当前位置:9136范文网>教育范文>教案>鸡兔同笼教案

鸡兔同笼教案

时间:2024-10-08 03:05:24 教案 我要投稿

鸡兔同笼教案模板八篇

  作为一名人民教师,可能需要进行教案编写工作,借助教案可以更好地组织教学活动。怎样写教案才更能起到其作用呢?下面是小编精心整理的鸡兔同笼教案8篇,希望能够帮助到大家。

鸡兔同笼教案模板八篇

鸡兔同笼教案 篇1

  教学目标:

  1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

  2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

  3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

  教学重点:会用假设法和方程法解答“鸡兔同笼”问题。

  教学难点:明白用假设法解决“鸡兔同笼”问题的算理。

  教学用具:

  多媒体课件。

  教学过程:

  一、创设情境,引入新课。

  1、引入:

  同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

  这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

  为便于研究,我们先从简单的生活问题入手,请看下面问题。

  ●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

  【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

  二、自主学习、小组探究

  对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

  温馨提示:

  ①用列举法怎样解决问题?

  ②你能用画图的方法解答吗?

  ③如果把这些票都看成学生票或都看成成人票如何解答?

  ④回顾列方程解决问题的经验,怎样用方程解决问题?

  学生自己根据提示用自己喜欢的方法解决问题。

  先把自己的想法在小组内说一说,再共同协商解决。

  教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

  三、汇报交流,评价质疑

  对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

  1.列举法。

  可以有目的的先展示这种方法。(多媒体展示。)

  学生票数(张)成人票数(张)钱数(元)

  2525250

  2426252

  2327254

  2228256

  2129258

  2030260

  质疑:有50张票,是否有必要一一列举,你是如何列举的?

  (引导学生通常先从总数的中间数列举。)

  质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

  (引导学生根据数据特点确定调整方向、调整幅度。)

  师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

  2.假设法

  (1)假设全是成人票:

  ①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

  ②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

  (学生试着列算式,请两个学生到黑板上去板演。)

  预设板演:

  50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

  50-20=30(张)

  ③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

  预设回答:

  假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

  而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

  (2)假设全是学生票:

  如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

  总结方法归纳抽象出这类问题的模型。

  学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

  成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

  3、方程法:

  除了以上两种方法,还有别的计算方法了吗?

  学生汇报列方程的方法。

  (1)找出相等的数量关系。

  (学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

  元)

  (2)根据等量关系列式:

  设成人票有x张,则学生票有(50-x)张。

  列方程为:6x+4(50-x)=260

  (解略)

  4.学生比较以上几种方法解题方法。

  四、抽象概括,总结提升。

  让学生结合自己解决问题的经验,用自己的语言进行总结。

  列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

  画图法:操作简单,比较直观。但数字大的.时候,画图也是比较麻烦的。

  假设法:适合所有的这类问题,但比较抽象,不好理解。

  方程法:适用面广,便捷,容易理解。

  师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

  【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

  五、巩固应用,拓展提高

  1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

  温馨提示:

  A.先让学生认真读题,(同桌讨论)。

  B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

  2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

  处理方法:

  ①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

  ②小组内交流算法。

  ③全班交流。

  【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

  3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

  【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

  3、全课小结:

  回顾总结,引发思考

  本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

  师总结:

  这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

鸡兔同笼教案 篇2

  一、教学目标:

  1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

  2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;

  3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

  二、教材分析

  本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

  三、学校及学生状况分析

  五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

  四、教学设计

  (一)创设情境

  师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?

  生:鸡兔同笼就是鸡兔在一个笼子里。

  (媒体出示课本第80页的情景图)

  师:请你猜一猜,图中大约有几只兔子,几只鸡?

  生1:我猜大约是7只,兔子5只鸡。

  生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

  (二)探求新知

  师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)

  师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

  师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。

  师:哪个小组说说你们的想法?

  小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

  师:还有哪些小组采用不同的列表法?

  小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

  小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

  师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?

  生1:列表可以帮助我们一一举例,从中找出需要的答案。

  生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

  师:那么,这三种列表的方法有什么不同呢?

  生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

  生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

  师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的.答案。

  (三)解决问题

  师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。

  媒体出示两道题

  1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。

  2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?

  (学生练习后,教师组织全班进行交流。交流过程略)

  (四)学习总结

  师:通过今天的学习,你有哪些收获?

  五、教学反思

  1、充分调动学生的积极性

  当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

  2、关注每一个同学的发展。

  由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

  六、案例点评

  本节课有以下几个特点:

  1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。

  2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。

鸡兔同笼教案 篇3

  教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

  3、在解决问题的过程中培养学生的逻辑推理能力。

  教学重点:

  理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

  教学难点:

  理解用假设法的算理并能运用不同的方法解决实际问题。

  教学方法:

  1、采取直观形象的方式,让学生探讨不同的方法。

  2、适当把握教学要求。

  一、历史激趣,导入新课

  今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

  师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的.历史趣题“鸡兔同笼”的问题。(板书课题)

  结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

  二、探究交流,尝试解决问题。

  1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

  2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

  让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

  3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

  学生猜测,老师板书

  4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

  (一)、尝试列表法

  为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

  (二)、假设法

  1、假设全是鸡

  8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

  26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

  4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

  10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

  8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

  2、假设全是兔

  我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

  先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

  小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

鸡兔同笼教案 篇4

  【教学目标】

  1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

  3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

  【重点难点】

  用假设法和列方程的方法解决“鸡兔同笼”问题。

  【教学指导】

  1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。

  2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

  3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

  4.要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的'广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。

  【知识结构】

  第1课时 鸡兔同笼(1)

  【教学内容】

  教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。

  【教学目标】

  1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

  3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

  【重点难点】

  用多种方法解决“鸡兔同笼”问题。

  【教学准备】

  课件、列表法的表格卡片。

  【情景导入】

  1.师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)

  2.这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?

  【新课讲授】

  (一)出示情景,获取信息

  1.出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”

  2.我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。

  (二)列表法

  1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?(鸡和兔一共是8只。)

  2.那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?(把鸡的腿和兔的腿加起来看等不等于26条腿。)

  3.现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。

  4.我们把这种方法叫做列表法。(板书:列表法)

  (三)直观画图法

  1.师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?

  2.生1:还可以用画图——先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。 所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)问:你们听懂他的方法吗?请同学们在练习本上画一画。

  3.生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿(也就是都看成兔。),这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)

  师:画图的方法非常便于观察、非常容易理解。

  4.你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?(

  生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。)

  5.是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。

  (四)思考交流你还能用什么办法来解决这个问题呢?

  学生讨论后交流。

  A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)

  ①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?

  ②与实际的腿数不符,腿的条数少算了多少条?

  ③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?

  ④少算的10条腿是把多少只兔当成了鸡来算?

  ⑤鸡的只数怎么算?

  B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)

  要用列方程的方法就必须找到等量关系式。

  通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)

  这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。

  小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)

  (五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?

  【课堂作业】

  完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。

  【课堂小结】

  通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。

  【课后作业】

  1.完成教材第106页练习二十四第1~3题。

  2.完成练习册本课时的练习。

鸡兔同笼教案 篇5

  时间:20xx年12月3日

  地点:大会议室

  主备人:崔xx

  参加人员:六年级全体数学教师

  教研内容:“鸡兔同笼”问题

  教学目标:

  1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

  2.结合图解法理解假设的方法解决鸡兔同笼问题。

  3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的.价值。

  教学重点:能用列表法和画图法解决相关的实际问题。

  教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。

  重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。

  模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。

  作业设计:有浅入深“鸡兔同笼”的基本题型多练。

  组内教师讨论要点:

  1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

  2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。

  3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

  4、列方程解时要借助实例,体会设X的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为X的道理,方法是设出一部分,根据总数列出方程(易列难解)

  活动总结:

  全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

鸡兔同笼教案 篇6

  教学目标:

  1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

  2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

  3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

  教学重点:

  能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

  教学难点:

  能用不同的策略解决相关的实际问题。

  教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

  教具:多媒体课件

  教学过程:

  一、联系现实,激趣导入

  1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

  生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

  师:接下来的歌谣不完整,谁能把它填完整呢?

  两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

  师:你是怎么知道的?

  生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

  [设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

  2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

  二、自主探索,尝试解决

  1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

  (1)、指名读题

  (2)、理解题意:

  师:20个头表示什么?

  生:20个头表示鸡与兔的总头数。

  师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

  (3)、同桌说一说:

  (4)、学生汇报,教师填表

  生1:我猜鸡有3只,兔子有17只。

  生2:我猜鸡有5只,兔子有15只。

  生3:我猜鸡有16只,兔子有4只。

  ……

  师:请同学们仔细观察一下表格,鸡的`只数在变化,兔子的只数也在变化,什么没有变?

  生:鸡兔的总只数没有变。

  强调鸡兔的总只数不变

  [设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

  2、自主探究

  出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

  (1)、指名读题

  (2)、引导观察:

  师:这两道题有什么不同呢?

  生:第2个问题多了一个条件“54条腿”

  (3)、理解题意:

  师:20个头,54条腿是什么意思呢?

  生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

  师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

  ①、每个小组老师都有一份材料

  ②、小组长组织小组成员讨论,小组长并做好记录

  3、反馈交流,教师适当引导

  (1)、逐一列表法:

  生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

  师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

  (2)、跳跃列表法

  生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

  师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

  (3)、折中列表法

  生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

  师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

  像同学们刚才的这几种解法,我们把它称为列表法。

  [设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

  4、画图法(板书:画图法)

  师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

  5、归纳算法

  解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

  三、巩固练习

  生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

  (1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

  (2)、学生独立解决,全班交流。

  [设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

  四、全课

  通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

  五、拓展延伸

  书P81“你知道吗?”

  师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

  [设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]

  教学反思:

  反思本次教学活动,我发现了成功与遗憾共存。

  成功之处在于:

  1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

  2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

  3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

  遗憾之处在于:

  1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

  2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

鸡兔同笼教案 篇7

  教学目标:

  (一)知识技能

  1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。

  2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。

  (二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。

  (三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。

  教学重点:

  使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。

  教学难点:

  使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。

  教学过程:

  一、激趣导入 渗透方法

  1、 出示绕口令

  1只小鸡2条腿, 1只兔子4条腿;

  2只小鸡( )条腿, 2只兔子( )条腿;

  3只小鸡( )条腿, 3只兔子( )条腿。……

  【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】

  2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同

  【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】

  3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?

  老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?

  如果学生说出列表,老师先出示无序列表,再请学生帮忙修改

  【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】

  接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿

  【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】

  二、独立探究 解决问题

  刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。

  谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)

  1、出示例题,读儿歌

  菜市场里真热闹,鸡兔同笼喔喔叫。

  数数头儿有8个,数数腿儿26。可知鸡兔各多少?

  2、 指名说说已知条件和问题。

  引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿

  3、你们愿意自己尝试解答吗?

  每个同学有2个选择

  第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。

  第二:用填表的方法,看能否找到答案。

  (如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)

  【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】

  三、小组交流 开阔思路

  小组讨论的要求是

  1、给组内同学讲一讲你解题的方法和过程。

  2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。

  【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】

  四、全班交流 成果共享

  1、画图法

  预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)

  预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡

  为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?

  你认为这两种画法哪种简单?

  【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】

  2、列表法

  教师让学生在实物投影下讲解列表的方法。

  (预设3种列表法)

  3、逐一列表法

  情况1:鸡的只数 1 2 3 4 5 6 7

  兔的只数 7 6 5 4 3 2 1

  共有足数 30 28 26 24 22 20 18

  情况2

  鸡的只数 1 2 3

  兔的只数 7 6 5

  共有足数 30 28 26

  情况1与情况2进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况3:兔的只数 1 2 3 4 5 6 7

  鸡的只数 7 6 5 4 3 2 1

  共有足数 18 20 22 24 26 28 30

  情况4:兔的.只数 1 2 3 4 5

  鸡的只数 7 6 5 4 3

  共有足数 18 20 22 24 26

  情况3与情况4进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况2与情况4进行比较

  哪个列表能快速找到答案,为什么?

  4、取中列表法

  鸡的只数 4 3

  兔的只数 4 5

  共有足数 24 26

  5、跳跃列表法

  鸡的只数 1 3

  兔的只数 7 5

  共有足数 30 26

  (如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。

  如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)

  【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】

  五、灵活运用 巩固方法

  1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。

  我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。

  出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?

  你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?

  用你刚才没有尝试过的方法解决

  2、设计意图:

  1、使学生感受我国传统的数学文化。

  2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。

  3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。

  【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】

  六、总结收获 畅谈体会

  通过今天的学习,你有什么收获?

鸡兔同笼教案 篇8

  数也可以求出来。

  6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。

  * 古人是怎样解决“鸡兔同笼”问题的?

  1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。

  2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。

  3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。

  三、巩固练习

  课本105页“做一做”的1、2题。

  四、课堂总结:

  师:通过今天的学习,你有哪些收获?

  板书设计: 鸡兔同笼

  化繁为简

  列表法

  假设法:1)假设都是鸡

  2)假设都是兔

  教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》

  教材分析:

  “鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的.意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

  学情分析:

  “鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

  教学目标:

  1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

  教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。

  教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。

  教具准备:多媒体课件、表格等。

  教学过程:

  一、创设情境、揭示课题。

  1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

  2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

  这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)

  2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

  出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?

  二、合作探究、学习新知:

  活动一:探究用猜测列表法解决“鸡兔同笼”问题。

  学习方式:自学教材,小组合作交流

  1.师:请大家自由读题,你们都知道了什么信息?

  生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

  师:还有补充吗?有两个隐藏条件看谁细心发现了?。

  生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

  2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

  学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

  (1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

  (2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。

  (汇报交流)

  小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

  活动二:探究用假设法解决“鸡兔同笼”问题。

  学习方式:自学教材,小组合作交流。

  小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

  师:除了可以假设都是鸡,还可以怎样假设呢?

  小组2:引导学生说出都是兔,并演示。

  师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

  师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

  小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

  3、发散思考、加深理解。

  下面我们来帮陈赫找到他房间的密码,解放他吧!

  出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

  师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?

  生:是什么样的假设法,让我们先睹为快!

  师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?

  生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。

  生:鸡的只数为:35-12 = 23(只)。

  师:还有别的做法吗?怎样解答?

  生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数

【鸡兔同笼教案】相关文章:

鸡兔同笼教案07-14

《鸡兔同笼》教案05-22

鸡兔同笼教案最新05-16

小学奥数鸡兔同笼教案01-23

最新鸡兔同笼奥数教案10-08

小学数学《鸡兔同笼》教案优秀05-08

鸡兔同笼教案汇总5篇04-06

鸡兔同笼教案模板汇总六篇04-22

鸡兔同笼教案范文七篇04-24