当前位置:9136范文网>教育范文>教案>初三数学教案

初三数学教案

时间:2023-05-16 14:18:56 教案 我要投稿
  • 相关推荐

初三数学教案

  作为一位杰出的教职工,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那要怎么写好教案呢?下面是小编为大家整理的初三数学教案,仅供参考,大家一起来看看吧。

初三数学教案

初三数学教案1

  一、素质教育目标

  (一)知识教学点

  使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

  (二)能力训练点

  逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

  (三)德育渗透点

  引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

  二、教学重点、难点

  1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

  2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

  三、教学步骤

  (一)明确目标

  1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

  2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

  3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

  4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

  前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

  通过四个例子引出课题.

  (二)整体感知

  1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

  学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

  2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

  这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

  (三)重点、难点的学习与目标完成过程

  1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

  2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

  若一组直角三角形有一个锐角相等,可以把其

  顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

  形中,∠A的对边、邻边与斜边的比值,是一个固定值.

  通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

  而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

  练习题为 作了孕伏同时使学生知道任意锐角的'对边与斜边的比值都能求出来.

  (四)总结与扩展

  1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

  教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

  2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

  四、布置作业

  本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

  五、板书设计

  第十四章 解直角三角形

  一、锐角三角函数 证明:------------------

  结论:--------------------

  练习:---------------------

  正弦和余弦(二)

  一、素质教育目标

  (一)知识教学点

  使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

  (二)能力训练点

  逐步培养学生观察、比较、分析、概括的思维能力.

  (三)德育渗透点

  渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

  二、教学重点、难点

  1.教学重点:使学生了解正弦、余弦概念.

  2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.

  三、教学步骤

  (一)明确目标

  1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”

  2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.

  (二)整体感知

  只要知道三角形任一边长,其他两边就可知.

  而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

  通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

  (三)重点、难点的学习与目标完成过程

  正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

  在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:

  请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.

  若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则

  引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

  教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.

  例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

  学生练习1中1、2、3.

  让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

  例2 求下列各式的值:

  为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

  (1)sin45°+cos45; (2)sin30°cos60°;

  在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.

  (四)总结、扩展

  首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即

  0<sinA<1, 0<cosA<1(∠A为锐角).

  还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”

  四、布置作业

  教材习题14.1中A组3.

  预习下一课内容.

  五、板书设计

初三数学教案2

  教学过程设计

  一、创设情境 引入课题

  活动1

  问题:

  你们还记得一次函数图象与性质吗?

  设计意图

  通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

  师生形为:

  教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。

  二、类比联想 探究交流

  活动2

  问题:

  例2 画出反比例函数y= 与y=- 的图象。

  (教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)

  设计意图:

  通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

  师生形为:

  学生可以先自己动手画图,相互观摩。

  在此活动中,教师应重点关注:

  1学生能否顺利进行三种表示方法的相互转换:

  2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;

  3在动手作图的过程中,能否勤于动手,乐于探索。

  比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?

  (由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)

  设计意图:

  学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

  师生形为:

  学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

  教师参与到学生的讨论中去,积极引导。

  (三)探索比较 发现规律

  活动3

  问题:

  观察反比例函数y= 与y=- 的图象。

  你能发现它们的共同特征以及不同点吗?

  每个函数的图象分别位于哪几个象限?

  在每一个象限内,y随x的变化如何变化?

  由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:

  形状: 反比例函数的图象是由两支双曲线组成的.因此称反比例函数的图象为双曲线;

  位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;

  任意一组变量的乘积是一个定值,即xy=k.

  (注意:双曲线的两个分支都不会与x轴,y轴相交。)

  学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的`探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育.

  四、 运用新知 拓展训练

  设计意图:

  拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的.

  师生形为:

  学生独立思考完成。

  教师巡视,引导学困生完成任务。

  五、归纳总结 布置作业

  问题:

  本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?

初三数学教案3

  教学内容:

  义务教育课程标准实验教科书(人教版)三年级上册第三者112页例1简单的组合。

  教学目标:

  1、通过观察、猜测、操作等活动,找出最简单的事物的组合数。

  2、经历探索简单事物组合规律的过程。

  3、培养学生有顺序地全面地思考问题的意识。

  4、感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:

  经历探索简单事物组合规律的过程。

  教学难点:

  能用不同的方法准确地计算出组合数。

  教具准备:

  教学课件学具准备:每生准备主题图中相关的学具卡片或实物。

  教学过程:

  (一)创设问题情境:

  师:小朋友,你们喜欢老师漂亮一点呢还是喜欢老师丑一点?

  生:大多数的小朋友说喜欢老师漂亮。

  师:那你们帮助老师打扮打扮。我最喜欢红色体恤和这三件下衣,到底怎样搭配最漂亮呢?请小朋友们给老师出出主意。小朋友们纷纷发表自己的意见,并说出了自己的理由。

  师:谢谢。你们的建议都不错。那我这一件上衣、三件下衣能有多少种不同的穿法呢?

  老师接着问:那我有两件上衣、三件下衣又有多少种不同的穿法呢?有说4种、有说5种、也有说6种的,到底有几种呢?

  (二)

  1.自主合作探索新知试一试

  师:请同学们也试着想一想,如果你觉得直接想象有困难的`话可以借助手中的学具卡片摆一摆。学生活动教师巡视。

  2.发现问题学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复了,有的漏写了。

  3.小组讨论师:每个同学算出的个数不同,怎样才能很快算出两件上衣、三件下衣有多少种不同的穿法呢?并做到不重复不遗漏呢?学生以小组为单位交流讨论。

  4.小组汇报汇报时可能会出现下面几种情况:

  (1)、无序的。用学具卡片或实物摆,然后再数。

  (2)、用连线的方法算出。

  (3)、用图式的方法算出。引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。

  5.小结教师简单小结学生所想方法引出练习内容见课本112页。

  (三)拓展应用

  数字2、3、4、5、6、7写出不同的两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△请你试着摆出其他几种排法。

  教学反思:

初三数学教案4

  教学目标

  1、 会运用因式分解进行简单的多项式除法。

  2、 会运用因式分解解简单的方程。

  二、教学重点与难点教学重点:

  教学重点

  因式分解在多项式除法和解方程两方面的应用。

  教学难点:

  应用因式分解解方程涉及较多的推理过程。

  三、教学过程

  (一)引入新课

  1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y

  (二)师生互动,讲授新课

  1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一个小问题 :这里的x能等于3/2吗 ?为什么?

  想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习

  合作学习

  想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0

  试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2

  等练习:课本P162课内练习2

  做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

  教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的`右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

  (三)梳理知识,总结收获因式分解的两种应用:

  (1)运用因式分解进行多项式除法

  (2)运用因式分解解简单的方程

  (四)布置课后作业

  作业本6、42、课本P163作业题(选做)

初三数学教案5

  一、教学目标

  1、了解二次根式的意义;

  2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3、掌握二次根式的性质和,并能灵活应用;

  4、通过二次根式的计算培养学生的逻辑思维能力;

  5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

  二、教学重点和难点

  重点:

  (1)二次根的意义;

  (2)二次根式中字母的.取值范围。

  难点:确定二次根式中字母的取值范围。

  三、教学方法

  启发式、讲练结合。

  四、教学过程

  (一)复习提问

  1、什么叫平方根、算术平方根?

  2、说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式。

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略。

  说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

  例3当字母取何值时,下列各式为二次根式:

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:

  (1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:

  (1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初三数学教案6

  一、教学目标

  1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。

  2.掌握“两角对应相等,两个三角形相似”的判定方法。

  3.能够运用三角形相似的条件解决简单的问题。

  二、重点、难点

  1.重点:三角形相似的判定方法3--“两角对应相等,两个三角形相似”

  2.难点:三角形相似的判定方法3的运用。

  3.难点的突破方法

  (1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法。

  (2)公共角、对顶角、同角的.余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据。

  (3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似。

  三、例题的意图

  本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程。并让学生掌握遇到等积式,应先将其化为比例式的方法。

  例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础。

  四、课堂引入

  1.复习提问:

  (1)我们已学习过哪些判定三角形相似的方法?

  (2)如图,△ABC中,点D在AB上,如果AC2=AD?AB,

初三数学教案7

  一、概念: 三、例1---------- 四、特殊角的正余弦值

  ------------- ------------------- -----------------------

  二、范围: ------------------ 五、例2 ------------

  正弦和余弦(三)

  一、素质教育目标

  (一)知识教学点

  使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.

  (二)能力训练点

  逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.

  (三)德育渗透点

  培养学生独立思考、勇于创新的精神.

  二、教学重点、难点

  1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.

  2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.

  三、教学步骤

  (一)明确目标

  1.复习提问

  (1)、什么是∠A的正弦、什么是∠A的'余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

  (2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

  (3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.

  2.导入新课

  根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.

  (二)、整体感知

  关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.

  (三)重点、难点的学习和目标完成过程

  1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.

  2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.

  3.教师板书:

  任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.

  sinA=cos(90°-A),cosA=sin(90°-A).

  4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.

  已知∠A和∠B都是锐角,

  (1)把cos(90°-A)写成∠A的正弦.

  (2)把sin(90°-A)写成∠A的余弦.

  这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.

  (2)已知sin35°=0.5736,求cos55°;

  (3)已知cos47°6′=0.6807,求sin42°54′.

  (1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:

  (2)已知sin35°=0.5736,则cos______=0.5736.

  (3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.

  为了配合例3的教学,教材中配备了练习题2.

  (2)已知sin67°18′=0.9225,求cos22°42′;

  (3)已知cos4°24′=0.9971,求sin85°36′.

  学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.

  教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.

  (四)小结与扩展

  1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.

  2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.

  四、布置作业

  教材习题14.1A组4、5.

  五、板书设计

初三数学教案8

  一、教学目标

  1、知识与技能

  (1)理解圆与圆的位置的种类;

  (2)利用平面直角坐标系中两点间的距离公式求两圆的'连心线长;

  (3)会用连心线长判断两圆的位置关系.

  2、过程与方法

  设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:

  (1)当时,圆与圆相离;

  (2)当时,圆与圆外切;

  (3)当时,圆与圆相交;

  (4)当时,圆与圆内切;

  (5)当时,圆与圆内含;

  3、情态与价值观

  让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想.

  二、教学重点、难点:

  重点与难点:用坐标法判断圆与圆的位置关系.

  问题 设计意图 师生活动

  1.初中学过的平面几何中,圆与圆的位置关系有几类? 结合学生已有知识以验,启发学生思考,激发学生学习兴趣. 教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.

  2.判断两圆的位置关系,你有什么好的方法吗?

  引导学生明确两圆的位置关系,并发现判断和解决两圆的位置 教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.

初三数学教案9

  第一课时

  素质教育目标

  (一)知识教学点

  1.使学生初步了解统计知识是应用广泛的数学内容 .

  2.了解平均数的意义,会计算一组数据的平均数 .

  3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

  (二)能力训练点

  培养学生的观察能力、计算能力 .

  (三)德育渗透点

  1.培养学生认真、耐心、细致的学习态度和学习习惯 .

  2.渗透数学来源于实践,反地来又作用于实践的观点 .

  (四)美育渗透点

  通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

  重点·难点·疑点及解决办法

  1.教学重点:平均数的概念及其计算 .

  2.教学难点:平均数的简化计算 .

  3.教学疑点:平均数简化公式的应用,a如何选择 .

  4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

  教学步骤

  (一)明确目标

  在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

  为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

  教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

  对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的`是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

  (二)整体感知

  解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

  (三)教学过程

  这节课我们首先来学习平均数.

  1.(出示幻灯片)请同学看下面问题:

  某班第一小组一次数学测验的成绩如下:

  86 91 100 72 93 89 90 85 75 95

  这个小组的平均成绩是多少?

  教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

  2.平均数的概念及计算公式

  一般地,如果有n个数 .

  那么 ①

  叫做这n个数的平均数, 读作“x拨” .

  这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

  3.平均数计算公式①的应用

  例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

  -6,-5,-7,-6,-4,-5,-7,-8,-7

  求它们的平均气温 .

  让学生动手计算,以巩固平均数计算公式(一名学生板演)

  教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

  例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  计算它们的平均质量 .(用投影仪打出)

  引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

  教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

  学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

  讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

  通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

  3.推导公式②

  一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,

  那么 ,

  因此,

  即 ②

  为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

  课堂练习:

  教材P148中~P149中1,2,3

  (四)总结、扩展

  知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

  2.求n个数据的平均数的公式① .

  3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

  方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

  八、布置作业

  教材P153中1、2、3、4 .

初三数学教案10

  【学习目标】

  1.了解圆周角的概念.

  2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

  3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

  4.熟练掌握圆周角的定理及其推理的灵活运用.

  设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

  【学习过程】

  一、温故知新:

  (学生活动)同学们口答下面两个问题.

  1.什么叫圆心角?

  2.圆心角、弦、弧之间有什么内在联系呢?

  二、自主学习:

  自学教材P90---P93,思考下列问题:

  1、什么叫圆周角?圆周角的两个特征:。

  2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

  (1)一个弧上所对的圆周角的个数有多少个?

  (2).同弧所对的圆周角的度数是否发生变化?

  (3).同弧上的'圆周角与圆心角有什么关系?

  3、默写圆周角定理及推论并证明。

  4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?

  5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  三、典型例题:

  例1、(教材93页例2)如图,⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。

  例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

  四、巩固练习:

  1、(教材P93练习1)

  解:

  2、(教材P93练习2)

  3、(教材P93练习3)

  证明:

  4、(教材P95习题24.1第9题)

  五、总结反思:

  【达标检测】

  1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().

  A.140°B.110°C.120°D.130°

  (1)(2)(3)

  2.如图2,∠1、∠2、∠3、∠4的大小关系是()

  A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

  C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

  3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于()

  A.100°B.110°C.120°D.130°

  4.半径为2a的⊙O中,弦AB的长为2a,则弦AB所对的圆周角的度数是________.

  5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.

  (4)(5)

  6.(中考题)如图5,于,若,则

  7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

  【拓展创新】

  1.如图,已知AB=AC,∠APC=60°

  (1)求证:△ABC是等边三角形.

  (2)若BC=4cm,求⊙O的面积.

  3、教材P95习题24.1第12、13题。

  【布置作业】

  教材P95习题24.1第10、11题。

初三数学教案11

  一、教学目标:

  1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  3、结合实例体会反证法的.含义。

  二、教学重点:

  了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。

  教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。

  三、教学方法:

  观察法。

  四、教学过程:

  复习:

  1、什么是等腰三角形?

  2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

  3、试用折纸的办法回忆等腰三角形有哪些性质?

  新课讲解:

  在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

  同学们和我一起来回忆上学期学过的公理

  本套教材选用如下命题作为公理:

  1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

  2.两条平行线被第三条直线所截,同位角相等;

  3.两边夹角对应相等的两个三角形全等;(SAS)

  4.两角及其夹边对应相等的两个三角形全等;(ASA)

  5.三边对应相等的两个三角形全等;(SSS)

  6.全等三角形的对应边相等,对应角相等.

  由公理5、3、4、6可容易证明下面的推论:

  推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:

  已知:∠A=∠D,∠B=∠E,BC=EF

  求证:△ABC≌△DEF

  证明:∵∠A+∠B+∠C=180°,

  ∠D+∠E+∠F=180°

  (三角形内角和等于180°)

  ∴∠C=180°-(∠A+∠B)

  ∠F=180°-(∠D+∠E)

  又∵∠A=∠D,∠B=∠E(已知)

  ∴∠C=∠F

  又∵BC=EF(已知)

  ∴△ABC≌△DEF(ASA)

  定理:等腰三角形的两个底角相等。

  这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。

【初三数学教案】相关文章:

小学数学教案02-25

初中数学教案12-26

小数数学教案07-26

大班优秀数学教案07-28

《轴对称》数学教案08-26

中班数学教案06-26

《倍的认识》数学教案06-27

大班数学教案07-06

小班数学教案06-10