【热门】平行四边形教案三篇
作为一名默默奉献的教育工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。教案应该怎么写呢?以下是小编为大家整理的平行四边形教案3篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇1
教学内容:
义务教育六年制小学《数学》第九册P64-P66
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:
掌握平行四边形面积公式。
教学难点:
平行四边形面积公式的推导过程。
教具、学具准备:
1、多媒体计算机及课件;
2、投影仪;
3、硬纸板做成的可拉动的长方形框架;
4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程:
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的`推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
⑴、(微机显示例一)求平行四边形的面积
⑵、判断题(微机显示,强调高是底边上的高)
⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
平行四边形教案 篇2
教学目标:
知识与技能
1.探索并掌握平行四边形、矩形、菱形、正方形的定义
2.掌握它们之间的区别与联系
过程与方法
在观察、操作的探索过程中,发展学生的合情推理能力。
教学重点:平行四边形的定义
教学难点:平行四边形、特殊平行四边形彼此之间的关系
教学过程:
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线。
强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
边角
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示四边形与特殊四边形的关系,如图.
3.对比引出平行四边形的概念.
(1)引导学生根据上图,叙述平行四边形的.概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(特性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:
①∵ABCD,
∴AD//BC,AB//CD(平行四边形的定义)
②∵AD//BC,AB//CD,
∴四边形ABCD是平行四边形(平行四边形的定义)
二、讲授新课
议一议:
用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.
1.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)。
注意:用定义判定一个四边形是矩形必须同时满足:①有一个角是直角②是平行四边形,两个条件缺一不可。
思考:
(1)如果把“平行四边形”换成“四边形”或去掉“有一个角是直角”能保证是矩形吗?
(2)增加条件行不行?如“有四个角是直角的平行四边形叫做矩形”可以吗?
引导学生思考后,进一步明确定义的内涵。
类比“平行四边形演变成矩形”而得到菱形。强调平行四边形增加一个特定条件“一组邻边相等”就得到菱形
可以发现:随着AB的运动,它仍然保持平行四边形的形状,但BC的长度却在不断地改变当BC恰好与AB相等时,就得到一种特殊的四边形———菱形。
2.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
想一想:平行四边形是否可能有一组邻边相等并且有一个角是直角呢?这时,平行四边形演变成什么图形?
学生思考后回答。师生共同总结得出:
3.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
试一试:正方形、、矩形、菱形与平行四边形之间存在“特殊”与“一般”的关系,正方形、、矩形、菱形之间也存在“特殊”与“一般”的关系,你能用一张图来表示它们之间的关系吗?把你设计的图和同学们讨论,并写下来。
引导学生思考后,进行小组讨论。归纳如下:
集合表示,突出关系
平行四边形
矩形正方形菱形
三、练习巩固概念P54
四、课堂小结:
师生共同总结本节课内容。
矩形
有一个角是直角,
平行四边形且有一组邻边相等正方形
菱形
五、课后作业
六、课后反思
平行四边形教案 篇3
教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的'严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备
方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边( ),对角( ),对角线( )。
2.( )是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题
【平行四边形教案】相关文章:
平行四边形的教案11-28
平行四边形教案04-12
《平行四边形的判定》教案09-10
平行四边形的认识教案09-21
平行四边形的面积教案11-18
《平行四边形的面积》教案01-20
平行四边形的认识教案03-19
平行四边形面积教案01-28
认识平行四边形教案09-13
人教版平行四边形的面积教案11-26