当前位置:9136范文网>教育范文>教案>《倍数和因数》教案

《倍数和因数》教案

时间:2023-03-18 14:42:17 教案 我要投稿

《倍数和因数》教案

  作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么你有了解过教案吗?以下是小编为大家整理的《倍数和因数》教案,仅供参考,大家一起来看看吧。

《倍数和因数》教案

《倍数和因数》教案1

  教学目标:

  1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

  2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。

  3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。

  教学重点:理解倍数和因数的意义。

  教学难点:探索求一个数的倍数和因数的方法。

  教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。

  设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。

  教学过程:

  一、智力竞猜 引入新课

  1、让学生进行智力竞猜春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)

  2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍下三个人的关系。学生可能会说出韩有才.是爸爸,韩有才是儿子的语句,这时引导学生说出谁是谁的爸爸谁是准的儿子。

  3、上述父子关系是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系倍数和因数。

  设计说明:智力竞猜走学生喜欢的形式,因为每个学生都有争强好胜之心,竞猜有两个作用,一是激发学生的学习兴趣,二是以此引出相互依存的关系,为理解倍数和因数的相互依存关系作铺垫。

  二、操作发现 理解概念

  1、师:智慧从手指问流出,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。

  2、请学生汇报不同的摆法,以及相应的乘除法算式。(乘法算式和除法算式分开写)再向学生说明:如果一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)

  设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。

  3、让学生一起看乘法算式43=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。

  4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。

  5、让学生仿照说出62=12和121=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。

  6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0( )=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。

  设计说明:倍数和因数是全新的概念,需要教师的传授、讲解,需要学生的适当记忆重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。

  7、以43=12与123=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。

  8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数

  54=20 357=5 3+4=7

  (1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。

  (2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。

  设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。

  三、探索方法 发现特征

  1、找一个数的因数。

  (1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。

  (2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的一对一对说出15的因数。

  (3)用一对一对的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。

  (4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。

  设计说明:先安排学生找一个数的因数可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生一对一对的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的.某些特征。

  2、找一个数的倍数。

  (1)让学生找3的倍数,比一比谁找得多。

  (2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。

  (3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

  设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。

  四、巩固练习

  师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?

  1、想想做做的第l题。学生表述后强调哪个是哪个的倍数(或因数)。

  2、想想做做的第2题。学生填好后引导学生说一说:表中的应付元数其实都是什么?表格中为什么用省略号?

  3、想想做做的第3题。学生填好后引导学生说一说:表格中所有数都是什么?这个表格中为什么没有省略号?

  4、游戏找朋友。让学生拿出各自的学号卡片,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?

  设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使学生感悟到其中蕴藏着求一个数倍数和因数的方法,以及倍数和因数的某些特征。第4题通过游戏活动进一步激发学生持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。

  五、自我梳理 探索延伸

  1、通过这节课的学习你有什么收获?向你的同伴介绍一下。

  2、生活中许多现象与我们学习的倍数和因数的知识有关,课后同学们可以利用今天所学的知识探索一下1小时等于60分的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算。

  设计说明:向同伴介绍自己的收获可以将课堂中学到的知识进行自我梳理,同时通过探索1小时等于60分的好处,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展学生的知识面,使学生认识到数学知识的应用价值。

《倍数和因数》教案2

  课前思考:

  1.概念揭示变逻辑演绎为活动建构。因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。如果能借助学生的操作和想象活动,唤起学生的因倍意识,自主建构起因数和倍数的意义,那么学生获得的概念必然是生动的、有意义的。

  2.解决问题变关注结果为对话生成。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉学生,迫切地寻求结果,还是给学生充分的探究时间,让他们通过独立思考、交流讨论,从而发现问题、解决问题呢?很多成功的教学表明,在教学中为学生营造出一个对话场,在生生、师生多角度、多层面的对话中,能让师生彼此分享经验、沟通思考,生成新的看法。

  3.教学宗旨变关注知识为启迪智慧。知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。从知识课堂走向智慧课堂,为学生的智慧成长而教,应成为我们数学教学的倾心追求。怎样通过对因数和倍数内涵的深度挖掘,在教给学生数学知识的同时,更教会他们数学思考的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计因数和倍数这堂课的宗旨所在。

  教学目标:

  1.通过活动建构,使学生领会因数和倍数的意义;通过独立思考、交流谈论,初步掌握求一个数所有因数的方法。

  2.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  3.通过教学,让学生从中感受到数学思考的魅力,体验到数学学习的乐趣。教学准备:

  练习纸、学号卡等。

  教学重、难点:

  掌握求一个数的所有因数的方法,学会有序地进行思考。

  教学流程:

  一、意义建构

  1.用12个同样的小正方形摆一个长方形,可以怎样摆?能不能举一道简单的乘法算式,把你心目中的摆法表示出来?(请一位学生回答)

  2.猜猜他可能是怎样摆的?

  (根据学生回答依次出现相应的两种摆法,随后隐去第二种)

  3.还可以怎样摆?同样用一道乘法算式表示出来。

  (再请一位学生回答)

  4.他又可能是怎样摆的?

  (根据学生回答屏幕显示另外两种摆法,随后隐去第二种)

  5.还可以怎样摆?

  (请学生回答)

  6.能想象出他的摆法吗?

  (根据学生回答屏幕显示最后两种摆法,随后隐去第二种)

  此时屏幕上出现三种摆法。在三种摆法右侧分别出现三道乘法算式。

  7.通过刚才的学习,我们发现,用12个同样的小正方形,可以摆出三种不同的长方形,由此我们还得出三道不一样的乘法算式。以43=12为例,43=12,从数学的角度看,我们可以说4是12的因数,3也是她的因数。反过来,我们还可以说,12是4的倍数,12也是3的倍数。这就是我们今天要研究的因数和倍数。

  (板书课题:因数和倍数)

  8.结合另外两道乘法算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?

  (请同座两个学生相互说一说)

  9.为了研究的方便,在研究因数和倍数时,我们所说的数专指不是零的自然数。

  [设计理念:因数与倍数这节内容,传统教材是按数学知识的逻辑系统安排的,在除法和整除的基础上,由整除直接演绎推理出来的。这种概念的揭示从抽象到抽象,没有学生经历的过程,学生获得的概念是刻板的、冰冷的。而本环节设计旨在让学生借助表象进行操作和想像活动,自主体验数与形的结合以及其中的因倍关系,进而生成因数和倍数的意义。这种意义的建构是基于学生原有经验之上的,是学生自主操作、积极思考的结果。]

  二、方法渗透

  1.根据44=16、40016=25这两个算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?

  (指名回答)

  2.当两个因数相同时,通常只需要说出或写出一个,这是数学上的规定。我们能不能说16是因数,或者说16是倍数?

  (组织学生讨论)

  3.因数和倍数它们是一种相互依存的关系。

  (板书:相互依存)

  4.下面我们一块来找一找100的因数有哪些?同学们可以同座两人合作,也可以独立思考。

  (教师巡视。并选择一份作业,用实物投影展示出来)

  5.对照你们自己找出的100的所有因数,你想对这位同学说些什么?

  (根据学生回答,教师相机进行引导、评价)

  6.对于刚才几位同学的回答,你们还有没有什么需要补充的或提问的?

  7.比较这几种方法,你发现了什么?

  8.回顾刚才的过程,你觉得要找出一个数的所有因数,有什么诀窍?

  (通过对话、讨论,让学生体会思考的合理性、有序性)

  9.当然,如果要找出一个很大数目的所有因数,用这种方法可能会比较麻烦,我们将在今后的学习中进一步来研究。

  [设计理念:如何找出100的所有因数,教学中,教师没有急切地认定结果,也没有简单地把方法告诉学生,而是先让学生或同座两人合作,或独立思考。通过多角度、多层面的交流与对话,师生之间彼此分享经验、沟通思考。在解决问题的过程中,学生的思维能力得到了提高,情感、态度、价值观得到了升华。]

  三、巩固深化

  (课件显示:下面哪些数一定是□□的因数。

  1、2、3、4、5、6、7、8、9、10)

  1.方框后面藏着个两位数,看谁能很快说出下面10个数中,哪些是它的因数?

  (单击一下,出示21)

  2.接着出示□4,哪些是它的.因数呢?说说你的想法?

  3.要使这个数一定有因数2,那么个位上还可以是哪些数字?

  4.出示□0。你知道除了1和2外,还有哪些数也是它的因数?

  5.最后出示□□。这一次,十位和个位上的数字都看不清了,你还能找到答案吗?

  [设计理念:设计这一组变式练习,一方面使学生进一步掌握找一个数的因数的方法,另一方面又巧妙渗透了能被2整除的数的特征,体现了数学学习的综合性、连贯性。]

  四、360度的优点

  1.我们已经知道了一直角等于90度,一圆周角等于360度。可是你们知道吗?从前,法国人曾将一直角定为100度,这样一圆周角就是400度。但是后来却没有能行得通。这是什么道理呢?一圆周角等于360度又有什么优点呢?

  2.我们先来找一找360和400的因数各有多少个?

  (分别出示360和400的所有因数。)

  3.原来其中一个重要的原因,就是360的因数比400的因数多,多9个。一圆周角定为360度,当我们需要计算一圆周角的几分之一时,可以在23种情况下得到整度数。

  课件显示:

  2等分:360/2=180;3等分:360/3=120;

  4等分:360/4=90;5等分:360/5=72;

  90等分:360/90=4;120等分:360/120=3;

  180等分:360/180=2;360等分:360/360=1)

  而如果把一圆周角定为400度,那么只有在14种等分情况下才能得到整度数。相比之下,当然360度要方便多了。

  [设计理念:为什么法国人将一圆周角定分400度没能行得通?一圆周角定为360度有什么优点?学生通过猜想、比较,了解到这些竟然与因数的多少有关,从中学生真切地感受到数学的有趣、神奇。数学在学生心目中不再是陌生、晦涩的,而是生动有趣的,她就在你我的身边。]

  五、游戏中的发现

  1.请学生拿出学号卡,在纸上写下你的学号数的所有因数。

  2.在这些数中,因数的个数最少的是几?(对1)虽然1是因数个数最少的一个数,但它却又是最受欢迎的一个数,你们知道为什么吗?

  3.除了1以外,你觉得还有哪些数比较特别的?

  (找2或5号同学。)

  4.你这个数特别在哪儿?像这样的数还有哪些?请把学号卡举起来。

  (课件显示:只有两个因数的有:2、3、5、7、11)

  5.除了这些数外,其余的数各有多少个因数?(对4)你有?(对6)你呢?

  6.这些数,它们的因数个数多少不一,各不相同。同学们猜一猜在它们中间因数个数最多的是那一个?你觉得?理由是?你有什么办法可以把这个数尽快地找出来?

  7.如果让同学们将这51个数按照它们因数个数的不同,来分一分类,你们准备怎样分?其实不光这51个数,把所有的自然数按照因数个数的不同来分类,都可以分成这样的三类。

  8.今天这节课我们就上到这儿,关于因数和倍数,还有许多的知识等着我们去学习,去研究,去探索

  9.组织学生分批退场。

  (1)请学号数不少于三个因数的同学先退场;

  (2)请学号数只有两个因数的同学退场;

  (3)请学号数只有一个因数的同学跟我一起离场。

  [设计理念:通过寻找自己学号数的所有因数,既使学生进一步熟悉找一个数的因数的方法,又让学生感知到自然数的因数个数各有不同,为后面学习质数与合数埋下伏笔;组织学生分批退场,既检验了学生学习的效果,又营造了一种轻松、愉悦的气氛。正所谓课已毕,趣犹在。]

《倍数和因数》教案3

  描述目标:

  1、知识目标:①结合整数乘、除法运算初步认识因数和倍数的含义;②探索求一个数的因数和倍数的方法;③通过列举法,发现并概括出一个数的因数和一个数的倍数的特点;④能找出一个数的因数、一个数的倍数。

  2、能力目标:使同学在认识因数和倍数以和探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学考虑的水平。

  3、情感目标:培养同学观察、分析、笼统概括能力,体会教学内容的有趣,发生对数学的好奇心。

  教学重点:结合整数乘、除法运算体会和理解因数和倍数的含义,探索求一个数的因数数或倍数的方法。

  教学难点:引导同学探索并理解因数数和倍数之间的相互依存的关系。

  教学过程;

  一、导入。

  1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

  2.同学动手操作,并与同桌交流摆法。

  3.请用乘法算式表达你的摆法。

  二、理解新知。

  1.理解因数和倍数。

  (1)观察3×4=12

  今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

  师板书:因数和倍数

  (2)用因数和倍数说一说算式l×12=12,2×6=12中三个数的关系。

  (3) 提问:在4+3=7中我们能说7是4和3的倍数,4和3都是7的因数吗?(同学讨论)

  【设计意图:通过讲解、设疑、讨论等形式让同学从其内涵上加深对因数和倍数的理解,明确因数和倍数是相互依存的概念,不能独立存在。】

  (4)归纳:

  ①因数和倍数都是表示两个数之间的关系,不能单独说那个数是因数,那个数是倍数。

  ②只有一个自然数是两个自然数的乘积时候才干谈上它们之间具有因数和倍数的关系。

  ③研究因数和倍数时,所指的数是整数(一般不包括O)。

  (5) 讨论:板书:24÷4=6

  提问:能说4、6是24的因数,24是4、6的倍数吗?

  同学各说自身的理由,讨论后统一。

  提示:4×6=24(教师板书),这样你看出来了吗?

  (6)练习:①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

  ②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

  【设计意图:提高对因数和倍数的意义的认识。】

  2.求一个数的因数。

  (1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

  请同学们找出36的所有因数。

  出示要求:

  ①可独立完成,也可同桌合作。

  ②可借助刚才找出12的所有因数的方法。

  ③写出36的所有因数。

  ④想一想,怎样找才干保证既不重复,又不遗漏。

  (2)比较喜欢哪一种答案?为什么?

  用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

  (3)练习:①对口令游戏。②16的因数有哪些? 11的因数有哪些?

  (4)发现因数特点:36、16、11的因数你有什么发现吗?

  师:虽然个数不相等,但它们的个数都是有限的。

  小结:一个数的最小因数是1,最大的因数是它自身。一个数的因数个数是有限的。(同学总结不出此点不要急于点拨)

  (5)练习:说特点猜数。

  3.求一个数的倍数。

  (1)3的倍数有:——,怎样有序地找,有多少个?

  (2)练一练:6的倍数有;5的倍数有。

  (3)发现倍数特点:找得对吗?我们一起来说一说。下面请大家仔细观察,你发现一个数的倍数有什么特点?可以前后四人小组讨论讨论。(导:发现最小的特征后问:那么7最小的倍数是几?10呢?)一个数的倍数还有怎样的特点?这些数的倍数你写得完吗?也就是说明一个数的倍数的个数是无限的。那么也没有最大的倍数。刚才大家发现了——,简单地说就是——

  小结:一个数的最小倍数是自身,没有最大的倍数,一个数的倍数的个数是无限的。(和一个数的因数特点进行对比)

  【设计意图:这个环节的教学主要把小组讨论和自主探索结合起来,让同学在讨论中体会过程、总结方法、提升水平,发现有关倍数的一些规律。】

  (4)练习:判断题

  四、拓展应用。

  1.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

  2.举座位号起立游戏。

  (1)5的倍数。(2)48的因数。(3)既是9的倍数,又是36的因数。

  (4)怎样说一句话让还坐着的同学全部起立。

  五、黄金二分钟。

  达标检测:

  1、理解因数和倍数:练习:①21×3=63, 是 的因数, 是 的'倍数;6是18的 ,是3的 。

  ②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

  【设计意图:提高对因数和倍数的意义的认识,达成知识目标中的第①个目标】

  【评价规范:同学能正确理解和掌握因数和倍数的意义,尤其能通过算式找出一个数的因数和倍数】

  2、会找一个数的因数:①对口令游戏。②16的因数有哪些? 11的因数有哪些?③说特点猜数。

  【设计意图:通过对口令提升同学找因数的方法的方法训练,达成知识目标中的第②③个目标】

  【评价规范:同学能用正确的方法,快速、正确的找出一个数的所有因数】

  3、会找一个数的倍数:我会辩。【设计意图:达成知识目标中的第④个目标】

  【评价规范:同学能用正确的方法,快速、正确的找出一个数的倍数】

《倍数和因数》教案4

  教材分析:

  以乘、除法知识拓展方式,引入对“因数与倍数”知识的学习。有利于沟通新旧知识之间的联系,分散难点,便于学生理解和掌握知识。

  教学目标:

  ①在具体的情境中,借助乘法算式认识因数和倍数。

  ②掌握求一个数的因数和倍数的方法,知道一个数的因数及倍数的特点。

  重点难点突破:

  为了突出重点、突破难点,特设计以下三个环节进行教学:

  ① 以学生的贴画为素材,通过不同的贴法引出不同的乘法算式,以乘法算式引出因数

  和倍数的意义。

  ②引导学生自主找一个数的因数,以此加深对因数的理解。

  ③引导学生自主找一个数的'倍数,以此加深对倍数的理解。

  组内教师讨论要点:

  ①找一个数的因数时,一定要放手,且给学生足够的时间让他们去同位之间、小组内交流,如何能快速且没有遗漏的找全。

  ②及时的练习巩固也是很有必要的,在多个练习的基础之上让学生发现一个数因数的特点。

  ③找一个数的因数也反映出学生的口算水平的高低。

  ④找一个数的倍数时,以找2、3、5的倍数为主,让学生发现一个数倍数的特征。

《倍数和因数》教案5

  撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套人教新课标版五年级下册《因数和倍数》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

  第二单元

  因数和倍数

  课题:因数和倍数

  教学目标:

  1、同学掌握找一个数的因数,倍数的方法;

  2、同学能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养同学的观察能力。

  教学重点:掌握找一个数的因数和倍数的方法。

  教学难点:能熟练地找一个数的因数和倍数。

  教学过程:

  一、引入新课。

  1、出示主题图,让同学各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的`关系了?

  那你还能找出12的其他因数吗?

  4、你能不能写一个算式来考考同桌?同学写算式。

  师:谁来出一个算式考考全班同学?

  5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

  齐读p12的注意。

  二、新授:

  (一)找因数:

  1、出示例1:18的因数有哪几个?

  从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  同学尝试完成:汇报

  (18的因数有: 1,2,3,6,9,18)

  师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

  3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

  18的因数

  小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1、我们一起找到了18的因数,那2的倍数你能找出来吗?

  汇报:2、4、6、8、10、16、……

  师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍数最小是几?最大的你能找到吗?

  2、让同学完成做一做1、2小题:找3和5的倍数。

  汇报 3的倍数有:3,6,9,12

  师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……倍)

  5的倍数有:5,10,15,20,……

  师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

  2的倍数 3的倍数 5的倍数

  师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)

  三、课堂小结:

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  四、独立作业:

  完成练习二1~4题

  课后反思:

《倍数和因数》教案6

  教学目标:

  1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养同学自主探索、独立考虑、合作交流的能力。

  3、培养同学敢于探索科学之谜的精神,充沛展示数学自身的魅力。

  教学重点:

  1、理解掌握质数、合数的概念。

  2、初步学会准确判断一个数是质数还是合数。

  教学难点:区分奇数、质数、偶数、合数。

  教学过程:

  一、探究发现,总结概念:

  1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

  同学独立考虑,然后全班交流。

  2、师:这样的四个小正方形能拼出几个不同的长方形?

  同学各自独立考虑,想像后举手回答。

  3、师:同学们再想一下,假如有12个这样的小正方形,你能拼出几个不同的长方形?

  师:我看到许多同学不用画就已经知道了。(指名说一说)

  4、师:同学们,假如给出的正方形的个数越多,那拼出的不同的长方形的.个数——,你觉得会怎么样?

  同学几乎是异口同声地说:会越多。

  师:确定吗?(引导同学展开讨论。)

  5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。

  先让同学小组讨论,然后全班交流,师根据同学的回答板书。

  师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

  同学独立考虑后,在小组内进行交流,然后再全班交流。

  引导同学总结质数和合数的概念,结合同学回答,教师板书:(略)

  6、让同学举例说说哪些数是质数,哪些数是合数,并说出理由。

  7、师:那你们认为“1”是什么数?

  让同学独立考虑,后展开讨论。

  二、动手操作,制质数表。

  1、师出示:73。让同学考虑着它是不是质数。

  师:要想马上知道73是什么数还真不容易。假如有质数表可查就方便了。(同学们都说“是呀”。)

  师:这表从哪来呢?

  (教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想方法找出100以内的质数,制成质数表?谁来说说自身的想法?(让同学充沛发表自身的想法。)

  2、让同学动手制作质数表。

  3、集体交流方法。

  三、练习巩固:

  完成练习四第1、2题。

  四、课题小结:

  这节课你在激烈的讨论中有什么收获?

《倍数和因数》教案7

  本单元安排在学生已经掌握了许多自然数的知识之后,系统地教学分数的意义和性质之前,可以使学生进一步丰富自然数的知识,了解自然数之间存在的倍数与因数关系,体会自然数都有因数,而且不同自然数的因数个数是不同的。这些内容还能为以后教学分数知识作必要的准备。研究倍数与因数一般在非零自然数范围内进行,可以减少不必要的麻烦。因此,教材在底注中给予明确的规定。教学内容分四部分编排。

  第70~73页教学相关的自然数之间的倍数与因数关系,求一个数的倍数或因数的方法。

  第74~77页教学5、2、3的倍数的特点,以及偶数、奇数等知识。

  第78~79页教学素数与合数的概念和判断方法。

  第80~82页整理全单元的知识并组织综合练习。

  编写的你知道吗介绍哥德巴赫猜想和我国数学家研究这一猜想取得的显著成就。两道思考题让学生利用所学的数学概念探索有挑战性的问题。

  1? 联系实际体会自然数之间的倍数、因数关系,探索找一个数的倍数与因数的方法。

  教材的第一部分先教学倍数、因数关系,再教学求倍数与因数的方法。前者是形成数学概念,后者是应用概念。

  (1) 第70页的例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。教材根据各种拼法中每行正方形的个数与行数,把三种拼法分别表示成43=12、62=12和121=12。以43=12为例讲了12是4的倍数,也是3的倍数,4和3都是12的因数。又让学生说出62=12、121=12里存在的倍数、因数关系。这道例题有两个编写特点: 第一个特点是作为研究对象的三个数学式子都从具体的操作活动中提取出来,有助于学生联系现实情境和实际经验体会倍数与因数的含义;第二个特点是给学生举一反三的机会,用43=12里学到的倍数、因数知识解释62=12、121=12这两个式子里的倍数与因数关系,充分地调动了学生的积极性和主动性。教学这道例题要注意,倍数与因数是一种关系,客观存在于两个具体的自然数之间。因此,要通过完整的语言表达关系,让学生体会这种关系,如4是12的因数、12是4的倍数,不能说成4是因数、12是倍数。

  (2) 第71页的两道例题分别是教学找一个数的倍数和找一个数的因数的方法,虽然内容不同,教学方法都非常相似。即利用初步建立的倍数与因数的概念,联系已经掌握的乘除法口算,让学生在探索中找到方法。

  找3的倍数,采用的思路是3和任何非零自然数的乘积都是3的倍数。这一思路容易理解、容易操作,与建立倍数、因数概念的大背景保持一致。教学时要引导学生从3的倍数是怎样的数想起,先形成找3的倍数的思路,然后从小到大一个一个地找,并按顺序写出来。还要理解例题在写出3的倍数时为什么用了省略号。试一试独立找2和5的倍数,一方面巩固找一个数的倍数的方法,另一方面通过3、2、5的倍数可以发现有关倍数的一些规律。如一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数等。在若干个实例中寻找共同特点,总结成规律,虽然仍旧是不完全归纳,但对小学生来说已经是比较科学的方法了。

  在找36的因数时,如果沿乘积是36的自然数都是36的因数这个思路就能得出想乘法算式这种方法,这条思路容易形成,在操作时往往不大顺畅。如果按36除以哪些自然数没有余数?这个思路想就能得出想除法算式这种方法,这条思路一旦形成,方法易于操作。因此,例题从因数的概念出发,利用()()=36这个式子先让学生明白,找36的因数就是写出这个式子的因数。然后联系除法的意义,引导学生利用除法求36的因数。

  在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。教学要承认学生实际,允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中相互评价,删去重复的,补上遗漏的,并组织学生认真讨论怎样找才能不重复不遗漏,体会过程、总结方法、提升水平,学会有序地思考和寻找。

  还有一点需要指出,《标准》要求学生能够写出10以内自然数的倍数、100以内自然数的因数。教材在编写时认真落实了这些规定,在想想做做里没有编排找较大自然数的倍数的练习题。适量出现一些稍大的数(如30),写出它的全部因数。

  2? 在找百以内5的倍数、2的倍数、3的倍数的活动中,认识这些数的特点。

  教材第二部分教学5、2、3的倍数的特点。判断一个数是不是5的倍数,是不是2的倍数都是看这个数的个位上是几,方法是一致的。判断一个数是不是3的倍数要看它各位上数的和是不是3的倍数,特征与判断方法与5的倍数、2的倍数完全不同。所以这部分教材分两段编写,把5和2的倍数的特点合并在一道例题里教学,把3的倍数的特点安排在另一段里教学。两段教材都是寻找特点利用特点判断的教学线索,给学生很大的自主活动空间。

  (1) 第74页例题先在百数表里5的倍数上画△、2的倍数上画○,于是表里出现两列画△的数和五列画○的数,其中一列数上画△也画○。这些符号有利于学生分别观察5的倍数和2的倍数,发现表现在个位上的特点。也便于发现哪些数既是2的倍数,又是5的倍数。结合2的倍数,联系以前讲过的双数和单数,列举了哪些数是偶数、哪些数是奇数。这道例题安排的操作活动和提出的问题难度都不大,教学时要尽量让学生通过自主探索和合作交流建构自己的认识。

  想想做做的安排很有层次。第1、2题是简单的判断,初步应用2的倍数与5的倍数的特点,起巩固知识的作用。第3、4题按要求组数,第3题组成的是两位数,没有明确每名学生都要全部、有序地写出符合要求的数,可以通过交流达到全部、有序的要求。第4题组成的是三位数,你排出了哪几种这个问题对有条件的学生要求有序思考并排出所有的.数,对少数有困难的学生应尽量多排出几种,并向同伴学习有序的思考方法。第5题通过在数表中涂色,体会4的倍数一定是2的倍数,2的倍数不都是4的倍数。

  (2) 发现3的倍数的特点比较难,第76页例题充分研究学生的思维习惯和学习需要,作了五步安排:

  第一步在百数表里3的倍数上画○,这项活动让学生看到3的倍数与2的倍数、5的倍数不同,分散在表的各行各列里。由此产生猜想,3的倍数的特点可能与2、5的倍数不同。

  第二步提出个位上是3、6、9的数都是3的倍数吗这个问题,学生可以在百数表上看到画○的数的个位上并不都是3、6或9,还有其他数。许多个位上是3、6、9的数上没有画○,它们都不是3的倍数。学生还可以任意写出一些个位上是3、6、9的数,逐一检验是否是3的倍数。这一步的目的是让学生更清楚地知道,3的倍数的特点不表现在它的个位上。

  第三步为学生指点新的探索方向。把3的倍数用计数器的算珠表示,看看用几颗珠。先找较小些的两位数,再找更大的数。通过计算表示各个数所用算珠的颗数,初步发现算珠的颗数总是3、6、9、12等,这几个数都是3的倍数。这一步对发现3的倍数的特点关系很大,学生也乐意进行,要适当多安排一点时间。

  第四步把算珠的颗数转化成各位上数的和,发现3的倍数的特点,这一步是教学难点。要引导学生从数的某一位上是几,计数器的那一位上就拨几颗珠这一事实理解计数器上算珠的总颗数就是这个数各位上数的和。从算珠的颗数是3的倍数推理出各位上数的和是3的倍数。

  第五步是试一试,通过不是3的倍数的数,各位上数的和不是3的倍数的研究,从另一个角度验证上面发现的规律是正确的。

  教材设计的五步教学过程是连贯的,步步深入、逐渐逼近数学的本质内容。既有对例证的细致研究,又有反例作验证,是科学而严密的过程。

  想想做做里的习题数学思考的含量都比较高,除了第1题利用3的倍数的特点进行简单判断外,其他习题都需要仔细地想一想。如第2题要准确理解题意,除以3有余数即不是3的倍数的意思。第3题在方框里填数字的时候,要依据3的倍数的特征进行推理,而且答案是多样的,在每个方框里都有3个数字可填。第5题是组成三位数,首先要从四张数字卡片中选择3张,而且3张数字卡片之和必须是3的倍数,有两种选择,分别是5、6、7和0、5、7。然后再有序地把选出来的卡片排一排,组成三位数。前一种选择能排出6个不同的三位数,后一种选择只能排出4个不同的三位数。这些习题不要急于得出答案和结论,要注重过程,提供充分的时间,鼓励学生自主探索或合作学习。

  3? 通过写因数、比因数个数等活动,建立素数和合数的概念。

  第三部分教学素数和合数,教学活动的线索是: 分别找到2、3、5、6、8、9等自然数的因数按因数的个数把这些自然数分类接受素数、合数等数学概念应用数学概念判断50以内的自然数是素数还是合数。这些活动难度都不大,学生都能进行。在按因数的个数把、2、3、5、6、8、9分类时,可能需要稍微点拨,明确分类的标准。在讲述素数、合数概念时,语言必须准确。

  这部分教材有三个特点: 一是在写2、3、5、6、8、9的因数时充分利用学生的已有能力,让他们在独立写因数的过程中体会这些数的因数个数不同;二是用填空形式引导学生把2、3、5、6、8、9按因数的个数分类,避免教学中出现不必要的枝节;三是主要使用素数这个名词,质数只是带了一带。这对学生无所谓,教师在开始阶段可能不习惯。

  想想做做第1题利用11~20各数,让学生再次经历认识素数和合数的过程。要通过例题、试一试和这道题,让学生记住20以内的八个素数: 2、3、5、7、11、13、17、19。至于更大的素数就不要求记忆了。

  4? 练习六整理和应用全单元教学的数学知识。

  本单元教学了许多数学概念,是按下图的线索展开的。

  乘法算式倍数2、5、3的倍数的特征偶数与奇数因数素数与合数

  为了帮助学生进一步清晰地认识概念,提升应用数学知识的水平,练习六把上面的结构图分成四块组织整理。

  (1) 扩大倍数与因数概念的背景。

  倍数与因数的概念是在自然数(一般不包括0)的乘法算式上教学的。在一道乘法算式中,学生明白了倍数关系和因数关系。练习六第1题继续在除法算式中理解被除数是除数和商的倍数,除数和商都是被除数的因数。这样,学生对倍数关系和因数关系的认识得到深入,对用除法找一个数的因数的方法有进一步的体会。做到这一点并不困难,有除法的意义和乘、除法的关系为基础。

  (2) 数学问题和实际问题并举,综合应用2、5、3的倍数特征的知识。

  第2~4题练习2、5、3的倍数的特征,其中两道题是数学问题,一道题是实际问题。数学问题的形式容易引起对有关数学知识的回忆,实际问题的形式反映了数学内容在现实生活中的存在和应用。先安排数学问题,再安排实际问题,有助于学生在解决实际问题时运用有关的数学知识。第4题有一定的综合性,能发展思维的条理性,培养全面考虑问题的能力。

  (3) 对容易混淆的概念,进行比较和区分。

  学生对奇数与素数、偶数与合数往往混淆不清,第6题是为了区分这些概念而设计的。先在1~20各数中用○圈出素数、用△圈出偶数,回忆素数的意义和偶数的意义;再回答题中的两个问题,体会它们是不同的概念。要注意的是,两个问题都是看着表格呈现的现象回答的。其中的2既画了○,又画了△,这就表明素数里有偶数,偶数里有素数。教学时既要引导学生主动区分不同的概念,正确回答问题,又不要对这些问题进行抽象的,甚至文字游戏式的机械操练。

  (4) 紧扣基础知识探索数学现象的内在规律。

  第7题对学生来讲有两个特点: 一是涉及了几个数学概念,有连续的自然数、连续的奇数、3的倍数等,二是两个问题都是微型课题,题目中的找一找、算一算指点了研究方法。

  第10题把五个数分别写成两个素数相加的形式。这五个数都是偶数,其实任何一个大于2的偶数都可以写成两个素数相加的形式。如果学生有兴趣,可以继续尝试。

《倍数和因数》教案8

  一、教学内容

  教材分两段:

  例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;

  例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。

  安排了实践与综合应用“数字与信息”。

  二、教材编写特点和教学建议

  1.借助操作活动,经历概念的形成过程。

  以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。以公倍数为例,教学时应让学生经历下面几个环节:第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。

  为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。

  2.提倡思考方法多样化,找公倍数和公因数。

  课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的`所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。

  在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。

  对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。

  为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。

  3.通过调查、交流和尝试,感受数在表达信息中的作用。

  教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。课前调查的内容有:(1)110、112、114、120等特殊电话号码是什么号码;(2)自己所在学校和家庭居住地的邮政编码;(3)自己家庭成员的出生日期和身份证号码;(4)生活中用常见的数字编码表达信息的例子;(5)自己学籍卡上的学籍号。课后调查的内容有:(1)去邮局调查有关邮政编码的其他信息;(2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。

  在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。

  教学时,可以根据需要和时间情况,灵活安排教学时间。

《倍数和因数》教案9

  一、教学内容

  1.因数和倍数

  2.2、5、3的倍数的特征

  3.质数和合数

  二、教学目标

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象能力。

  三、编排特点

  精简概念,减轻学生记忆负担。

  四、方面的调整:

  A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

  B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2.注意体现数学的抽象性。

  数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  五、具体编排

  1.因数和倍数

  因数和倍数的概念

  过去:用÷=表示能被整除,÷=表示能被整除。

  现在:用=直接引出因数和倍数的概念。

  (1)用2×6=12给出因数和倍数的概念。

  (2)用3×4=12进一步巩固上述概念。

  (3)让学生利用因数和倍数的概念自主发现12的其他因数。

  (4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

  (5)说明本单元的研究范围。

  注意以下几点:

  (1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

  (2)因数和倍数是一对相互依存的概念,不能单独存在。

  (3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

  (4)注意区分“倍数”与前面学过的“倍”的联系与区别。

  例1(一个数的因数的求法)

  (1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

  (2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

  一个数的因数的特点

  (1)因数是其自身,最小因数是1。

  (2)因数个数有限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  例2(一个数的倍数的.求法)

  (1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

  (2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

  做一做

  与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

  一个数的倍数的特点

  (1)最小倍数是其自身,没有的倍数。

  (2)因数个数无限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  2.2、5、3的倍数的特征

  因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

  2的倍数的特征

  (1)从生活情境“双号”引入。

  (2)观察2的倍数的个位数,总结出2的倍数的特征。

  (3)介绍奇数和偶数的概念。

  (4)可让学生随意找一些数进行验证,但不要求严格的证明。

  5的倍数的特征

  (1)编排方式与2的倍数的特征类似。

  (2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

  3的倍数的特征

  (1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。

  (2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

  (3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

  3.质数和合数

  质数和合数的概念

  (1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

  (2)可任出一个数,让学生根据概念判断其为质数还是合数。

  例1(找100以内的质数)

  (1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

  (2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

  六、教学建议

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

  从因数和倍数的含义去理解其他的相关概念。

  2.要注意培养学生的抽象思维能力。

《倍数和因数》教案10

  【教学内容】

  内容:冀教版小学数学四年级上册第51-52页的《2和5的倍数的特征》

  本节内容位于冀教版小学数学四年级上册的第五单元第三个课时,这部分内容在掌握倍数概念的基础上进行教学的。这部分内容将为以后学习3的倍数打下基础,同时它也是学习分解质因数、通分和约分的重要基础知识。因此,掌握本节课的内容至关重要。

  【学情分析】

  从学生年龄特点看,学生的归纳概括能力还比较弱。而本节课的内容比较抽象,对于四年级的学生来说有一定的难度,因此在讲授这节课时,要鼓励学生从多角度思考问题,调动学生的学习积极性。让学生自己去观察自己去思考。

  【教学目标】

  1.经历自主探索5和2的倍数的特征的过程。

  2.知道2和5的倍数的特征,会判断一个自然数是否是2或5的倍数。

  3.积极参与探索活动,愿意与同学交流自己发现的结论,并尝试用语言描述2和5的倍数的特征。

  【教学重点】

  归纳、概括2和5的倍数特征。

  【教学难点】

  通过探索2和5的倍数特征,判断一个数是否是2、5的倍数。

  【教学准备】

  课件、数位表纸片

  【课时安排】

  1课时

  【教学过程】

  一、旧知铺垫

  1.说出1到30以内2所有的倍数(点名让学生回答)。

  2、4、6、8、10、12、14、16、18、20、22、24、26、28、30

  二、探索新知

  (一).2的倍数的特征。

  1.2、4、6、8、10、12、14、16、18、20、22、24、26、28、30(30以内的数)

  师:同学们,2的这些有倍数有哪些特征?(用红颜色把个位上的数字强调出来,方便学生更清楚观察出来)

  生:这些数的个位上是0、2、4、6、8。

  师:那同学们这些数都是什么数?

  生:这是数都是偶数。

  师:不是2的倍数的数是什么数?

  生:不是2的倍数的数是奇数。

  2.师总结:(板书)

  2的倍数特征l个位上是0、2、4、6、8的数都是2的倍数。

  l2的倍数都是偶数,不是2的倍数就是奇数。

  3.课件出示数字卡片;

  例一:在1~100的自然数中,找出2的所有倍数,用黑笔圈出来

  师:不用计算,谁能快速说出来?并且向大家分享一下你的方法(点名让学生回答)

  生:(说出具体数字)我是根据2的倍数特征的得出来的。

  (二)5的倍数的特征:

  1.师:同学们学完2的倍数特征,我们再来一起探讨一下5的倍数有哪些特征?请同学们拿出练习本,写出50以内5所有的倍数。

  师(点名让学生分享自己写出的数)

  生:5、10、15、20、25、30、35、40、45、50

  师:这些数字有哪些规律?(把个位上的数字用红颜色表示出来,方便学生观察)

  生:这些数的末尾不是0就是5。

  2.教师总结:(板书)

  5的倍数特征个位数上是0或5的数都是5的倍数。

  3.课件出示数字表

  例二,在同一张数字表上(2的倍数已经在例一的时候圈出),圈出5的倍数

  师:提出要求,不计算,快速准确的圈出来,并且分享方法。

  生:根据5的倍数特征,快速准确的圈出来。

  4.师:同学们,在这张数字表上有哪些数比较特殊?为什么它们同时拥有两个圈?

  生:因为它们既是2的倍数,同时又是5的倍数。

  (三)2和5共同的倍数特征:

  师:这些数有哪些特征?生:这些数的末尾是0.师总结:板书2和5共同的`倍数特征:末尾是0。

  三、巩固练习,学习课堂检测。

  1.圈出2的倍数。

  3246938035772.圈出5的倍数9099651305212853.说出2和5共同的倍数。

  243567909915607510613052128

  四、进入游戏环节,此阶段共分两个游戏:

  第一个游戏:

  请四位同学上台,每人拿一个数位,每人说出一个不大于9的自然数,让其他同学判断是不是2的倍数,或者是不是5的倍数。(此游戏主要是加深学生对于判断是否是2和5的倍数时,个位的重要意义。)

  第二个游戏:

  找三名同学,一名同学出题,一个同学答题,最后一名同学来判断答题人答题是否正确,出题人考察的知识点。(加深学生对知识点的认识)

  【作业布置】

  课本“练一练”3、4题。

  【板书设计】

  2和5的倍数的特征

  1.2的倍数特征:

  1)个位上是0、2、4、6、8的数都是2的倍数。

  2)2的倍数都是偶数,不是2的倍数就是奇数。

  2.5的倍数特征:个位数上是0或5的数都是5的倍数

  3.个位上是0的数,既是2的倍数,又是5的倍数。

  【教学反思】

  通过整节课的观察和实际,我发现大部分学生都能根据自己的观察发现其中的规律,但是语言组织能力较弱,不能完全和准确的表达出来。对游戏环节的设计,深受学生的喜欢,调到了学生的学习积极性,在以后教学中要多增加此类环节。

《倍数和因数》教案11

  【教学内容】

  认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

  【教学目标】

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  【重点难点】

  理解因数和倍数的含义。

  【复习导入】

  1. 教师用课件出示口算题。

  10÷5= 16÷2=

  12÷3= 100÷25=

  220÷4= 18×4=

  25×4= 24×3=

  150×4= 20×86=

  学生口算

  2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

  A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  本节课的'重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

  因数和倍数(2)

  【教学内容】

  一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

  【教学目标】

  1.通过学习使学生掌握找一个数的因数,倍数的方法;

  2.学生能了解一个数的因数是有限的,倍数是无限的;

  3.能熟练地找一个数的因数和倍数;

  4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  【重点难点】

  掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

  【复习导入】

  说出下列各式中谁是谁的因数?谁是谁的倍数?

  20÷4=5 6×3=18

  在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

  (板书课题:因数和倍数(2))

  【新课讲授】

  (一)找因数:

  1.出示例1:18的因数有哪几个?

  一个数的因数还不止一个,我们一起找找18的因数有哪些?

  学生尝试完成后汇报

  (18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2.用这样的方法,请你再找一找36的因数有哪些?

  小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

  教师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  教师板书:一个数的最小因数是1,最大因数是它本身。

  3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1.我们一起找到了18的因数,那2的倍数你能找出来吗?

  小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

  教师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

  2.让学生完成做一做1、2小题:找3和5的倍数。汇报

  3的倍数有:3,6,9,12

  教师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……)

  5的倍数有:5,10,15,20,……

  教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

  教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

  1.完成课本第7页练习二第2~5题。

  2.完成教材第8页练习二第6~8题。

  【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(2)

  一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

  一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

  本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

《倍数和因数》教案12

  教学内容:

  《因数与倍数认识》第5页。

  教学过程:

  一、创设情境,引入新课

  1、互为关系的辨析(以人与人之间的关系,如你和爸爸、妈妈的关系,你和老师之间的关系,存在这些关系的双方互相的关系表示为例,辨析互为关系)

  2、小结互为关系,引入课题。(板书课题:因数与倍数)

  二、探究新知

  (一)认识因数与倍数

  1、回顾学过学过的几类数(自然数,小数,分数)

  2、揭示因数与倍数的研究范围,(现在我们来研究自然数中数与数之间的关系。)

  3、整除算式的辨别(给下面算式分类,并描述算式的特征)(出示课本P5例1)

  4、学生自我分类,小组讨论分类结果,完善分类。

  5、辨析整除的意义,自学了解因数、倍数的意义,组内交流自学成果,议一议,辨明因数与倍数。

  6、全班交流,选择分类后的算式,说说什么是因数和倍数?说说谁是谁的因数,谁是谁的倍数。

  7、当堂训练

  (1)完成课本P5下面的“做一做”(独立说、组内互相说、全班交流说) (2)判断:课本P7 T5(1)

  (二)因数和倍数的求法

  1、自学课本P6例2和例3,初步了解因数与倍数的求法。

  2、组内讨论因数与倍数的求法,一个数的因数与倍数的个数、一个数的最小的`因数和最大的因数、一个数最小的倍数和最大的倍数。 3、全班交流上面组内交流的知识点,适时辅导,各自完善。 4、当堂训练

  (1)完成练习二T1(独立练习、组内交流完善、选择性全班交流)

  (2)完成练习二T5(独立判断、组内交流完善、全班交流)

  三、总结与分享

  与老师和同学分享你的收获与感悟。

《倍数和因数》教案13

  一、教学内容

  教材第30~51页的“例1~例12”以及练习五~七。

  二、教材分析

  本单元主要教学因数和倍数,以及公因数和公倍数等内容。本单元内容大体分三段安排:第一段,认识因数和倍数,学习在1~100的自然数中有序地找出10以内某个数的所有倍数,以及100以内某个数的所有因数;探索2、5、和3的倍数的特征,学习判断一个数是不是2、5或3的倍数,同时认识奇数和偶数。第二段,认识质数、合数和质因数,学习把一个合数分解质因数。第三段,认识公因数和最大公因数,探索求两个数的最大公因数的方法;认识公倍数和最小公倍数,探索求两个数的最小公倍数的方法。最后,安排了全单元内容的整理与练习。

  三、学情分析

  本单元内容是在学生已经认识了亿以内的数,以及学习了整数四则运算的基础上进行教学的。学习本单元内容,又为后续学习分数的基本性质、约分和通分,以及分数四则运算打下基础。

  四、教学目标

  1.使学生经历探索非0自然数的有关特征的活动,知道因数和倍数的含义;能找出100以内某个自然数的所有因数,能在1~100的自然数中找出10以内某个数的所有倍数;知道2、5和3的倍数的特征,能判断一个数是不是2、5或3的倍数;了解奇数和偶数、质数和合数的含义,会分解质因数。

  2.使学生通过具体的操作和交流活动,认识公因数与最大公因数、公倍数与最小公倍数;会求100以内两个数的最大公因数和10以内两个数的最小公倍数。

  3.使学生在探索和发现数学知识的过程中,积累数学活动的经验,培养观察、比较、分析和归纳的能力,感受一些简单的数学思想,进一步发展数感。

  4.使学生在参与学习活动的过程中,培养主动与他人合作交流的意识,体验数学学习活动的乐趣,增强对数学学习的自信心。

  五、教学重、难点

  教学重点:掌握倍数和倍数、质数和合数、最大公因数和最小公倍数等概念的联系和区别,掌握求两个数最大公因数和最小公倍数的`基本方法。

  教学难点:根据数的特点合理灵活地确定两个数的最大公因数和最小公倍数,以及根据对最大公因数和最小公倍数的理解正确解答相关的实际问题。

  六、课时安排

  因数和倍数…………………………………………1课时

  2和5的倍数的特征………………………………1课时

  3的倍数的特征……………………………………1课时

  因数和倍数练习……………………………………1课时

  质数和和合数………………………………………1课时

  分解质因数…………………………………………1课时

  公因数和最大公因数………………………………2课时

  公倍数和最小公倍数………………………………2课时

  因数与倍数整理与练习……………………………2课时

  和与积的奇偶性……………………………………1课时

《倍数和因数》教案14

  教学内容:P70~72的例题及相应的试一试、想想做做中的1—3题。

  教学目标:

  1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

  2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

  3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

  教学重点:理解因数和倍数的含义,知道它们的关系是相互依存的。

  教学难点:探索并掌握找一个数的因数的方法。

  教学准备:12个小正方形片、每个学生的学号纸。

  教学过程设计:

  一、认识倍数、因数的含义

  1、操作活动。

  (1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

  (2)整理、交流,分别板书4×3=1212×1=126×2=12

  2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

  3、今天我们就来研究倍数和因数的知识。

  (揭示课题:倍数和因数)

  (1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

  指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

  小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

  (2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?

  指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

  二、探索找一个数倍数的方法。

  1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

  2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?

  3、议一议:你发现找3的倍数有什么小窍门?

  明确:可以按从小到大的`顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。

  4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?

  生独立完成,集体交流。注意用……表示结果。

  5、观察上面的3个例子,你发现一个数的倍数有什么特点?

  根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

  6、做“想想做做”第2题。

  学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?

  二、探索求一个数因数的方法。

  1、学会了找一个数倍数的方法,再来研究求一个数的因数。

  你能找出36的所有因数吗?

  2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

  3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

  4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)

  板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

  5、试一试:请你用有序的思考找一找15和16的因数。

  指名写在黑板上。

  6、观察发现一个数的因数的特点。

  一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

  7、“想想做做”第3题。

  生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

  四、课堂总结:学到这儿,你有哪些收获?

  五、游戏:“看谁反应快”。

  规则:学号符合下面要求的请站起来,并举起学号纸。

  (1、)学号是5的倍数的。

  (2、)谁的学号是24的因数。

  (3、)学号是30的因数。

  (4、)谁的学号是1的倍数。

  思考:

  1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义

  2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

  在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

  3、P71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

  4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

  5、教材P72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

  为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。

《倍数和因数》教案15

  课前准备

  教师准备 多媒体课件

  学生准备 100以内的数表

  教学过程

  ⊙谈话引入,揭示目标

  师:上节课我们把数进行了分类整理,这节课我们就一起来复习因数和倍数的相关知识。

  ⊙回顾与整理

  1.回顾旧知,构建知识网络。

  (1)回顾:因数和倍数这部分知识有哪些概念?

  (因数、倍数、质数、合数、奇数、偶数等)

  (2)讨论:各概念之间的关系是怎样的?

  (组内交流)

  (3)梳理:小组合作,用自己喜欢的方法进行知识梳理。

  (4)汇报:各自的知识梳理方法。

  (课件展示学生的梳理方法,肯定其优点后,引导其完善树状知识网络图)

  2.复习、理解相关概念。

  (1)因数和倍数。

  ①在数学上,关于“因数”和“倍数”是怎么定义的?

  [整数A除以整数B(B≠0),除得的商是整数且没有余数,我们就说整数A能被整数B整除,或者说整数B能整除整数A。

  如果整数A能被整数B(B≠0)整除,整数A就叫作整数B的倍数,整数B就叫作整数A的因数。倍数和因数是相互依存的。

  如45能被9整除,所以45是9的.倍数,9是45的因数]

  师:为了方便,在研究因数和倍数时,所说的数指的是非零整数。

  ②举例说明因数和倍数各有什么特征。

  预设

  生1:一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。如20的因数有1,2,4,5,10,20。共6个。

  生2:一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的倍数。如4的倍数有4,8,12,…

  生3:一个数最大的因数等于它最小的倍数。

  ……

  (2)质数与合数。

  根据一个数所含因数的个数的不同,还可以得到质数与合数的概念。

  ①什么是质数?最小的质数是什么?

  [一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数),最小的质数是2]

  ②什么是合数?最小的合数是什么?

  (一个数,如果除了1和它本身还有别的因数,这样的数叫作合数,最小的合数是4)

  (3)公因数和公倍数。

  ①什么叫公因数?什么叫最大公因数?

  (几个数公有的因数,叫作这几个数的公因数。其中最大的一个叫作这几个数的最大公因数)

  ②什么叫公倍数?什么叫最小公倍数?请举例说明。

  预设

  生:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。如2的倍数有2,4,6,8,10,12,14,16,18,…3的倍数有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍数,6是它们的最小公倍数。

【《倍数和因数》教案】相关文章:

因数和倍数的教案03-10

公倍数和公因数教案12-19

《倍数和因数》教学反思12-02

因数和倍数说课稿11-05

《因数和倍数》教学反思10-20

倍数和因数教学反思05-15

倍数和因数的教学反思03-06

因数和倍数教学反思07-14

《倍数和因数》数学说课稿01-09