当前位置:9136范文网>教育范文>教案>圆的周长教案

圆的周长教案

时间:2023-04-04 09:03:43 教案 我要投稿

圆的周长教案范文锦集9篇

  作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写呢?下面是小编精心整理的圆的周长教案9篇,欢迎大家借鉴与参考,希望对大家有所帮助。

圆的周长教案范文锦集9篇

圆的周长教案 篇1

  一、教学目标

  【知识与技能】

  掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

  【过程与方法】

  通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

  【情感态度与价值观】

  积极参与数学活动,培养学习数学的兴趣。

  二、教学重难点

  【重点】圆的周长的计算公式。

  【难点】圆的周长公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

  学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

  教师明确,圆一圈的长度即为圆的`周长。

  引入课题——圆的周长。

  (二)探索新知

  1.探索发现

  学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

  学生汇报测量结果及测量方法。

  教师引导学生思考,圆的周长大小与什么有关。

  学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

  教师明确直径是半径的2倍,可看其中一项即可。

  2.探索圆的周长与圆的直径关系

  小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

  小组汇报分享测量结果,教师板书。

  学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

  学生汇报通过多次测量计算比值总在3.1左右。

  教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

  给出圆周率的特点:

  (1)是一个无限不循环的小数;

  (2)我国伟大的数学家祖冲之将其精确到小数点后七位;

  (3)现在为了方便只要取小数点后两位即可。

  (三)应用新知

  问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?

  教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

  (四)小结作业

  提问:通过本节课,你有什么收获?

  课后作业:回家找一个圆形,借助直尺测量,计算出周长。

  四、板书设计

  略

圆的周长教案 篇2

  第一单元圆的周长和面积

  一.本单元的基础知识

  本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

  二.本单元的教学内容

  P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

  三.本单元的教学目标

  1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

  2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。

  四.本单元重难点和关键

  1.教学重点:求圆的.周长与面积。

  2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

  3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

  五.本单元的教学课时

  13课时

圆的周长教案 篇3

  教学内容:

  义务教育课程标准实验教科书数学六年级上册第62~64页的内容。

  教学目标:

  1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义,通过对圆周长的测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、猜测、分析、抽象、概括、动手操作的能力和解决简单的实际问题的能力。

  2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。

  3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。

  教学重难点:

  教学重点:通过测量、计算、猜测、验证等过程,理解圆的周长计算公式的推导过程及其实践运用。

  教学难点:理解圆周率的意义。

  教具准备:圆形纸片、直尺、计算器、记录单

  教学过程:

  一 课始预习,初步了解

  看书完成前置作业:

  1、什么叫圆的周长?并举例说明。圆的周长可以怎样测量?

  2、什么叫圆的半径和直径?二者之间有什么关系?

  3、你认为圆的周长的

  大小跟什么有关?为什么?你能想出办法证明圆的周长跟它有什么样的关系吗?

  4、哪个数学家对圆的周长有关的知识做出了卓越的贡献

  (设计意图:学生通过看书自学,对本课知识点有个初步了解,在完成前置作业的过程中对本课知识的重难点进行思考,带着问题和疑惑走进课堂,使学生产生学习的动力和积极性)

  二、互动交流,探究新知

  1、认识圆的周长

  ⑴让学生根据自己的理解说说什么叫圆的周长

  ⑵学生通过摸一摸圆形学具,感受围成圆的线是曲线,完善圆的周长的概念。 ⑶谁能用一句话来概括一下圆的周长?

  ⑷课件演示圆的周长,并出示圆的周长概念。

  围成圆的曲线的长,叫做圆的周长。

  (设计意图:学生通过看书自学,对圆的周长概念有了初步认识,再通过摸一摸的感知活动对圆周长的曲线特点有了深刻体会,课件演示让学生对圆的周长的直观形象进行感知,从而对圆周长概念有了深刻理解)

  2、实验、探究圆的周长与直径的关系

  ⑴认识圆的半径和直径

  学生通过折圆纸片,找出半径和直径,通过观察,测量明确d﹦2r

  ⑵猜测圆的周长与什么有关系

  师:长方形的周长和什么有关系正方形呢?那么圆的周长究竟与什么有关系呢?谁来说一说?你觉得可以用什么办法来证明?

  预设:

  学生1出示大小不一的圆,分别比较它们的直径和周长,得出直径大的周长就大。

  引导小结:①圆的直径越长,它的周长也就越长,圆的直径越短,它的周长也就越短。

  ②我们发现了圆的周长与直径的比值都是三点几,也就是说圆的周长都是直径的3倍多一些。

  (设计意图:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情。)

  3、学习圆周率的有关知识

  ⑴引入圆周率

  师:其实,很早就有人研究了圆的周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是一个固定的数,我们把它叫做圆周率。(板书: =圆周率)

  ⑵介绍圆周率的资料,并对学生进行爱国主义教育

  师:关于圆周率的知识,你知道哪个数学家在这方面做出了什么样的卓越贡献?(学生通过预习有一些初步的印象。)

  课件播放圆周率的资料完善学生的'记忆。

  在当时,祖冲之所算的圆周率的值要比外国科学家早多少年?听完刚才的这些资料介绍,你有什么感想?

  师:我们真为我们国家能出现这样一伟大的数学家感到骄傲和自豪,老师也希望同学们长大以后,能成为一个了不起的人,对国家有用的人。

  ⑶教学圆周率的读写法及数值

  师:对于圆周率,我们用希腊字母л来表示。(板书л)

  ①让学生跟老师读,并用手指在桌子上边写边读。

  ②经过数学家们研究发现圆周率是一个什么样的小数呢?

  学生回忆预习的内容,师提醒学生明确圆周率是一个无限不循环小数它的数值是л=3.1415926……(板书:л=3.1415926……)圆的周长是它直径的∏倍,是一个固定不变的数。 ③圆周率的近似值。

  师:随着现代科技的发展,借助超级计算机,人们算出的圆周率,小数点后面已经达到了万亿位。但是在实际生活中,我们并不需要这么多的小数,一般保留两位小数。(板书:л≈3.14)

  ④学生看书,再次阅读圆周率的知识点介绍

  (设计意图:圆周率是新出现的一个概念,让学生从预习的初步感知,到探索中对圆周率的理解,到再次的看书完善对圆周率概念的陈述,了解近似值的大小取值,让学生对圆周率有了深刻的认识,为圆周长的公式推导打下了基础,学生在这个过程中体会到攻破难关的喜悦。)

  4、圆周长计算公式的推导

  提问:圆的周长一般用字母什么来表示?圆的直径呢?

  那么根据周长与直径的关系我们可以得到一个什么样的公式

  引导学生回答并板书:C÷d=Л,

  那么C=?(板书:C=лd)

  让学生互相说说出公式所代表的意义,并汇报。

  想一想,直径和半径的关系,已知半径r,圆的周长C又等于什么?学生推导教师板书:C=2лr

  三、解决实际问题

  1计算下面各圆的周长

圆的周长教案 篇4

  教学目标:

  ⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。

  ⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

  教学流程:

  一、揭示课题

  ⑴猜测这节课的学习内容。

  ⑵揭示课题--圆的周长。

  二、确定探索新知的方向。

  ⑴观察课前画在黑板上的两幅图。

  分别指出正方形、圆形和正六边形的周长。

  ⑵沟通联系。

  找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

  ⑶比较周长的长短。

  以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的'周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

  ⑷确定探究方向。

  量出圆的周长和直径,算出它们之间的倍数。

  ⑸准备数据采集。

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  三、合作探究新知。

  ⑴学生操作活动。

  小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

  教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

  教师在分组活动中采集到的数据。(是后加的,时加的)

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  1

  15.5

  5

  3.10

  2

  8.9

  2.9

  3.07

  3

  14

  4.3

  3.26

  4

  7.6

  2.5

  3.04

  5

  8.9

  2.7

  3.30

  ⑵合理,得出公式,

  看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

  ⑶介绍祖冲之。

  四、利用新知解决简单的数学问题。

  ⑴说出计算周长的算式。

  ⑵口答练习十八1~2。

  ⑶作业练习十八3~4。

圆的周长教案 篇5

  一、指导思想与理论依据:

  《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

  二、教材及学情分析:

  教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

  三、教学目标、重点及难点:

  1、知识和技能:

  使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

  2、过程与方法:

  (1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

  (2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

  3、情感与态度:

  (1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

  (2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

  (3)在解决问题过程中,增强应用意识。

  教学重点:

  让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

  教学难点:

  对圆周率的认识。

  教学准备:

  ⒈圆形物体实物,。

  ⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

  四、教法:

  1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

  2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

  五、主要教学环节与设计:

  通过以下环节教学本课:

  一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸

  六、教学过程:

  第一个环节:创设情境,初步感知师:

  哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

  生:求行驶多长的路程就是求圆形的周长。

  师:今天就来学习怎样计算圆的周长。

  此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

  第二个环节:合作交流、探究新知

  (一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

  1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

  2、分析比较长方形、正方形和圆的周长各有什么不同?

  3、指一指、描一描自己手中圆片的周长。

  设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

  (二)探究圆周长的计算方法

  圆周长计算公式的推导这一内容,我安排了三个环节:

  1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  预设的几种情况:

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绳子缠绕实物圆一周并拉直;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  小结:以上的几种方法都是要“化曲为直”。

  出示地球图片。

  如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

  设计意图:这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的'积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

  (1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

  师:圆的周长与它的什么有关呢?

  生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

  (2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

  师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

  小组汇报:

  生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

  师:通过计算你们发现了什么?

  生:每个圆的周长,都是它的直径长度的3倍多一些。

  追问:那么是不是所有的圆周长与它直径都有这种关系呢?

  最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

  师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

  生:圆周率。

  师:你对圆周率还有哪些了解?

  这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

  设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

  (3)得出结论师:你知道圆周长的计算方法了吗?

  生:知道。

  板书公式:C=πd,C=2πr

  设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

  第三个环节:实践应用,解决问题

  这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

  1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

  2、设计了三道有梯度的练习:①d=5米, C=?②r=5厘米 C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?

  ①π=3.14( )

  ②大圆的圆周率小于小圆的圆周率。( )

  ③圆的周长是它的半径的2π倍。( )

  意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

  第四个环节:畅谈收获,课外延伸作业:

  赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

  设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

  你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

  七、板书设计:

  圆的周长

  化曲为直 圆的周长÷直径=圆周率

  C÷d=π 3.14×20=62.8(英寸)

  C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

  C=2πr

圆的周长教案 篇6

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的'周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.

圆的周长教案 篇7

  教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。

  教学目标:

  1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。

  2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。

  3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。

  教学设计思想:

  复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。

  教学过程:

  一、创设情境,揭示课题。

  二、回顾整理,讨论交流。

  1、怎样求圆的周长?求圆的面积有几种情况?

  2、圆的周长和面积公式是怎样推导出来的?

  3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)

  4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)

  5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?

  三、发现生活中的数学问题

  教师结合图片演示,让学生提出有关圆的周长和面积的问题。

  图片内容:农村的喷灌、碾子、拴在木桩上的小羊。

  四、走进美丽的'图形世界

  教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。

  五、开心词典

  以开心词典的形式,让学生做六道选择题。

  六、走进生活,解决问题

  1、小猴子骑独轮车走钢丝。求车轮要转多少周。

  2、用绳子绕树干10周,求横截面的直径。

  3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?

  4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?

  七、思考生活中的数学问题

  1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?

  2、阅读关于400米标准跑道的小资料。

  课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答

圆的周长教案 篇8

  教学目标:

  ⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

  ⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

  ⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

  教学重点、难点

  教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

  教学过程设计

  一、创设情境,引发探究

  ⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

  ⒉揭示课题

  ⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

  ⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

  板书课题:圆的周长

  二、人人参与,探究新知

  (一)教具演示,直观感知,认识圆周长。

  教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

  (二)理解圆周率的意义

  活动一:测量圆的周长

  ⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

  然后各组分工同桌合作,量出圆片的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

  ⒉用"几何画板"《小球的轨迹》演示形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

  ⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

  活动二:探究圆周长与直径的关系,认识圆周率。

  ⒈圆的周长与什么有关。

  ⑴启发思考

  正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

  ⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

  得出结论:圆的周长与它的直径有关。

  ⒉圆的周长与直径有什么关系。

  ⑴学生动手测量,验证猜想。

  学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ⑵观察数据,对比发现。

  提问:观察一下,你发现了什么呢?

  (圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  ⑶出示"几何画板"《周长与直径的关系》演示。

  ⑷比较数据,揭示关系。

  正方形的.周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

  ⒊认识圆周率

  ⑴揭示圆周率的概念。

  这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

  现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

  ⑵介绍π的读写法

  ⑶指导阅读,了解中国人引以为自豪的历史。

  提问:你知道了什么?

  (三)推导圆的周长计算公式。

  ⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

  请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

  ⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

  提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

  学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

  三、应用新知,解决问题

  1、和自己的伙伴一起解答例1和做一做

  2、说出这两题用哪个公式比较好?

  四、实践应用,拓展创新。

  ⒈基础性练习:

  (1)求下列各圆的周长(几何画板)

  r=3厘米 d=4厘米

  (2)、我们现在有办法求唐老鸭跑的路程吗?

  ⒉、判断

  ①圆的周长是直径的π倍。( )

  ②大圆的圆周率小于小圆圆周率。( )

  3、提高练习

  在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

  五、总结评价,体验成功

  1、你学到了什么? 2、你是怎么学到的?

圆的周长教案 篇9

  教学设想:

  利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

  教学内容:

  小学数学义务教育教材十一册第137~138页“圆的周长”

  教学目标:

  1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2. 培养学生的观察、比较、分析、综合及动手操作能力;

  3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

  教学重点:

  推导总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学准备:

  电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

  教学过程:

  一、创设情境,引起猜想

  (一)教师播放课件 激发学生兴趣

  黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周

  1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

  师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

  3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

  4.反馈:你是用什么方法测出来的?

  生1:“滚动”——把实物圆沿直尺滚动一周;

  生2:“缠绕”——用绸带缠绕实物圆一周并打开;

  5.小结各种测量方法:(板书)化曲为直

  6.创设冲突,体会测量的局限性

  教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

  (三)合理猜想,强化主体

  1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

  生:我猜圆的周长跟直径有关。

  2.师课件演示:直径越大,周长越长;直径越小,周长越小。

  3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?

  (生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

  4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  二、实际动手,发现规律

  (一)分组合作

  1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

  2.反馈数据

  生1:我们小组算出圆的周长大约是直径的3.4倍。

  生2:我们小组算出圆的周长大约是直径的3.2倍。

  生3:我们小组算出圆的周长大约是直径的4倍。

  师:课件演示:圆的周长总是直径的三倍多一些。

  (二)介绍祖冲之

  这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  板书 :圆周率=圆的周长÷直径

  早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

  这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的.份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  (三)总结圆周长的计算公式

  1. 如果知道圆的直径,你能计算圆的周长吗

  板书:圆的周长 = 直径× 圆周率

  C = πd

  2. 如果知道圆的半径,又该怎样计算圆的周长呢?

  板书: C = 2πr

  3.应用

  (1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

  生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

  (2)课题外的圆的直径是20厘米,用哪个公式计算?

  生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

  (3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

  三、巩固练习,形成能力

  1.判断

  (1)圆的周长是直径的π倍。 ( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π=3.14 ( )

  2.出示例1,学生自己计算。

  3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

  四、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维

  一个茶杯口的直径你有什么方法知道?

【圆的周长教案】相关文章:

圆的周长教案11-18

《圆的周长》教案02-26

圆的周长教案(15篇)03-27

圆的周长教案15篇02-23

圆的周长教案汇总五篇01-27

圆的周长教案汇编8篇01-10

圆的周长教案汇编10篇02-12

圆的周长教案(集锦15篇)03-30

关于圆的周长教案汇总9篇08-17

圆的周长教案集锦六篇08-11