有关分数的意义教案锦集五篇
作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?以下是小编精心整理的分数的意义教案5篇,希望能够帮助到大家。
分数的意义教案 篇1
师生活动
一、 导入新课。
二、 教学新课。
三、实际应用
四、总结
“猜猜哪杯糖水甜?”
1、出示2杯糖水:1号杯——水30克,其中糖5克,
2号杯——水20克,其中糖4克。
小组讨论,说说你是怎样判断的。
学生交流。
小结:根据糖和糖水的关系或糖和水的关系,才能判断出谁甜。
2、依据糖和糖水的关系,判断小组上表格中的3杯糖水谁最甜?小组分工合作完成。
学生交流,说说你是怎么比较的?
1、百分数的意义。
如果要想比较这一共的糖水谁最甜,该怎么办?
指出:在实际生产、生活、工作中,为了便于统计和比较,通常把这样的分数用分母是100的分数来表示。
把表格中的分数改写成分母是100的分数。说说这些分数的意义。
揭示出百分数的意义。
2、百分数的读写法。
自学书上的有关内容。
把表格中的百分之几改写成百分数的形式,并说说意义。
练习:练习十九 4
练一练 1看到这些图形,你想到了什么数?
举例:说说准备资料中的百分数的意义。
折出百分数。
3、百分数和分数的.比较。
下面的说法你认为对吗?
(1) “六年级男生人数是全年级总人数的57/100”,可以说成“六年级男生人数是全年级总人数的57%”。
(2) “学校十月份用纸13/100吨”,可以说成“学校十月份用纸13%吨”。
小结:百分数和分数的不同。
根据提供的信息说说百分数的意思,及从信息中你想到了什么。
说说自己的收获。
分数的意义教案 篇2
分数、百分数的意义
教学内容:
教材第77~78页分数、百分数的意义和“练一练”,练习十五第1—10题。
教学目标:
使同学进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系;进一步培养同学的判断、分析等思维能力。
教学重点:
进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系。
教学难点:
正确认识分数和百分数的联系和区别。
教具准备:
小黑板
教学过程:
教学过程
自我加减
一、揭示课题
1.说出下列小数的意义。
O.3
0.13
0.258
O.013
同学口答后,说明一位小数、两位小数、三位小数……分别表示十分之几、百分之几、干分之几……
2.引入课题
我们已经复习了整数和小数的知识,今天开始,我们复习分数和百分数的知识。这节课,我们复习分数和百分数的意义。(板书课题)
通过复习,要进一步掌握分数、百分数的意义和一些相关概念,认识这些概念的联系,并提高分析、判断等思维能力。
二、复习分数的意义和相关概念
1.说出每个分数的意义。
提问:根据上面每个分数的意义,你能说说怎样的数是分数吗?上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?
2.说出下列各题的商。
2÷9
4÷13
÷7
提问:在上面算式里,能用整数表示这些算式的商吗?像上面这样两个数不能整除时,用什么数来表示商?
指名同学口答。
提问:除法与分数有什么关系,用字母怎样表示?
3.同学练习。
(1)“练一练”第l、2题。
同学填在课本上。指名口答,并说说怎样想的。
(2)口答练习十五第1题。
提问:为什么这两个分数不一样?
(3)口答练习十五第2题。
指名同学说出每个分数的意义。
(4)口答练习十五第3题。
指名同学说出每句话的含义。
4、比较每组数里小数与分数表示的意义。
0.3和
0.13和
0.013和
你觉得每组数里小数和分数表示的意义有什么联系?可以看出小数实际上是怎样的分数?
5.复习分数的分类。
(1)提问:我们把分数怎样分类的?
(2)“练一练”第3题。
指名同学口答。
(3)提问:你是根据什么判断一个分数是真分数,还是假分数的?真分数和假分数的值有什么区别?
(4)提问:假分数可以改写成什么形式的数?带分数和整数能改写成假分数吗?
(5)“练一练”第4题。
小黑板出示,指名一人板演,其余同学做在练习本上。
集体订正。
提问:假分数怎样化成带分数或整数?带分数或整数怎样化成假分数?
6.复习最简分数。
(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?
(2)在(
)里填上适当的数,使每个分数都是最简分数。
①4米是6米的 。
②9千克是12千克的 。
③5厘米是1O厘米的. 。
指名口答后提问:这里的分数表示的是什么意思?(一个数是另一个数的几分之几)
三、复习百分数的意义和相关概念
1、“练一练”第5题。
让同学填(
)里的数,然后口答。
老师板书:97.5%,提问:97.5%是什么数,它是怎样计算出来的?合格率97.5%具体表示什么意思?
从上面的数里,你能知道怎样的数叫做百分数?请你说出几个百分数。你认为百分数的意义与分数的意义有什么联系,有什么不同?
2.复习“成数”。
(1)提问:“成数”实际上是什么数?在哪里用“成数”来表示?
(2)“练一练”第6题。
同学做在课本上,然后口答。
3.练习十五第4题。
同学做在课本上,然后指名回答。
追问:怎样求一个数是另一个数的百分之几?
四、综合练习
1、练习十五第5题。
让同学填在课本上。
小黑板出示,同学口答,老师板书。
2.做练习十五第6题。
让同学做在练习本上,然后口答。追问:分数单位是的最简真分数的和是多少?
3.练习十五第8题。
先让同学讨论,再填在课本上。指名同学口答,并说明理由。
4.练习十五第l0题。
让同学找规律,在□里填上恰当的数。
同学口答,说说是怎样想的。提问:你知道这样填下去,会越来越接近哪个数?为什么?
五、课堂小结
谁来说说今天复习的这些概念含义?
六、课内作业
练习十五第7、9题
七、板书设计
分数、百分数的意义
a÷b= (b≠ 0)
真分数
分数
假分数
八、我的课后反思:
分数的意义教案 篇3
教学目标:
1.在说一说、分一分、画一画等活动中体会单位 1的含义,理解分数的意义,学会用分数描述生活中的事情。
2.在具体的生活情境中感悟把一个整体平均分成若干份,这样的一份或几份可以用分数表示这一过程,培养学生动手操作能力和抽象概括能力。
3.在学习活动中感受数学与生活的密切联系,体验数学的价值,获得成功、兴趣、愉悦的情感体验,激发学生对数学的兴趣。
教学重点:
理解分数的意义
教学难点:
理解把许多物体组成的一个整体看作单位1。
教学方法:
自主探究、 合作交流教具多媒体课件
教学过程:
一、回顾旧知,导入新课。
谈话:前面我们已经学习了分数的初步认识,对于分数你已经知道哪些知识?举例说出分数的各部分名称,联系实际说出分数表示的意义。
谈话:对于分数还想了解的知识,进而导入新课。
二、合作探究,构建新知
(一)初步感知。
出示情境图1船模试航。
教师谈话:同学们,请你仔细观察这幅图,从图中你能发现哪些数学
信息?提出什么数学问题?
教师引导学生提出:5只航模平均分给5个同学,每个同学分得的航模数占总数的几分之几?
学生以小组为单位,利用画有5只船模的题卡分一分,学生先独立思考,再在小组内交流自己的想法,最后在全班进行交流。找到解决问题的方法。学生分组活动时,教师参与到学生的小组学习。然后在全班进行交流。全班交流时,教师适时引领:把5只船模看作一个整体,平均分成5份,1份占这个整体的1/5。
在学习1/5的基础上,老师可以继续引导学生提出问题:如两个同学分得的航模数占总数的几分之几,3个同学呢?
(二)深入探究
出示情境图2航模放飞
谈话:同学们,航模要放飞了,我们一起去看看吧。请你观察这幅图,根据图中的这些信息,你又能提出哪些与分数有关的问题?
学生提出问题,教师适时梳理。
如:一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?
学生利用手中的学具摆一摆、分一分,分别解决一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?
解决第一个问题:学生分组学习,教师要参与学生的小组活动中。
全班交流时,学生先利用4个飞机模型动手摆一摆,可能会出现1/2、2/4两个答案。然后全班进行交流、辩析、补充,得出结论。教师适时引领:每份是2架飞机,为什么说是占这个整体的1/2呢?
通过摆模型得到第一问题的结论:把4架飞机看作一个整体,平均分成2份,每份占这个整体的1/2。
课件演示将4架飞机平均分的过程,并板书结论。
解决第二个问题:先让学生交流自己的答案;再组织学生动手操作验证,并参与学生的学习活动;全班交流时,适时点拨:每份是2架飞机,为什么占总数的1/3呢?。从而引导学生得出结论。
(三)观察比较
谈话:请同学们观察我们所得到的 分数,你还有什么疑问吗?
引导学生质疑:两个小队每组放飞的都是2架飞机,为什么表示出来的分数却不一样呢?
学生进行观察比较,同桌讨论,全班交流得到结论。
通过对两个小队飞机放飞情况的比较,得到:将一个整体平均分成的份数不一样,表示出来的分数也不一样。所以同样是2架飞机,表示出的分数一个是1/2,一个是1/3。
(四)拓展应用
谈话:想一想,还可以把什么看作一个整体?可以利用老师提供的材料,也可以自己找材料,动手分分看,你能得到哪些分数?是怎样得到的?
学生动手操作,可以利用教师提供的材料(1张长方形纸片、8根小棒、长1米的绳子),也可以自己找材料,得到不同的分数。
交流:你利用什么材料,得到一个什么分数,你是怎样得到的?
总结:把一个整体平均分成若干份,这样的一份或几份可以用分数来表示。
(五)总结概括
谈话:一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,通常把它叫做单位1。
举例:学生举例还可以把哪些量看作单位1?并区分单位1与自然数1的`不同。
结合操作过程,讨论、交流、总结分数的意义。引导学生总结概括分数的意义。把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。
(六)看书质疑。
学生阅读6769页,质疑问难。教师巡视,解答学生困惑、疑难问题。
三、巧设练习,深化理解
1、自主练习1、2
2、涂色部分能用分数表示吗?(课件出示)
3、游戏:取糖果。学生按要求取糖果:盒子里有11块糖,取出总数的2/11;取出剩下的1/9;再取出剩下的1/4;如果取出2块,是取出了剩下的几分之几?
独立完成,进行交流。
教学反思:
创设生动有趣的现实学习情境。通过一些现实的生活情境,引导学生主动参与思考、合作、交流、反思等活动。使学生感受到数学来源于生活,运用数学可以解决生活中的问题,进一步体验数学与现实生活的密切联系。
分数的意义教案 篇4
分数的意义 总42(电36)
教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义。
教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义。
教学难点:使同学理解"分数"的意义,弄清分数单位的含义。
教学课型:新授课
教具准备:课件
教学过程:
创设情景,温故引新
1,提问:A,大家知道分数吗 谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决。即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示。
3,揭示课题:分数的意义
二,联系实际,探究新知
自主学习,整体感知分数的知识。
(1)相互交流:① 关于分数我已经知道了什么请把已知道的讲给同学们听。
(2)自学理解:① 关于分数,自学后我又知道了些什么
② 我还有什么不明白的地方呢
③ 关于分数我还想知道什么
2,探究深化,进一步理解分数的意义。
(1)用分数表示下面各图中的阴影局部。[课件1]
(2)填空。[课件2]
① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( )。
② 把一块饼平均分成2份,每份是它的( )/( )。
③ 把一个正方形平均分成4份。1份是它的( )/( );3份是它的( )/( )
(3)用一张长方形的`纸,折出它的1/4,并涂上阴影。
用一张正方形的纸,折出它的3/8,并涂上阴影。
(4)抢答。 [课件3]
① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( )。为什么是1/2 若平均分给5位;10位;50位同学呢
④ 假如这个文具盒里只有6枝铅笔。现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义
⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢
(5)说说下列分数所表示的意义。[课件4]
5/7 3/8 3/( ) ( )/9 ( )/( )
3,小结。
我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1"。
板书: 一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数。
三,加强练习,深化概念
竞赛:请两位同学站起来。
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的——————— 这两位同学是全班人数的———————
四,家作
1,P88 。1,2
2,P89 。3
板书设计: 分数的意义
一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
分数的意义教案 篇5
学习内容:
课本第76页例2及“做一做”第2题。
学习目标:
1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重难点:
我能应用分数的基本性质解决简单的实际问题。
学习过程:
一、导入新课
二、合作探究、检查独学
1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。
(1)思考:① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的`分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。
② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。
(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。
2.小组代表展示、汇报
3.总结升华
4.我能行: 完成课本第76页“做一做”第2题。
【分数的意义教案】相关文章:
《分数的意义》教案06-20
分数的意义教案02-12
分数的意义优秀教案02-25
分数的意义和性质教案01-24
《分数的意义》教案15篇01-24
《分数的意义》教案(15篇)01-25
《分数的意义》教案(精选15篇)02-27
《分数的意义》教案精选15篇03-10
分数的意义教案(15篇)02-20
分数的意义教案15篇02-17