有关分数乘法教案模板合集十篇
作为一无名无私奉献的教育工作者,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?以下是小编整理的分数乘法教案10篇,仅供参考,希望能够帮助到大家。
分数乘法教案 篇1
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、引导学生在经历猜想、验 证等数学活动中,发展学生的思维能力。
3、通过小组合作学习,培养学生进行交流的能力与合作意识。
教学重点:
使学生能够熟练分数的简便运算。
教学难点:
会用运算定律对分数进行简便运算。
教具准备:
自作课件。
教学过程
一、 复习导入
1、 回顾学习过的乘法运算定律。
(1)请学生说一说已学过的乘法运算定律,根据学生的回答,教师板书:
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac=bc
(2) 用简便方法 计算下面各题。
251348(9+12.5) 12524
2、 下面的每组算式的左右两边有什么样的关系?
1/21/3○1/31/2 (1/42/3)3/5○1/4(2/33/5)
(1/21/3)1/5○1/21/5+1/31/5
3、在学生发表自己的发现后,教师明确指出整数乘法的交换律、结合律和分配律也适用于分数乘法。
二、 探究新知
1、整数乘法运算定律推广到分数乘法
(1) 各组观察复习第2题的每组中两个算式,你们发现了什么?
(2) 各组发表本组同学的发现。
2、 应用
(1) 教学例5.计算3/51/65.
① 请试着做一做.
② 让学生互相交流自己的计算方法.(有的学生是按运算顺序计算的;有的是按运算定律进行计算的。)
③ 比较:哪一种方法简便?应用了什么运算定律?
④ 跟据学生的回答教师板书:
3/51/65
=3/551/6(应用乘法交换律)
=1/2
(2) 教学例6 .计算(1/10+1/4)4
① 让学生观察算式的特点,想一想,怎样计算比较简便?
② 学生计算完后,请学生说一说计算中应用了什么定律?
③ 根据学生的交流,教师板书:
(1/10+1/4)4
=1/104+1/44(应用乘法分配律)
=2/5+1
=1.2
3、 小结
在学生交流后,强调以下两点:
(1) 整数乘法的`交换律、结合律和分配律,对分数乘法同样适用。
(2) 在计算中,要根据题目的特点,灵活、合理的运用定律,使计算简便。
三、 巩固练习
1、 学生在书上直接.完成练习三的第6题。
请学生说一说每个题目应用了什么运算定律?
2、 完成第10页做一做。其中的第2小题教师可作适当指导。(可以把87看作86+1来计算)
四、 课堂作业
完成练习三的第7、8、9题。
五、总结
通过这节棵的学习你学会了什么?有哪些收获?
六、板书设计:
分数乘法的简便运算
乘法运算定律 乘法交换律 ab=ba
乘法结合律 (ab)c=a(bc)
乘法分配律 (a+b)c=ac+bc
例5 计算3/51/65例6 计算(1/10+1/4)4
3/51/65 (1/10+1/4)4
=3/551/6(应用乘法交换律) =1/104+1/44(应用乘法分配律)
=1/2=2/5+1
=1.4
分数乘法教案 篇2
教学目标
抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.
教学过程
一、引入
根据条件列出对应关系.
1.青砖的块数比红砖多
2.青砖的块数比红砖少
3.红砖的块数比青砖多
4.红砖的块数比青砖少
上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?
二、展开
(一)将上列各条件补充一个共同的条件和问题,出示例1.
红砖2100块 有青砖多少块?
1.学生独立解答;
2.大组交流;
3.列表归纳.
(二)出示例2
电视机厂今年生产电视机3600台,____________________,去年生产多少台?
1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.
(1)相当于去年的25%
(2)比去年少25%
(3)比去年多25%
(4)去年生产的是今年的25%
(5)去年比今年少25%
(6)去年比今年多25%
2.将应选择的条件填入下列各式后的.括号内.
( )
( )
( )
( )
( )
( )
3.师生共同分析
(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.
分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:
去年的产量□100
今年的产量360025
设去年生产x台,得到的式子:
在第六个式子的括号里填(1).
(2)按照式子找应补充的条件.
如:
分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).
三、巩固
(一)根据题意列式解答:
果园里有梨树168棵 苹果树有多少棵?
(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一
台机器要多少元?
(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?
(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?
教案点评
这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。
分数乘法教案 篇3
教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等。小学生分数乘法的数学教案,我们来看看。
教具、学具准备
1. 根据例题制作的挂图、投影片或多媒体课件。
2. 每个学生准备一张长15 cm、宽10 cm的长方形纸。
教学过程
一、创设情境引入新课
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)
让学生计算,并说说怎样计算。
师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
板书课题:分数乘分数
二、操作探究计算算理
1?笔合旅嫖颐抢刺教址质?乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)
师:我们已经知道,求1/4小时粉刷这面墙的'几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20
师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?
学生讨论交流汇报。
教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
三、迁移延伸,归纳法则
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
四、反馈提高,巩固计算
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
教学目标
1. 通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2. 发展学生的观察推理能力。
分数乘法教案 篇4
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“
个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果
3.比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为
提出质疑:3个
相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个
相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的.知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。
(二)分数乘整数的计算方法
1.不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,
的计算过程用式子该如何表示?预设:
生1:按照加法计算
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个
2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。
二、巩固练习,强化新知
1.例1“做一做”第1题
师:说出你的思考过程。
2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。
预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)
交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的
是多少。”
(3)出示第2小题学生自练。引导说出:“12×
表示求12 L的
是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)
归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的
,吃了多少千克?
师:你能说说这个算式表示的意义吗?“求3千克的
是多少。”
2.比较两种意义
出示:一袋面包重
千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。
引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。
师:那么,它们有什么是相同的呢?(计算方法和结果)
【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。
五、联系实际,灵活运用
1.算式
可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了
,用去了多少吨?
(2)一堆煤有
吨,5堆这样的煤有多少吨?
你能编写出类似的问题并加以解决吗?
3.拓展练习
1只树袋熊一天大约吃
kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
2.谁会用含有字母的式子表示分数乘整数的计算方法?
【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。
分数乘法教案 篇5
教学目标
1.进一步理解分数乘整数的意义。
2.掌握分数乘整数的计算法则。
3.能够熟练准确地计算分数乘整数的计算题。
教学重点
分数乘整数的计算方法,能正确计算。
教学难点
理解先约分再计算能使计算简便。
教师指导与教学过程
学生学习活动过程
设计意图
一、复习分数乘整数的意义及计算法则
二、出示例题
1.出示3/4×6
教师引导学生能不能先约分再计算。
学生得出结论后教师讲解先约分后计算的格式。
你会填吗?
1/6+1/6+1/6+1/6=1/6×()
3/4+3/4+3/4+3/4+3/4
=3/4×()
2/25+2/25+2/25
=2/25×()
在计算分数乘整数时,用分数的分子(),分母()。
学生先用计算法则进行计算后进行约分。
学生进行计算并比较两种方法那种方法简单。
复习巩固分数乘整数的`计算方法。
进一步应用分数乘整数的计算方法,体验先约分再计算。
教师指导与教学过程
学生学习活动过程
设计意图
2.练习
完成课本第3页的做一做
三、综合练习
1.练一练第1题
2.教师指导完成练一练第2题
学生完成后还可以估一估一个月、一年能滴多少水。
四、布置作业
完成练一练第3、4、5题
学生独立完成做一做
学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。
学生根据老师的指导进行计算,并解释结果的实际意义。
借助图形语言,加深学生对分数乘整数的意义的理解。
巩固分数乘整数的计算方法,培养学生的节约意识。
板书设计:
分数乘整数
复习题:出示例题3/4×6
分数乘法教案 篇6
分数乘法
1、分数乘法的意义和计算法则:
课时:1课时。 总课时:1课时。执行时间:
课题:分数乘整数。
教学目的`:
1、 使学生理解分数乘整数的意义;
2、 握分数乘整数的计算法则,并能够正确地进行计算。
3、 培养学生的学习兴趣。教具:多媒体教学课件。
教学过程():
一、 复习引入
1、 5个12是多少?怎么样列式?
算式:12+12+12+12+12=60或12×5=60
小结:求几个相同加数的和,可以用加法算,也可以用乘法算。
2、 计算:
2/7+2/7+2/7 3/10+3/10+3/10
(1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?
二、 尝试、探究
1、 分数乘整数的意义,
(1)学生说,教师板书:2/7×3 3/10×3
(2)学生交流。(3)教师强调意义。
2、 探究分数乘整数的计算法则,
(1) 学生试计算3/10×3,汇报交流,
方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.
(3)肯定学生想法,
课件演示【例1】看教本:
小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?
(1)学生审题, (2)引导学生看思考,
(2) 学生交流板书:
用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)
用乘法算:2/9×3=2×3/9=6/9=2/3(块)
答:3个人一共吃2/3块。
(4)小结计算法则:
三、 巩固练习
1、 做练习一的第1题。
2、 做一做,
四、 作业:第3、4题。
五、 后记:
分数乘法教案 篇7
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的'吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
分数乘法教案 篇8
教学目标 :
1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )
2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )
3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4. 进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。
5. 得出结果
根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6. 猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?
【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】
(二)探究几分之几乘几分之几的算理算法
1. 尝试猜想
请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3. 验证反馈
(1)请几个采用不同验证方法的学生进行一一展示。
(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的`想法。
4. 得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1. 读题,独立列式并解答。
2. 反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3. 练习
例4做一做1。
【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】
四、拓展总结(应用拓展,盘点收获)
1. 基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2. 练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○ ○ ○ ○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】
3.拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】
分数乘法教案 篇9
第一单元
分数乘法
第五课时
小数乘分数
教学内容:
教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:
掌握小数乘分数的计算方法。
教学难点:
灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2()
0.4()
3.5()
1.25()
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数: = = (分米)
分数化成小数: =2.10.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的`方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书
小数和分母约分: (分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页练习二第2题。
3、教材第10页练习二第3题。
分数乘法教案 篇10
教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .
教学过程:
一、基训
A、1、填》、《、=A》B》0
4/5A/B( )A/B
4/5B/A( )B/A
A/54/B( )4/5
2、一个真分数乘以一个假分数,结果大于真分数,对吗?
3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?
B、 1.分数乘以整数的`意义是什么?
2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?
3.计算带分数的乘法应注意些什么?
4.分数乘法的简便运算可以应用哪些运算定律?
5.解答分数乘法应用题的关键是什么?
6.倒数的意义是什么?
学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相
关的问题,如运算定律的表达式以及字母可以表示什么数等等。
二、综合练习
1.找1。
甲是乙的35 。乙是甲的35 。
甲比乙的35 多1。乙比甲的35 少1。
甲的35 和乙同样多。
学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:
2.做口算练习。
3.求下面各数的倒数。
2/7 1/9 6 20 0.6
学生独立解答,教师巡视,发现问题及时纠正。
4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?
5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?
三、小结(略)
四、补充作业。
【分数乘法教案】相关文章:
分数的乘法教案01-20
分数乘法教案02-14
分数乘法教案05-18
分数乘法教案 15篇02-17
《分数乘法》数学教案07-05
分数乘法教案(15篇)03-27
分数乘法教案15篇02-15
分数乘法数学教案02-13
分数乘法教案(精品15篇)08-16
分数乘法教案(合集15篇)03-29