当前位置:9136范文网>教育范文>教案>平行四边形教案

平行四边形教案

时间:2023-05-24 11:20:01 教案 我要投稿

精选平行四边形教案范文合集八篇

  作为一名无私奉献的老师,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?下面是小编为大家收集的平行四边形教案8篇,欢迎阅读,希望大家能够喜欢。

精选平行四边形教案范文合集八篇

平行四边形教案 篇1

  一、教学内容:P72

  二、教学目标:

  1、引导学生直观地认识平行四边形。

  2、培养学生动手操作和实践能力。

  三、教学准备:

  长方形框架、七巧板

  四、教学过程:

  (一)复习导入

  (二)探索新知

  1、做一做

  (1)教师演示:出示长方形框架

  这是什么图形,然后拉动,变成新形状。提示学生认真观察。

  (2)学生动手操作,做一做。

  (3)认识平行四边形

  A、认识平行四边形实物(观察新图形)

  B、认识平行四边形平面图

  2、想一想

  平行四边形与长方形的联系:对边相等,四个角不是直角,有的是锐角,有的是直角。

  3、说一说

  说一说平时见到的`平行四边形

  4、画一画

  5、拼一拼(用七巧板)

  (三)全课

  今天我们学习了什么知识,用什么方法认识平行四边形。

  (四)作业

  在现实中寻找平行四边形

平行四边形教案 篇2

  教学内容:国标苏教版数学第八册P43-45。

  教学目标:

  1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

  2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。

  教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。

  教学难点:引导学生发现平行四边形的特征。

  教学准备:配套多媒体课件。

  教学过程:

  一、生活导入。

  1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。

  2、你们还能找出我们生活中见过的一些平行四边形吗?学生回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。

  3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。

  [评:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。]

  二、探究特点。

  1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自己来想办法来制作一个平行四边形呢?你们可以先看一看材料袋中有哪些材料,再独立思考一下准备怎么做;如果有困难的可以先看看学具袋中的平行四边形再操作。

  2、大家已经完成了自己的创作,现在请你们和小组的同学交流一下,说说自己的做法和为什么这样做,然后派代表上来交流。

  学生小组交流,教师巡视,并进行一定的辅导。

  3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。

  (1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?

  (2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才能做一个平行四边形?

  (3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才能得到一个平行四边形?

  (4)用直尺画一个平行四边形。

  ……

  (评:这个个环节的设计,本着学生为主体的思想,敢于放手,让学生的多种感官参与学习活动,让学生在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、学生之间的多向交流,体现那了学生为本的理念。)

  4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?

  (评:本环节的设计,通过在方格纸上画,让学生再次感知平行四边形的一些特点,为下面的猜想、验证和画高作了铺垫。)

  5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么共同特点呢?下面我们一起来研究。

  根据你们在制作平行四边形的时候的体会,你们可以猜想一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜想它的特征呢?边?角?)

  6、学生小组讨论后提问并板书猜想:

  对边可能平行;

  对边可能相等;

  对角相等;

  ……

  7、你们真行,有了这么多的猜想,那我们能够自己想办法来证明这些猜想是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜想。

  学生每小组上台认领一条猜想,学生分组验证猜想。

  8、经过同学们的努力,我们已经自己验证了其中一条猜想,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?

  9、小组派代表上来交流自己小组的验证方法,其他小组在其完成后进行评价。

  (1) 两组对边分别相等:学生介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。

  (2) 两组对边分别平行:学生汇报的时候如果不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。

  (3) 对角相等:学生说出方法后,教师让学生再自己量一量。

  ……

  最后,教师板书出经过验证特点:

  两组对边分别平行并且相等;

  对角相等;

  内角和是360°

  (评:这个环节的设计蕴涵了“猜想-验证-结论”这样一个科学的探究方法。给学生提供了充分的自制探索的空间,引导学生先猜测特点,再放手让学生自己去验证和交流,使学生在碰撞和交流中最后的出结论。在这个过程中,学生充分展示了自己的思维过程,在交流中与倾听中把自己的方法与别人的想法进行了比较。)

  10、完成“想想做做1”。学生独立完成后说说理由。

  三、认识高、底。

  1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。

  学生自己尝试后交流。

  2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

  说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。

  3、你能画出另一组对边上的高,并量一量吗?学生继续尝试。

  完成后,让学生指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。

  4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的'底和高各是多少厘米。

  5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标记。如果有错误,让学生说说错在哪里。

  (这个环节的设计,通过学生自己去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,学生学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让学生领悟了高的知识。)

  四、练习提高。

  1、想想做做1,哪些图形是平行四边形,为什么。

  2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

  3、想想做做3,用七巧板中的3块拼成一个平行四边形。

  出示,你能移动其中的一块将它改拼成长方形吗?

  4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。

  5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。

  (评:在巩固练习中,注意通过学生动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,学生容易接受,并且注意了引导学生去自主探索、合作交流。)

  五、阅读调查

  自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。

  六、全课小结

  今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?

平行四边形教案 篇3

  【学习目标】

  1.能运用勾股定理解决生活中与直角三角形有关的问题;

  2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

  3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

  【学习重、难点】

  重点:勾股定理的应用

  难点:将实际问题转化为数学问题

  【新知预习】

  1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

  【导学过程】

  一、情境创设

  欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

  二、探索活动

  活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

  活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

  活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?

  三、例题讲解:

  1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

  2.一种盛饮料的'圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

  【反馈练习】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

  (2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

  (3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

  2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.无法确定

  3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?

  【课后作业】P67 习题2.7 1、4题

  八年级数学竞赛辅导教案:由中点想到什么

  第十八讲 由中点想到什么

  线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

  1.中线倍长;

  2.作直角三角形斜边中线;

  3.构造中位线;

  4.构造中心对称全等三角形等.

  熟悉以下基本图形,基本结论:

  例题求解

  【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .

  (“希望杯”邀请赛试题)

  思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.

  注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

  (1)利用直角三角斜边中线定理;

  (2)运用中位线定理;

  (3)倍长(或折半)法.

  【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中数学创新与知识应用竞赛试题)

  思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

  【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

  (浙江省宁波市中考题)

  思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

  【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

  若(1)BD、CF分别是△ABC的内角平分线(如图2);

  (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

  (20xx年黑龙江省中考题)

  思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

  注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

  【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

  (20xx年天津赛区试题)

  思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

  注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

  学历训练

  1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

  (20xx年广西中考题)

  2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

  (200l年山东省济南市中考题)

  3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

  4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

  (20xx年天津市中考题)

  5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

  A.不能确定 B.2 C. D. +1

  (20xx年浙江省宁波市中考题)

  8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

  ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

  ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

  ③若所得四边形MNPQ为矩形,则AC⊥BD;

  ④若所得四边形MNPQ为菱形,则AC=BD;

  ⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

  ⑥若所得四边形MNPQ为菱形,则AB=AD.

  以上命题中,正确的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江苏省苏州市中考题)

  9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

  (20xx年上海市中考题)

  10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

  11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

  (1)求证:EF=FB;

  (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

  12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

  (20xx年四川省竞赛题)

  13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

  (重庆市竞赛题)

  1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号)

  15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

  A. B. C. D.

  16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

  A.1 D.2 C.3 D.

  17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

  A. B. C. D.

  18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

  (20xx年全国初中数学联赛试题)

  19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

  (山东省竞赛题)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

  (1)求证:MB=MC;

  (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

  (江苏省竞赛题)

  21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

  (1)求证AA1+ CCl = BB1 +DDl;

  (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

平行四边形教案 篇4

  教学内容:

  教科书第14、15页的内容。

  教学目标:

  1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

  2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

  3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

  教学重点:

  认识平行四边形。

  教学难点:

  感悟平行四边形的特征。

  教学过程:

  一、情境导入

  同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

  二、自主探究

  同学们在生活中见过这样的图形吗?在哪见过?

  看,这是教师在生活中见到的四边形,你知道这是什么吗?

  课件出示:教材第14页例2图

  第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。

  你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

  学生动手操作,尝试拼平行四边形,教师巡视指导。

  组织交流,展示学生拼图结果,并让学生说说发现了什么?

  (它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的'四个角都是直角,平行四边形的角不是直角)

  老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

  三、巩固练习

  1.想想做做第1题。

  学生独立完成,分小组讨论, 汇报。

  2.想想做做第2题。

  组织学生想一想,再围一围。

  3.想想做做第3题。

  学生在书上描一描,教师巡视检查。

  4.想想做做第4题。

  学生动手完成。

  5. 想想做做第5题。

  学生在家长的帮助下完成。

  四、全课总结

  提问:今天这节课你有什么收获?

平行四边形教案 篇5

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ② 填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的.面积必须知道平行四边形的( ) 和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高 4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

平行四边形教案 篇6

  教材分析

  本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。

  教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。

  教学目标

  1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。

  2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。

  3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。

  根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的'探究过程”

  教学方法

  《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。

  教学过程

  教学环节

  教学活动

  设计意图

  一、创设情境,引入新知

  二、动手实践、探索新知

  三、尝试练习,提升能力

  四、课堂小结,梳理提高

  以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形

  (一)提出猜想

  【提问】平行四边形的面积可能等于什么?

  受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)

  (二)动手验证

  (课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。

  1.多数学生会选用数格法,得到两个图形面积相等。

  【追问】如果让你测量花坛的面积,你也用数格法吗?

  【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?

  再次验证,并提出活动要求

  (1) 你把平行四边形转化成什么图形?

  (2) 什么变了,什么没变?

  (3) 平行四边形的面积怎么算?

  2.交流反馈(一个演示,一个讲解)

  【提问】看懂这种方法吗?有谁的和他不同?

  (三)动眼观察

  【提问】这两种方法有什么共同之处?

  学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。

  【追问】什么变了,什么没变?

  学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。

  (小组内、同桌间说一说变化的过程,加深对公式的理解)

  (四)自学课本

  引导学生自学课本,用字母表示公式。

  S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)

  【追问】要求平行四边形的面积,必须知道什么?

  (一)基本技能训练

  (1) 计算平行四边形的面积

  (2) 蓝色线这条高的长度

  (二)解决实际问题

  快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)

  (三)提升思维能力

  1.在方格纸上画一个面积是24平方厘米的平行四边形

  2.如果这个平行四边形的底是4厘米,那么能画出几种?

  这节课你学习了什么,有哪些收获?

  教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。

  感受数格法不受用,从而激发起探究欲望。

  本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。

  打破学生思维定势,感受高和底的对应。

  发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。

  通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。

平行四边形教案 篇7

  【设计理念】

  本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

  【教学内容】

  《义务教育教科书》人教版数学课本五年级上册87——88页。

  【教材、学情分析】

  平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

  学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

  【教学目标】

  1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

  2、在探究的过程中感悟“转化”的数学思想和方法。

  3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

  4、引领学生回顾反思,获得基本的数学活动经验。

  【教学重点】

  推导平行四边形面积计算公式。应用公式解决实际问题。

  【教学难点】

  理解平行四边形的面积计算公式的推导过程。

  【教学准备】

  平行四边形纸片若干,直尺、剪刀、。

  【教学过程】

  一、创设情境,激发兴趣。

  讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

  【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

  二、组织探究,推导公式。

  1、联系旧知,做出猜想。

  看到这个题目,你想到了我们学过哪些有关面积的知识?

  大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

  【设计意图:引导学生回顾长方形、正方形的'面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

  2、初步验证,感悟方法。

  根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

  引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

  学生数方格并来验证自己的猜想。

  【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

  3、剪拼转化,发现规律。

  除了数方格,我们还能用什么方法来验证呢?(学生思考)

  能否将平行四边形转化成我们学过的图形再来进行计算呢?

  (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

  (2)展示交流。(演示)

  【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

  4、观察比较,推导公式。

  剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  小结: 长方形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

  【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】

  5、展开想象,再次验证。

  是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

  学生先闭眼想象,再借助手中的工具加以验证。

  6、回顾反思,总结经验。

  回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

  把平行四边形转化成长方形面积。(剪拼—转化)

  然后找到转化前、后图形之间的联系。(寻找—联系)

  根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

  【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

  三、实践应用,解决问题。

  1、解决实际问题

  平行四边形花坛底是6米,高是4米,它的面积是多少?

  2、出示如下图

  算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?

  4、现在你明白阿凡提是怎么打败巴依的了吗?

  引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

  思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

  【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

  四、总结全课,拓展延伸。

  转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

  通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

  【设计意图:试图把学生带入更加广阔的学习空间。】

  五、板书设计

  平行四边形的面积

  长 方 形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

平行四边形教案 篇8

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:掌握平行四边形面积公式。

  教学难点:平行四边形面积公式的推导过程。

  教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程():

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的.计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  (1)、(微机显示例一)求平行四边形的面积

  (2)、判断题(微机显示,强调高是底边上的高)

  (3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  (4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

【平行四边形教案】相关文章:

《平行四边形的判定》教案06-03

平行四边形的认识教案03-09

认识平行四边形教案03-05

《平行四边形面积的计算》教案09-14

精选平行四边形教案四篇05-19

平行四边形教案4篇05-13

精选平行四边形教案3篇05-18

精选平行四边形教案4篇05-16

平行四边形教案四篇05-21

精选平行四边形教案10篇05-23