的表现和讨论结果作积极的评价。最后小结同学们的讨论结果,从而给出对顶角和邻补角定义:如图1,直线AB与CD相交于点O,AOC与BOD有公共顶点O,并且它们的两边分别互为反向延长线,这样的两个角叫做对顶角。而AOD与AOC有公共顶点O,并且它们有一条公共边OA,另一边互为反向延长线,这样的两个角叫做邻补角(课件显示定义)。对顶角与邻补角都是成对出现的,它们互为对顶角或邻补角,如AOC是BOD的对顶角,同时,BOD是AOC的对顶角,也常说AOC和BOD是对顶角.识别对顶角要三看:一看是不是两条直线相交所成的角,对顶角与相交线是相依为命的,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.三者缺一不可。让同学们观察黑板上所画的图形,指出图中还有哪些对顶角和邻补角?老师找几个学生分别回答。然后显示大屏幕上的问题3。

  问题3:从数量角度来说,邻补角是互补的,那么对顶角又怎样呢?

  学生活动:全班按前后两排每4个同学为一组,分成15组,根据草稿纸上画的图形猜想出对顶角的关系,再研究如何验证自己的猜想,与小组同学一起讨论。

  教师活动:走到学生中间,与学生一起畅所欲言,接着每组派出一个代表发言。最后老师评价同学们的观点并作补充:对顶角和邻补角一样,都是同一图形中两个角之间的一种位置关系。

  经过一番讨论,同学们大胆猜想了互为对顶角的两个角是相等的,并用了不同的方法进行验证,如:有的小组用推理论证法来验证,因为AOD与AOC、AOD与BOD是邻补角,根据同角的补角相等的性质可知AOC=还有的小组想出了用量角器度量法,通过度量一对对顶角,比较大小可得对顶角相等。此外,有没有别的方法呢?与学生一起,拿出一张白纸,画两条相交的直线,示意用叠合法来验证同学们的猜想,学生恍然大悟。小结三种验证方法后,于是得到:对顶角相等(课件动画显示结论,突出了重点)。

  最后让我们来做一个游戏吧:以同桌的两个同学为一组,其中一个同学伸出两支胳膊,使其交叉,可以看作两条直线相交。另一个同学指出两支胳膊相交所形成的角中有哪些是对顶角?哪些是邻补角?然后互相对调再完成一次。

  三、强化训练,巩固课题。

  1、讨论题:(课件显示)

  ⑴列举几个生活中包含对顶角和邻补角的例子。

  ⑵让学生在草稿纸上画图,三条直线a、b、c相交于点O,讨论该图形中有哪些对顶角和邻补角?

  2、抢答题:(用大屏幕逐个显示题目,让学生快速抢答,先回答正确的学生奖励一个练习本)。

  ①判断:⑴有公共顶点的两个角是对顶角;

  ⑵相等的两个角是对顶角;

  ⑶对顶角必相等;

  ⑷不是对顶角的两个角不相等;

  ⑸有公共顶点,且方向相反的两个角是对顶角;

  ⑹有公共顶点,且相等的两个角是对顶角;

  ⑺两条直线相交所成的角是对顶角;

  ⑻角的两边互为反向延长线,且有公共顶点的两个角是对顶角;

  ⑼有公共顶点且和为180的两个角为邻补角

  ⑽有公共顶点、有一条公共边且互补的两个角为邻补角。

  ②选择:如图4,三条直线AB、CD、EF交于一点O,则EOC+BOF+AOD=()

  ③探索:(课件显示)图中,1和2是对顶角吗?为什么?

  3、解答题(课件显示):如图3,两条直线AB、CD相交于O点,已知AOC=35,求AOD和BOD的度数。

  四、总结反思。

  通过相交线中的角的学习,你掌握了对顶角和邻补角的定义了吗?你能口述二者的相同点和不同点吗?你知道对顶角和邻补角又有什么性质吗?这节课你都参与了哪些活动?有新的发现和启发吗?

  五、作业布置。(课件显示题目)

  1、先阅读第十章第一节内容,然后做第一节课后练习。

  2、基础较好的学生另外完成课本第114页思考题。

  3、以我谈对顶角与邻补角为题,写一篇100至1000字左右的短文,体裁不限,你可以充分发挥自己的想象,把它写成说明文、散文或诗歌。

《七年级数学下册相交线教案(精选11篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【七年级数学下册相交线教案】相关文章:

七年级下册《相交线与平行线教学反思10-14

相交线教学反思08-17

《相交线》的教学反思11-20

《相交线》教学反思08-21

《相交线》说课稿 (精选15篇)04-14

相交线与平行线教学反思(通用6篇)09-27

七年级数学下册教案10-25

小学数学线与角教案01-22

《线与角》数学教案04-03

七年级数学下册相交线教案(精选11篇)

  作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是小编为大家收集的七年级数学下册相交线教案,仅供参考,希望能够帮助到大家。

七年级数学下册相交线教案(精选11篇)

  七年级数学下册相交线教案 1

  在本次活动中,教师应重点关注:

  (1)学生从简单的具体实物抽象出相交线、平行线的能力.

  (2)学生认识到相交线、平行线在日常生活中有着广泛的应用.

  (3)学生学习数学的兴趣.

  教师出示剪刀图片,提出问题.

  学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.

  教师提出问题.

  学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的'两对邻补角与两对对顶角.

  在本次活动中,教师应关注:

  (1)学生画出两条相交线的几何图形,用语言准确描述.

  (2)学生能否从角的位置关系上对角进行分类.

  (3)学生是否能够正确区分邻补角、对顶角.

  (4)学生参与数学学习活动的主动性,敢于发表个人观点.

  《相交线与平行线》单元测试题

  25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D

  (1)若点C恰在EF上,如图1,则∠DBA=_________

  (2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由

  (3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)

  《第五章相交线与平行线》单元测试题

  一、选择题(每题3分,共30分)

  1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()

  A.50°B.60°C.140°D.160°

  七年级数学下册相交线教案 2

  一、创设情境,引入课题

  先请同学观察本章的章前图,然后引导学生观察,并回答问题.

  学生活动:口答哪些道路是交错的,哪些道路是平行的

  教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的.工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

  二、探究新知,讲授新课

  1.对顶角和邻补角的概念

  学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

  【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

  学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?

  学生口答:∠2和∠4再也是对顶角.

  紧扣对顶角定义强调以下两点:

  (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

  (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

  2.对顶角的性质

  提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

  学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

  【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

  ∴∠l=∠3(同角的补角相等).

  黄麓镇中心学校 七年级数学教学设计 备课人:唐宗禹 注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

  或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

  ∴∠1=∠3(等量代换).

  学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

  解:∠3=∠1=40°(对顶角相等).

  ∠2=180°-40°=140°(邻补角定义).

  ∠4=∠2=140°(对顶角相等).

  三、范例学习

  学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题. 变式1:把∠l=40°变为∠2-∠1=40°

  变式2:把∠1=40°变为∠2是∠l的3倍

  变式3:把∠1=40°变为∠1:∠2=2:9

  四、课堂小结

  学生活动:表格中的结论均由学生自己口答填出.

  五、布置作业

  课本P3练习,课本P7第1、2、8、9题.

  七年级数学下册相交线教案 3

  摘要:

  初中数学对于很多初中生来说是最难的一门学科,有多少学生在数学上花费了太多的经历和时间,但数学还是没有进步,这也是很多初中数学老师头疼的问题。随着新课标的改革,数学老师们研究出了一种新的教学方法,它就是导学互动教学方法,通过这种方法学生们对数学知识有了进一步的理解。本文对导学互动教学模式在初中数学教学中的应用进行了研究,希望通过这种教学模式可以提高学生们学习数学的主动性,提高他们的创新和独立思考的能力,促进学生全方面的发展。

  关键词:

  导学互动;初中数学;教学;应用

  1、前言

  初中生大多数处于贪玩、好奇心大、顽皮的年纪,具有一定难度的数学本身自带枯燥感,这就使得初中生对于数学更加没有好感,有很多学生在课堂上听着数学老师讲课就像听天书一样,有的就算认真听也只知道怎么做题,但解题的每一步骤都只是知其然而不知其所以然,这是很多传统数学教学当中遗留下的问题。在新课标的改革下,教育工作者研究出了新的教学模式,那就是互动导学,即在教学过程中以老师的引导为主,鼓励学生之间互动思考,以此来提高学生解决问题的能力,也使学生们对数学知识有了更深的认识,从而达到更高的教学效果。

  2、导学互动教学模式的应用研究

  2.1引导学生互动活跃课堂气氛:

  在以往的数学课堂上,数学老师是整个课堂的主角,所有学生都安静的坐在自己的座位上安静的听老师讲课,没有人说出自己的观点和看法,老师怎么讲大家就怎么记,导致数学课堂没有一点生机,而互动导学最大的优点就是老师只负责引导学生,真正的研究探讨要交给学生们自己解决,当学生真的无法解决问题时,老师再稍微提醒拨正一下学生们的思路。例如,老师在讲一个新的知识点时可以先不讲,让学生们分成几组比赛,小组成员相互讨论研究,然后选学生到台上按照自己的思路和方法讲解新知识,最后老师听取学生讲解后作出相关总结,为学生们小组的研究成果打分,并提出自己的建议改进学生们的不足。导学互动教学模式改变了以往单一枯燥的教学课堂,由于学生们都有不服输的心理,所以通常都表现的非常积极,这样使得课堂气氛更加活跃,学生们可以在轻松自在的环境中学习到知识,同时对数学知识有了更清楚的认识。

  2.2创造一定情景牵出教学内容:

  由于初中的数学知识具有一定的抽象性和较高的逻辑,学生们仅靠老师的讲解和自己的理解,很难真正懂得知识的含义,所以老师在教学中就要花心思根据课本的内容创造一定情景,从而使学生能够形象的了解知识,甚至可以利用知识解决生活当中的问题。创造的情景一定要贴近学生们的生活或者自然现象、生动故事,一定要吸引学生们的兴趣,这样才能够激发学生们的.求知欲和想象力。例如在学习三角形知识的时候,一个学生身高一米五,另一学生一米四五,那么两个学生与地面形成一个周长为六米的三角形吗?这时候就可以让学生们先猜测,最后找学生来试验,再找学生测量,这样学生们就了解到三角形第三边永远小于另外两边之和。另外在在求同等周长什么图形面积最大时,可以发给学生们同等长度的绳子,让学生们自己拼出不同图形然后再计算面积,最后自己说出自己的答案。随后老师再告诉学生们答案,对学生们的努力做出鼓励,增强学生学习的兴趣,引导学生进入知识的世界。

  2.3鼓励学生合作、交流、分析培养学生团队精神:

  以往课堂都是老师在讲堂上讲,学生们乖乖地坐在下面听讲,导致学生们思维上养成懒惰的习惯,也是因为这种教学模式导致学生们一直是单独学习,没有和小伙伴们团队作战的机会,在以后的学习生活上不能与他人很好的合作,即使被分到一组也不能明确分、工团结合作,使整个团队工作效率大大降低。导学互动教学模式就是培养学生们从小养成团队意识和合作精神,学生们合作解决小组遇到的一切难题,具有一定的科学性、开放性、实践性和互动性的教学模式。在互动导学教学模式中学生们可以畅快的讨论问题,大胆的提出自己的疑问,然后与同学们积极交流,最终得出自己小团队的答案。这一方面提高了学生们对学习的兴趣,激发了学生们的求知欲和主动性,使学生们在自由、和谐、愉快的环境下快乐的学习知识,另一方面也发挥了学生们的主观能动性和创新思维,开阔了学生们的想象空间,了解到自身的不足和其他人身上的优点,使学生的综合能力大大提高。

  2.4归纳总结及时反馈:

  导学互动教学模式不仅需要老师的引导和学生自身之间、学生与老师之间的互动,还需要老师在最后对学生们的表现和成果进行一定的评价与改正,归纳总结整个课堂内容。同时学生们也要进行自我归纳,从中找出自己的不足和问题,找到解决问题的办法,在下次的学习中能够尽力避免,此时老师不要干涉是,让学生们自己思考,锻炼自己的思考和总结能力。学完一段课程后,老师还应该对学生们的学习情况进行一定的测试,能够得到相应的反馈。老师才能知道学生们有没有真的学会知识。例如,老师可以让学生们自己出题收集起来,然后将顺序打乱,再随机发给学生们,让他们自己做题,这样不仅能了解学生们对知识的掌握情况,还可以考察学生们的实际运用能力。

  3、结语

  经过导学互动教学模式的推广和应用,一定能够引起学生们对数学的喜爱,同时能够培养学生们的自主创新能力和团结协作的团队精神,这对学生们的学习和生活都有很大的帮助。作为教育工作者的我们,有责任将这种教学模式带到学习中,提高学生们的学习效率,为培养新一代的人才而努力。

  七年级数学下册相交线教案 4

  教学目标:

  1.使学生能抓住关键找出相对应的量,去分析数量关系,把握解题思路。

  2.渗透对应的数学思想,提高学生分析解决实际问题的能力。

  3.萌发学生的辩证思维,学习全面地分析、考虑问题。

  教学过程:

  一、以旧引新,促进迁移。

  1.提问:

  (1)甲买4本练习本,乙买6本练习本,谁付的钱多?为什么?

  (2)买的本数多,付出的钱也一定多吗?当每本价钱相同时,买的本数多,付出的钱怎样?付的钱少,说明买的本数怎样?

  【评析:这里(1)题的设计颇具匠心,题中有意不说乙和甲买的是同样的练习本,让学生判断谁付的钱多。估计学生中会有两种反馈,一种认为乙买的本数多,付的钱也多;另一种认为不一定乙付的钱多,因为没有说明是同样的练习木。然后在(2)题里,运用反问句强化每本价钱相同这个必要条件。这样的设计,使学生感受到看问题要仔细、全面,不能粗略作出结论。】

  2.出示:(同种铅笔)

  小红买:///

  小刚买://///

  (1)知道哪两个条件可以求出每支铅笔的价钱?若告诉小红付出1元2角,怎样计算出每支铅笔的价钱?(板书:12÷3=4(角)。)

  (2)还可告诉哪些条件,也能计算出每支铅笔的价钱?

  (让学生补条件。估计会有:①小刚付出2元。20÷5=4(角);②两人共付出3元2角。32÷(3+5)=4(角)③小刚比小红多付8角。8÷(5-3)=4(角)。)

  (3)(结合所补条件①、②的解答)提问:求每支铅笔的价钱,关键要找出什么?(铅笔支数及相对应的价钱。)(结合所补条件③)请把条件和问题连起来说一遍。教师出示:同一种铅笔,小红买了3支,小刚买了5支,小刚比小红多付8角钱,每支铅笔多少钱?

  二、尝试练习,归纳思路。

  1.学生独自思考,尝试解答上面的例题。

  2.同桌交流,展示解题的思维过程。

  3.指名学生列式,并结合算式“8÷(5-3)”提问:为什么用8除以2呢?(让学生根据铅笔实物图说理。)

  4.进行鼓励性评价:同学们想得真好。小刚比小红多付8角钱,小刚比小红多买2支铅笔,从这两个相差的数量中找到了相对应的量,即“2支铅笔的价钱是8角钱”。这样就很容易算出每支铅笔的价钱。

  【评析:在上面讨论的基础上,运用形象直观而又简明通俗的实例,提出要求的问题,让学生独立思考,展开想象,在教师的点拨下,补出各种不同的条件。然后从学生所补的条件中,选择一种,组成一个完整的应用题,放手让学生自己去解答。这样的教学能引导学生参与学习的意向,主动地掌握这类问题的结构以及解题的关键,完全改变了教师一步一步发问,学生跟随教师一步一步回答的那种被动学习的状态。从学生的思维来看是变通型、创造型的。】

  5.练一练。

  一辆汽车用同样的速度行驶,上午行了120千米,下午行了200千米,下午比上午多行2小时,平均每小时行多少千米?

  (1)让学生画线段图表述题意,借助线段图找出对应量,进行解答。

  (2)由学生展示思维过程,进行评析。

  【评析:练习题的情节变了,数量之间的关系未变,要求学生画线段图找对应量进行解答,组织学生自己展示思维过程,相互评议,教师只起一个组织者的作用。充分发挥学生的群体作用,使学生的心态处于学习主体的位置,感受到互助合作与成功的愉快。】

  三、分层练习,发展思维。

  第一层:

  选择正确算式的编号(用手势表示)。

  1.同一种自行车,第一天卖出8辆,第二天卖出的比第一天多2辆,第二天收款1500元。每辆自行车多少元?

  (1)1500÷2(2)1500÷(8+2)(3)1500÷(8+2+8)

  先让学生独立思考,画图分析,进行选择。在作出正确选择后,教师继续引发学生深入思考:

  ①若选算式

  (1),应怎样改变条件?

  ②若选算式

  (3),应怎样改变条件?从中突出关键是要找相对应的量。

  2.水果店运来若干箱苹果,每箱苹果一样重。一共运来250千克。已经卖出4箱苹果,卖出100千克。每箱苹果重多少千克?

  (1)10O÷4(2)(250-100)÷4

  先让学生独立思考作出选择,再引导学生画出线段图,并提问:若要选择算式(2),条件该怎么改?从中强调根据所求问题选择有关信息,关键是找出对应量。

  【评析:这两题都采用选择算式的形式,在学生作出正确判断后,教师再次要求学生,根据所给的算式改变应用题的条件,使算式与题目的要求相符合。这种练习方式,既有利于辨析应用题条件与问题的关系,强化解题思路,防止思维负定势,又渗透了事物之间的千变万化,学会具体问题具体分析的科学态度,这确是一种较好的练习形式。】

  第二层:发展题。

  学校新买来10盒羽毛球。如果从每盒中取出2只,剩下的羽毛球正好等于原来的8盒。买来的10盒羽毛球共有多少只?

  在学生独立思考的基础上,让学生前后四人为一组进行讨论,再指名展示思维过程,师生一起作评价,突出解题关键在于“取出的羽毛球相当于原来的'2盒”这个对应量。

  四、课堂小结。

  提问:今天所学的应用题,解题的关键是什么?

  【总评:潘小明老师的这节课,曾在本市和外省市借班上课,教学效果甚佳,表现在学生学得主动,思维活跃,甚至于有些学生不愿意下课,还要讨论下去。究其原因,一是摆正了教与学的关系,千方百计让学生主动地学,使学生真正成为学习的主体。二是改革了应用题传统的教学方法,将原来的“读题→分析(或画线段图)→列式计算→写答句”的模式,改变成“直观形象的实例→提出问题→分析解答→组成语言文字的应用题→完整解答→变化条件或问题→深化认识”的认知过程模式。这种教学模式更贴近学生的认识规律。三是紧紧把握住题目里数量之间的关系,突出解题思路,训练学生思考力。当然,要做到这些还必须具有正确的教学思想和教育观念,承认儿童具有巨大的智力潜在力,力求提高他们的数学素养,培育他们良好的心理素质等宏观上的信念,才能组织好一堂课。从这堂课里还可以看出教师的教学艺术也起到重要的作用。】

  七年级数学下册相交线教案 5

  【学习目标】

  了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.

  【学习重点】

  邻补角、对顶角的概念,对顶角性质与应用.

  【学习难点】

  理解对顶角相等的性质.

  【学习过程】

  一、学前准备

  各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,

  二、探索思考

  探索一:完成课本P2页的探究,填在课本上.

  你能归纳出“邻补角”的定义吗? .

  “对顶角”的定义呢? .

  练习一:

  1.如图1所示,直线AB和CD相交于点O,OE是一条射线.

  (1)写出∠AOC的`邻补角:____ _ ___ __;

  (2)写出∠COE的邻补角: __;

  (3)写出∠BOC的邻补角:____ _ ___ __;

  (4)写出∠BOD的对顶角:____ _.

  2.如图所示,∠1与∠2是对顶角的是( )

  探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.

  请归纳“对顶角的性质”: .

  练习二:

  1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______

  2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______

  3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.

  三、当堂反馈

  1.若两个角互为邻补角,则它们的角平分线所夹的角为 度.

  2.如图所示,直线a,b,c两两相交,∠1=60°,∠2= ∠4,求∠3、∠5的度数.

  3.如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?

  4.探索规律:

  (1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角;

  (3)四条直线交于一点,有 对对顶角;

  (4)n条直线交于一点,有 对对顶角.

  七年级数学下册相交线教案 6

  教学建议

  1.知识结构

  2.重点和难点分析

  (1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

  (2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

  3.教法建议

  (1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

  (2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

  (3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解对顶角和邻补角的概念,能在图形中辨认.

  2.掌握对顶角相等的性质和它的推证过程.

  3.会用对顶角的性质进行有关的.推理和计算.

  (二)能力训练点

  1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

  2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

  (三)德育渗透点

  从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

  (四)美育渗透点

  通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

  二、学法引导

  1.教师教法:教具直观演示法启发引导、尝试研讨.

  2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

  三、重点、难点及解决办法

  (一)重点

  (二)难点

  在较复杂的图形中准确辨认对顶角和邻补角.

  (三)疑点

  对顶角、邻补角的图形识别.

  (四)解决办法

  强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

  六、师生互动活动设计

  1.通过实例创设情境,引导学生进入课题.

  2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

  3.通过学生研讨、练习巩固完成性质的讲解.

  4.通过学生总结完成课堂小结.

  5.通过随堂练习,检测学生学习情况.

  七年级数学下册相交线教案 7

  教学建议

  一、知识结构

  二、 重点、难点分析

  本节教学的重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础。

  1、平方差公式是由多项式乘法直接计算得出的:

  与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项。合并同类项后仅得两项。

  2、这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

  只要符合公式的结构特征,就可运用这一公式。例如

  在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了。

  3、关于平方差公式的特征,在学习时应注意:

  (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数。

  (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方)。

  (3)公式中的和可以是具体数,也可以是单项式或多项式。

  (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算。

  三、教法建议

  1、可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力。

  2、通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的'平方差,而另两项恰是互为相反数,合并同类项时为零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2。

  这样得出平方差公式,并且把这类乘法的实质讲清楚了。

  3、通过例题、练习与小结,教会学生如何正确应用平方差公式。这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2。

  这样,学生就能正确应用公式进行计算,不容易出差错。

  另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性。

  教学目标

  1、使学生理解和掌握平方差公式,并会用公式进行计算;

  2、注意培养学生分析、综合和抽象、概括以及运算能力。

  教学重点和难点

  重点:平方差公式的应用。

  难点:用公式的结构特征判断题目能否使用公式。

  教学过程设计

  一、师生共同研究平方差公式

  我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

  让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

  两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

  (当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)

  继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

  在此基础上,让学生用语言叙述公式。

  二、运用举例?变式练习

  例1?计算(1+2x)(1-2x)。

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2。

  教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

  例2?计算(b2+2a3)(2a3-b2)。

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4。

  教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

  课堂练习

  运用平方差公式计算:

  (l)(x+a)(x-a);(2)(m+n)(m-n);

  (3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

  例3?计算(-4a-1)(-4a+1)。

  让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1。

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1。

  根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

  课堂练习

  1、口答下列各题:

  (l)(-a+b)(a+b);(2)(a-b)(b+a);

  (3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

  2、计算下列各题:

  (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

  教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

  三、小结

  1、什么是平方差公式?

  2、运用公式要注意什么?

  (1)要符合公式特征才能运用平方差公式;

  (2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

  四、作业

  1、运用平方差公式计算:

  (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

  (5)(2x 3 +15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

  2、计算:

  (1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4)。

  七年级数学下册相交线教案 8

  学习目标:

  知识:对顶角邻补角概念,对顶角的性质。

  方法:图形结合、类比。

  情感:合作交流,主动参与的意识。

  学习重点:

  对顶角的概念、性质。

  学习难点及突破策略:

  “对顶角相等”的探究;小组讨论

  教学流程:

  【导课】

  同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的.角的问题(板书课题)。

  【阅读质疑,自主探究】

  请大家阅读课本P,回答以下问题(自探提纲):

  1、两条相交的直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的位置关系?存在怎样的大小关系?

  2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?

  3、对顶角有什么性质?你是怎样得到的?

  【多元互动,合作探究】

  同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:

  1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。

  2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。

  3、“对顶角相等”的推导过程。

  七年级数学下册相交线教案 9

  相交线

  教学目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.

  2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用.

  难点:理解对顶角相等的性 质的探索.

  教学过程

  一、读一读,看一看

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、观察剪刀剪布的过程,引入两条相交直线所成的角

  教师出示 一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?

  学生观察、思想、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪 刀刃之间的角也相应变大.

  三、认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的'位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  当学生直观地感知 角有相邻、对顶关 系时, 教师引导学生用几何语言准确地表达,如:

  AOC和BOC有一条公共边OC, 它们的另一边互为反向延长线 .

  AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线.

  2.学生用量角器分别量一量各个角的度 数,以发现各类角的度数有什么关系,学生得出有相邻关系的两角互补,对顶关系的两角相等.

  3.学生根据观察和度量完成下表:

  两直线相交 所形成的角 分类 位置关系 数量关系

  教师再提问:如果改变AOC的大小, 会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念.

  (1)师生共同定义邻补角、对顶角.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  (2)初步应用.

  练习1:下列说法,你同意吗?如果错误,如何订正.

  ①邻补角的邻就是相邻,就是它们有一条公共边,补就是互补,就是这两角的另一条边共同一条直线上.

  ②邻补角可看成是平角被过它顶点的一条射线分成的两个角.

  ③邻补角 是互补的两个角,互补的两个角也是邻补角?

  5.对顶角性质.

  (1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.

  (2)教师把说理过程,规范地板书:

  在图1中,AOC的邻补角是BOC和AOD,所以AOC与BOC互补,AOC 与AOD互补,根据同角的补角相等,可以得出AOD=BOC,类似地 有AOC=BOD.

  教师板书对顶角性质:对顶角相等.

  强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.

  (3)学生 利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.

  四、巩固运用

  1.例 :如图,直线a,b相交,1=40,求3,4的度数.

  教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.

  2.练习:

  (1)课本P5练习.

  (2)补充:判断下列图中是否存在对顶角 .

  五、作业

  1.课本P9.1,2,P10.7,8.

  2.选用课时作业设计.

  课时作业设计

  一、判断题:

  1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

  2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

  二、填空题:

  1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_______,COF 的邻补角是________.若AOC:AOE=2:3,EOD=130,则BOC=_________.

  (1) (2)

  2.如图2,直线AB、CD相交于点O,COE=90AOC=30FOB=90, 则EOF=________.

  三、解答题:

  1.如图,直线AB、CD相交于点O.

  (1)若AOC+BOD=100,求各角的度数.

  (2)若BOC比AOC的2倍多33,求各角的度数.

  2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

  课时作业设计答案:

  一、1. 2.

  二、1.AOF,EOC与DOF,160 2. 150

  三、1.(1)分别是50,150,50,130 (2)分别是49,131,49,131.

  七年级数学下册相交线教案 10

  一、教学目的:

  1.知识与技能:

  理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。

  2.过程与方法:

  能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。

  3.情感态度价值观:

  培养识图能力,发展空间想象能力,和逻辑推理能力。

  二、教学重难点

  1.重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。

  2.难点:理解对顶角相等的性质的探索。

  三、教学过程

  1.创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。

  2.尝试活动:让同学们提前准备道具,在课上用剪刀剪纸,并且提出问题,在剪纸过程中如果把剪刀看成两条线,则在剪纸的过程中剪刀发生了哪些变化?

  3.抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。

  4.尝试探究:任意画两条相交的直线,形成四个角,让同学们把形成的四个角两两一组结对,一共能有几种,并且提问角一和角二有什么样的位置关系?角一和角三呢?

  5.尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的.定义。

  6.在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。

  7.进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。

  四、总结拓展

  引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。

  五、布置作业

  第七页,第二题,第六题,第十题

  七年级数学下册相交线教案 11

  教学目标:

  知识与技能:能结合图形准确地辨认对顶角、邻补角;理解对顶角、邻补角性质并会利用其进行简单说理及有关计算。

  过程与方法:通过观察、讨论、猜想、验证、推理、交流等探究活动,让学生从中获得对顶角相等的结论,发展空间观念、培养识图能力和语言表达能力。

  情感态度与价值观:让学生认识到数学与生活紧密相连、数学活动充满着探索与创造,体验学习过程中获得的成功,提高学习数学的兴趣和自信心,从而使学生更加热爱数学,学好有价值的数学。

  教学重点:对顶角的概念、对顶角的性质。

  教学难点:对对顶角相等性质的理解与应用。

  教学方法:探究、启发教学法。

  教具准备:多媒体、一把剪刀、一块布片、两根相交的木条(相交线模型)、三角板、量角器、白纸等。

  教学过程:

  一、创设情境,导入课题。

  用多媒体演示图片:图片略。

  老师提问:这是合肥市金寨路高架桥,同学们知道这是哪段吗?

  学生(异口同声):知道,这是我们学校附近的高架桥。

  老师:对,同学们注意到十字形路口了吗?它犹如两根相交的木条(出示事先准备好的相交线模型,要求学生用两支笔代替木条与老师一起演示)。若把两根木条想像成两条直线,则此模型可看作两条直线相交,两条直线相交时能形成哪些角呢?这些角又有什么特征呢?(问而不答,为下面的学习作铺垫)。这就是我们今天这节课要研究的内容:10.1相交线中的角(课件显示课题)。

  二、互动探究,研究课题。

  首先请同学们观察电影片段(多媒体播放):几位老奶奶正在用剪刀为部队加工布鞋的劳动场景。(老师解说)看,这些老奶奶正是用这样的剪刀在为我们的军人服务,为国家作出一点儿贡献。出示一把剪刀和一块布片,演示剪布过程。让学生观察,然后显示大屏幕上的第1个问题。

  问题1:剪布时,用力握紧把手,引发了什么变化?从而使什么也发生变化?

  学生活动:小组讨论、交流。然后老师启发学生:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角相应变小;如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。若把剪刀的构造看作两条相交的直线,以上就关系到两条直线相交所成的角的问题。我们可把剪刀张开时的情境抽象为几何图形:两条相交的直线。老师在黑板上画出图形,学生在草稿纸上画出图形,如图1示。再次出示相交线模型,让一根木条不动,转动另一根,使木条的.位置不断变化。让学生仔细观察图1和模型,然后显示大屏幕上的问题2。

  问题2:AOC与BOD的位置和大小始终保持怎样的关系?

  在图1中,我们可以观察到:AOC与BOD、AOD与BOC是相对的角。还有AOD与AOC从位置来说是相邻的,图中还有哪些相邻角呢?这些相对角与相邻角分别有哪些特点呢?先小组讨论(以同桌的两个同学为一组),再在全班交流小组观点。小组中的两个成员一个留在原位,接受其他小组成员的采访,另一个出去采访其他小组,搜集观点。老师也走进学生中间,倾听学生的心声。然后老师对同学们在合作交流中的表现和讨论结果作积极的评价。最后小结同学们的讨论结果,从而给出对顶角和邻补角定义:如图1,直线AB与CD相交于点O,AOC与BOD有公共顶点O,并且它们的两边分别互为反向延长线,这样的两个角叫做对顶角。而AOD与AOC有公共顶点O,并且它们有一条公共边OA,另一边互为反向延长线,这样的两个角叫做邻补角(课件显示定义)。对顶角与邻补角都是成对出现的,它们互为对顶角或邻补角,如AOC是BOD的对顶角,同时,BOD是AOC的对顶角,也常说AOC和BOD是对顶角.识别对顶角要三看:一看是不是两条直线相交所成的角,对顶角与相交线是相依为命的,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.三者缺一不可。让同学们观察黑板上所画的图形,指出图中还有哪些对顶角和邻补角?老师找几个学生分别回答。然后显示大屏幕上的问题3。

  问题3:从数量角度来说,邻补角是互补的,那么对顶角又怎样呢?

  学生活动:全班按前后两排每4个同学为一组,分成15组,根据草稿纸上画的图形猜想出对顶角的关系,再研究如何验证自己的猜想,与小组同学一起讨论。

  教师活动:走到学生中间,与学生一起畅所欲言,接着每组派出一个代表发言。最后老师评价同学们的观点并作补充:对顶角和邻补角一样,都是同一图形中两个角之间的一种位置关系。

  经过一番讨论,同学们大胆猜想了互为对顶角的两个角是相等的,并用了不同的方法进行验证,如:有的小组用推理论证法来验证,因为AOD与AOC、AOD与BOD是邻补角,根据同角的补角相等的性质可知AOC=还有的小组想出了用量角器度量法,通过度量一对对顶角,比较大小可得对顶角相等。此外,有没有别的方法呢?与学生一起,拿出一张白纸,画两条相交的直线,示意用叠合法来验证同学们的猜想,学生恍然大悟。小结三种验证方法后,于是得到:对顶角相等(课件动画显示结论,突出了重点)。

  最后让我们来做一个游戏吧:以同桌的两个同学为一组,其中一个同学伸出两支胳膊,使其交叉,可以看作两条直线相交。另一个同学指出两支胳膊相交所形成的角中有哪些是对顶角?哪些是邻补角?然后互相对调再完成一次。

  三、强化训练,巩固课题。

  1、讨论题:(课件显示)

  ⑴列举几个生活中包含对顶角和邻补角的例子。

  ⑵让学生在草稿纸上画图,三条直线a、b、c相交于点O,讨论该图形中有哪些对顶角和邻补角?

  2、抢答题:(用大屏幕逐个显示题目,让学生快速抢答,先回答正确的学生奖励一个练习本)。

  ①判断:⑴有公共顶点的两个角是对顶角;

  ⑵相等的两个角是对顶角;

  ⑶对顶角必相等;

  ⑷不是对顶角的两个角不相等;

  ⑸有公共顶点,且方向相反的两个角是对顶角;

  ⑹有公共顶点,且相等的两个角是对顶角;

  ⑺两条直线相交所成的角是对顶角;

  ⑻角的两边互为反向延长线,且有公共顶点的两个角是对顶角;

  ⑼有公共顶点且和为180的两个角为邻补角

  ⑽有公共顶点、有一条公共边且互补的两个角为邻补角。

  ②选择:如图4,三条直线AB、CD、EF交于一点O,则EOC+BOF+AOD=()

  ③探索:(课件显示)图中,1和2是对顶角吗?为什么?

  3、解答题(课件显示):如图3,两条直线AB、CD相交于O点,已知AOC=35,求AOD和BOD的度数。

  四、总结反思。

  通过相交线中的角的学习,你掌握了对顶角和邻补角的定义了吗?你能口述二者的相同点和不同点吗?你知道对顶角和邻补角又有什么性质吗?这节课你都参与了哪些活动?有新的发现和启发吗?

  五、作业布置。(课件显示题目)

  1、先阅读第十章第一节内容,然后做第一节课后练习。

  2、基础较好的学生另外完成课本第114页思考题。

  3、以我谈对顶角与邻补角为题,写一篇100至1000字左右的短文,体裁不限,你可以充分发挥自己的想象,把它写成说明文、散文或诗歌。