当前位置:9136范文网>教育范文>教案>平行四边形教案

平行四边形教案

时间:2023-05-28 16:15:06 教案 我要投稿

关于平行四边形教案集锦十篇

  作为一位无私奉献的人民教师,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是小编整理的平行四边形教案10篇,仅供参考,希望能够帮助到大家。

关于平行四边形教案集锦十篇

平行四边形教案 篇1

  教学目标

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的.特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

平行四边形教案 篇2

  教学目标:

  1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2.索并掌握平行四边形的性质,并能简单应用;

  3.在探索活动过程中发展学生的探究意识。

  教学重点:平行四边形性质的探索。

  教学难点:平行四边形性质的理解。

  教学准备:多媒体课件

  教学过程

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1.小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

  2.小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用一张半透明的`纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理来证明这个结论,如图连结AC。

  ∵四边形ABCD是平行四边形

  ∴AD//BC,AB//CD

  ∴∠1=∠2,∠3=∠4

  ∴△ABC和△CDA中

  ∠2=∠1

  AC=CA

  ∠3=∠4

  ∴△ABC≌△CDA(ASA)

  ∴AB=DC,AD=CB,∠D=∠B

  又∵∠1=∠2

  ∠3=∠4

  ∴∠1+∠3=∠2+∠4

  即∠BAD=∠DCB

  第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1.活动内容:

  (1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1如图:四边形ABCD是平行四边形。

  (1)求∠ADC、∠BCD度数

  (2)边AB、BC的度数、长度。

  练2四边形ABCD是平行四边形

  (1)它的四条边中哪些线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。

  2.ABCD中,∠A比∠B大20°,则∠C=。

  3.ABCD中,AB=3,BC=5,则AD=CD=。

  4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。

  布置作业

  课本习题4.1

  A组(学优生)1、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

平行四边形教案 篇3

  教学目标

  1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。

  3.对学生进行辩诈唯物主义观点的启蒙教育。

  教学重点

  理解公式并正确计算平行四边形的面积。

  教学难点

  理解平行四边形面积公式的推导过程。

  教学过程

  一、复习引入

  1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。

  2.观察老师出示的几个平行四边形,指出它的底和高。

  3.教师出示一个长方形和一个平行四边形。

  猜测:

  哪一个图形面积比较大?大多少平方厘米呢?

  师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)

  二、指导探究

  1.数方格方法

  (1)小组合作讨论:

  a.图上标的`厘米表示什么?每个小方格表示1平方厘米为什么?

  b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?

  c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)

  d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

  (2)集体订正

  (3)请同学评价一下用数方格的方法求平行四边形的面积。

  (麻烦,有局限性)

  2.探索平行四边形面积的计算公式。

  (1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  (2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。

  (3)同学到前面演示转化的方法。

  (4)教师演示课件并组织学生讨论:

  ①平行四边形和转化后的长方形有什么关系?

  ②怎样计算平行四边形的面积?为什么?

  ③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?

  3、应用

  例1一块平行四边形钢板,它的面积是多少?(得数保留整数)

  4.83.517(平方米)

  答:它的面积约是17平方米。

  三、质疑小结

  今天你学到了哪些知识?怎样计算平行四边形面积?

  四、巩固练习

  1、列式并计算面积

  ①底厘米,高厘米,

  ②底米,高米,

  ③底分米,高分米

  2、说出下面每个平行四边形的底和高,计算它们的面积。

  3、应用题

  有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)

  4、量出你手里平行四边形学具的底和高,并计算出它的面积。

平行四边形教案 篇4

  【实验目的】

  验证互成角度的两个力合成时的平行四边形定则。

  【实验原理】

  等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。

  【实验器材】

  方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。

  【实验步骤】

  ⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。

  ⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。

  ⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。

  ⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。

  ⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。

  ⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。

  锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。

  交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?

  提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。

  【误差分析】

  ⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。

  ⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。

  ⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。

  ⑷作图比例不恰当造成作图误差。

  交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?

  提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的`合力表示由作图法得到的合力F。

  【注意事项】

  ⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。

  ⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。

  ⑶在同一次实验中,橡皮条伸长时的结点位置要相同。

  ⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

  ⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。

  交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?

  提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。

  【正确使用弹簧秤】

  ⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。

  ⑵弹簧秤不能在超出它的测量范围的情况下使用。

  ⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。

  ⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

  ⑸读数时应正对、平视刻度。

平行四边形教案 篇5

  一、学习目标

  1、经历探索多项式与多项式相乘的运算法则的过程,发展有条理的思考及语言表达能力。

  2、 会进行简单的多项式与多项式的乘法运算

  二、学习过程

  (一)自学导航

  1、创设情境

  某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米,用两种方法表示这块林区现在的面积。

  这块林区现在的长为 米,宽为 米。因而面积为________米2。

  还可以把这块林地分为四小块,它们的面积分别为 米2, 米2,_______米2, 米2。故这块地的面积为 。

  由于这两个算式表示的都是同一块地的面积,则有 =

  如果把(m+n)看作一个整体,你还能用别的方法得到这个等式吗?

  2、概括:

  多项式乘以多项式的法则:

  3、计算

  (1) (2)

  4、练一练

  (1)

  (二)合作攻关

  1、某酒店的厨房进行改造,在厨房的中间设计一个准备台,要求四面的过道宽都为x米,已知厨房的长宽分别为8米和5米,用代数式表示该厨房过道的总面积。

  2、解方程

  (三)达标训练

  1、填空题:

  (1) = =

  (2) = 。

  2、计算

  (1) (2)

  (3) (4)

  (四)提升

  1、怎样进行多项式与多项式的乘法运算?

  2、若 的乘积中不含 和 项,则a= b=

  应用题

  第三十五讲 应用题

  在本讲中将介绍各类应用题的解法与技巧.

  当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点.

  应用性问题能引导学生关心生活、关心社会,使学生充分到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.

  解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:

  在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等.

  例题求解

  一、用数式模型解决应用题

  数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.

  【例1】(20xx年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。有关数据如下表所示:

  景点ABCDE

  原价(元)1010152025

  现价(元)55152530

  平均日人数(千人)11232

  (1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。问风景区是怎样计算的?

  (2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。问游客是 怎样计算的?

  (3)你认为风景区和游客哪一个的说法较能反映整体实际?

  思路点拨 (1)风景区是这样计算的:

  调整前的平均价格: ,设整后的平均价格:

  ∵调整前后的平均价格不变,平均日人数不变.

  ∴平均日总收入持平.

  ( 2)游客是这样计算的:

  原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)

  现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)

  ∴平均日总收入增加了

  (3)游客的说法较能反映整体实际.

  二、用方程模型解应用题

  研究和解决生产实际和现实生恬中有关问题常常要用到方程<组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.

  【例2】 (重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min内可以通过560名学生;当同时开启一道正门和一道侧门时,4mln内可以通过800名学生.

  (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

  (2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门整否符合安全规定?请说明理由.

  思路点拨 列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.

  (1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,由题意得:

  ,解得:

  (2)这栋楼最多有学生4×8×4 5=1440(名).

  拥挤时5min4道门能通过.

  5×2(120+80)(1-20%)=1600(名),

  因1600>1440,故建造的4道门符合安全规定.

  三、用不等式模型解应用题

  现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.

  【例3】 (苏州中考题)我国东南沿海某地的风力资源丰富,一年内月平均的风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A、B两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:一天的发电量)如下表:

  日平均风速v(米/秒)v<33≤v<6v≥6

  日发电量 (千瓦?时)A型发电机O≥36≥150

  B型发电机O≥24≥90

  根据上面的数据回答:

  (1)若这个发电场购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为 千瓦?时;

  (2)已知A型风力发电机每台O.3万元,B型风力发电机每台O.2万元.该发电场拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000千瓦?时,请你提供符合条件的购机方案.

  根据上面的数据回答:

  思路点拨 (1) (100×36+60×150)x=12600x;

  (2)设购A型发电机x台,则购B型发电机(10—x)台,

  解法一根据题意得:

  解得5≤x ≤6.

  故可购A型发电机5台,B型发电机5台;或购A型发电机6台,B型发电视4台.

  四、用函数知识解决的应用题

  函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.

  【例4】 (扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供丁如下信息:

  ①买进每份0.20元,卖出每份0.30元;

  ②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;

  ③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社;

  (1)填表:

  一个月内每天买进该种晚报的份数100150

  当月利润(单位:元)

  (2)设每天从报社买进该种晚报x份,120≤x≤200时,月利润为y元,试求出y与x的函数关系式,并求月利润的最大值.

  思路点拨(1)填表:

  一个月内每天买进该种晚报的份数100150

  当月利润(单位:元)300390

  (2)由题意可知,一个月内的20天可获利润:

  20×=2x(元);其余10天可获利润:

  10=240—x(元);

  故y=x+240,(120≤x≤200), 当x=200时,月利润y的最大值为440元.

  注 根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x的取值范围.

  另外,初三还会提及统计型应用题,几何型应用题.

  【例5】 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.

  (1)求甲、乙两工程队单独完成此项工程所需的天数.

  (2)如果请甲工程队施工,公司每日需付费用200 0元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程;B.请乙队单独完成此项工 程; C.请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?

  思路点拨 这是一道策略优选问题.工程问题中:工作量=工作效率×工时.

  (1)设乙工程队单独完成此项工程需x天,根据题意得:

  , x=30合题意,

  所以,甲工程队单独完成此项工程需用20天,乙队需30天.

  (2)各种方案所需的费用分别为:

  A.请甲队需20xx×20=40000元;

  B.请乙队需1400×30=4200元;

  C.请甲、乙两队合作需(20xx+1400)×12=40800元.

  所队单独请甲队完成此项工程花钱最少.

  【例6】 (2全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队的生态区考察了多少天?

  思路点拨 挖掘题目中隐藏条件是关键!

  设考察队到 生态区去用了x天,返回用了y天,考察用了z天,则x+y+z=60,

  17x-25y=-1,即25y-17x=1. ①

  这里x、y是正整数,现设 法求出①的一组合题意的解,然后计算出z的值.

  为此,先求出①的一组特殊解(x0,y0),(这里x0,y0可以是负整数).用辗转相除法.

  25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.

  与①的左端比较可知,x0 =-3,y0=-2.

  下面再求出①的合题意的解.

  由不定方程的知识可知,①的一切整数解可表示为x=-3+25t,y=-2+17t,

  ∴ x+y=42t-5,t为整数.按题意0

  ∴z=60—(x+y)=23.

  答:考察队在生态区考察的天数是23天.

  注 本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法.

  【例7】 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下:

  (1)若一次购物少于200元,则不予优惠;

  (2)若一次购物满200元,但不超过500元,按标价给予九折优惠;

  (3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折 优惠.

  小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购 买小明分两次购买的同样多的物品,他需付款多少?

  思路点拨 应付198元购物款讨论:

  第一次付款198元,可是所购物品的实价,未 享受优惠;也可能是按九折优惠后所付的款.故应分两种情况加以讨论.

  情形1 当198元为购物不打折付的钱时,所购物品的原价为198元 .

  又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱;104÷0. 8 =130(元).

  因此,554元所购物品的原价为130+500=630(元),于是购买小呀花198 +630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828-500)×0.8=712.4(元).

  情形2 当198元为购物打九折付的钱时,所购物品的原价为198 ÷0.9=220(元) .仿情形1的讨论,,购220+630=850{元}物品一次性付款应为500×0.9+(850-500)×0.8=730(元).

  综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元

  【例8】 (20xx年全国数学竞赛题)某项工程,如果由甲、乙两队承包,2 天完成,需180000元;由乙、丙两队承包,3 天完成,需付150000元;由甲、丙两队承包,2 天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?

  思路点拨 关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:

  设甲、乙、丙单独承包各需x、y、z天完成.

  则 ,解得

  再设甲、乙、丙单独工作一天,各需付u、v、w元,

  则 ,解得

  于是,由甲队单独承包,费用是45500×4=182000 (元).

  由乙队单独承包,费用是29500×6= 177000 (元).

  而丙队不能在一周内完成.所以由乙队承包费用最少.

  学历训练

  (A级)

  1.(河南)在防治“SARS”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液?

  2.(山东省竞赛题)某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)

  3.(江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?

  4.某人从A地到B地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?

  (提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少)

  (B级)

  1.(全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min可抽完;如果用4台抽水机抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水机 台.

  2.(希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销:

  购买台数1~5台6~10台11~15台16~20台20台以上

  每台价格760元720元680元640元600元

  乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折; 每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折.

  (1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表;

  (2)现在有A、B、C三个单位,且单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少?

  3.(河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.

  4.从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏—级).问:

  (1)扶梯露在外面的部分有多少级?

  (2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离)则男孩第一次追上女孩时走了多少级台阶?

  5.某化肥厂库存三种不同的`混合肥,第一种 含磷60%,钾40%,第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100?(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.

  6.(黄冈竞赛题)有麦田5块A、B、C、D、E,它们的产量,(单位:吨)、交通状况和每相邻两块麦田的距离如图21-2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪快麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a、b、d表示距离,且b < a

  多边形的边角与对角线

  j.Co M

  第十四讲 多边形的边角与对角线

  边、角、对角线是多边形中最基本的概念,求多边形的边数 、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识.

  多边形 的内角和定理反映出一定的规律性:(n-2)×180°随n的变化而变化;而多边形的外角和定理反映出更本质的规律;360°是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧.

  将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸 边形的一个顶点引出的对角线把 凸 边形分成 个多角形,凸n边形一共可引出 对角线.

  例题求解

  【例1】在一个多边形中,除了两个内角外,其余内角之和为20xx°,则这个多边形的边数是 .

  (江苏省竞赛题)

  思路点拨 设除去的角为°,y°,多边形的边数 为 ,可建立关于x、y的不定方程;又0°

  链接 世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的几何性质,多边形可分成三角形,三角形可以合成其他

  一些几何图形.

  【例2】 在凸10边形的所有内角中,锐角的个数最多是( )

  A.0 B.1 C.3 D.5

  (全国初中数学竞赛题)

  思路点拨 多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为 外角为钝角的个数的探讨.

  【例3】 如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长.

  (乌鲁木齐市中考题)

  思路点拨 把动手操作与合情想象相结合 ,解题的关键是能注意到重合的边作为四边形对角线有不同情形.

  注 教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题.

  本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解.

  【例4】 在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.

  (1)请根据下列图形,填写表中空格:

  (2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?

  (3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面 图形?说明你的理由.

  (陕西省中考题)

  思路点拨 本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性.假定正n边形满足铺砌要求,那么在它的顶点接合的地方,n个内角的和为360°,这样,将问题的讨论转化为求不定方程的正整数解.

  【例5】 如图,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A'B'C'D'E'.

  (1)图中5块阴影部分即四边形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一个五边形吗?说明理由.

  (2)证明五边形A'B'C'D'E'的周长比五边形ABCD正的周长至少增加25个单位.

  (江苏省竞赛题)

  思路点拨 (1)5块阴影部分要能拼成一个五边形须满足条件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三点分别共线;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周长等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圆的周长逼近估算.

  1.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 ?,周长最小的是 cm.

  (选6《荚国中小学数学课程标准》)

  2.如图,∠1+∠2+∠3+∠4+∠5+∠6= .

  3.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围是 .

  4.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:

  (1)第4个图案中有白色地面砖 块;

  (2)第n个图案中有白色地面砖 块.

  (江西省中考题)

  5.凸n边形中有且仅有两个内角为钝角,则n的最大值是( )

  A.4 B.5 C. 6 D.7

  ( “希望杯”邀请赛试题)

  6.一个凸多边 形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是( )

  A.9条 B.8条 C.7条 D. 6条

  7.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖( )

  A.216块 B.288块 C.384块 D.512块

  ( “希望杯”邀请赛试题)

  8.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC和△ACD拼成一个凸四边形ABCD.

  (1))画出四边形ABCD;

  (2)求出四边形ABCD的对角线BD的长.

  (上海市闵行区中考题)

  9.如图,四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数.

  (北京市竞赛题)

  10.如图,在五边形A1A2A3A4A5中,Bl是A1的对边A3A4的中点,连结A1B1,我们称A1B1是这个五边形的一条中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条对角线和它平行.

  (安徽省中考题)

  11.如图,凸四边形有 个;∠A+∠B+∠C+∠D+∠E+∠F+∠G= .

  (重庆市竞赛题)

  12.如图,延长凸五边形A1A2A3A4A5的各边相交得到5个角,∠B1,∠B2,∠B3,∠B4,∠B5,它们的和等于 ;若延长凸n边形(n≥5)的各边相交,则得到的n个角的和等于 .

  ( “希望杯”邀请赛试题)

  13.设有一个边长为1的正三角形,记作A1(图a),将每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A 2(图b),再将每条边三等分,并重复上述过程,所得到的图形记作A3(图c);再将每条边三 等分,并重复上述过程,所得到的图形记作A4,那么,A4的周长是 ;A4这个多边形的面积是原三角形面积的 倍.

  (全国初中数学联赛题)

  14.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA—CD=3,则BC+DC= . (北京市竞赛题)

  15.在一个n边形中,除了一个内角外,其余(n一1)个内角的和为2750°,则这个内角的度数为( )

  A.130° D.140° C .105° D.120°

  16.如图,四边形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,则CD的长为( )

  A.4 B.4 C.3 D. 3 (江苏省竞赛题)

  注 按题中的方法'不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称——雪花曲线或 科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是新兴学科“混沌”的重要分支.

  17.如图,设∠CGE=α,则∠A+∠B+∠C+∠D+∠C+∠F=( )

  A.360°一α B.270°一αC.180°+α D.2α

  (山东省竞赛题)

  18.平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.

  19.一块地能被n块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需n+76块这样的地砖才能覆盖该块地,已知n及地砖的边长都是整数,求n. (上海市竞赛题)

  20.如图,凸八边形ABCDEFGH的8 个内角都相等,边AB、BC、CD、DE、EF、FG的长分别为7,4,2,5,6,2,求该八边形的周长.

  21.如图l是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A、B、C、D各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.

  如果已知四边形ABCD中,AB=6,CD=15,那么BC、AD取多长时,才能实现上述的折叠变化?

  (淄博市中考题)

  22.一个凸n边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸n边形各个内角的大小,并画出这样的 凸n边形的草图.

  图形的平移与旋转

  前苏联数学家亚格龙将几何学定义为:几何学是研究几何图形在运动中不变的那些性质的学科.

  几何变换是指把一个几何图形Fl变换成另一个几何图形F2的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、旋转是常见的合同变换.

  如图1,若把平面图形Fl上的各点按一定方向移动一定距离得到图形F2后,则由的变换叫平移变换.

  平移前后的图形全等,对应线段平行且相等,对应角相等.

  如图2,若把平面图Fl绕一定点旋转一个角度得到图形F2,则由Fl到F2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角.

  旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等.

  通过平移或旋转,把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,促使问题的解决.

  注 合同变换、等积变换、相似变换是基本的几何变换.等积变换,只是图形在保持面积不变情况下的形变'而相似变换,只保留线段间的比例关系,而线段本身的大小要改变.

  例题求解

  【例1】如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APD= .

  思路点拨 通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形.

  【例2】 如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN= x,DN=n,则以线 段x、m、n为边长的三角形的形状是( )

  A.锐角三角形 B.直角三角形

  C.钝角三角形 D.随x、m、n的变化而改变

  思路点拨 把△ACN绕C点顺时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、 x、n 集中为△DNB,只需判定△DNB的形状即可.

  注 下列情形,常实施旋转变换:

  (1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;

  (2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;

  (3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.

  【例3】 如图,六边形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED?AB=AF?CD>0,求证:该六边形的各角相等.

  (全俄数学奥林匹克竞赛题)

  思路点拨 设法将复杂的条件BC?FF=ED?AB=AF?CD>0用一个基本图形表示,题设中有平行条件,可考虑实施平移变换.

  注 平移变换常与平行线相关,往往要用到平行四边形的性质,平移变换可将角,线段移到适当的位置,使分散的条件相对集中,促使问题的解决.

  【例4】 如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1. (西安市竞赛题)

  思路点拨 本例实际上就是证明2EF≥BC,不便直接证明,通过平移把BC与EF集中到同一个三角形中.

  注 三角形中的不等关系,涉及到以下基本知识:

  (1)两点间线段最短,垂线段最短;

  (2)三角形两边之和大于第三边,两边之差小于第三边;

  (3)同一个三角形中大边对大角(大角对大边),三角形的一个外角大于任何一个和它不相邻的内角.

  【例5】 如图,等边△ABC的边长为 ,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA、PB的长. (“希望杯”邀请赛试题)

  思路点拨 题设条件满足勾股关系PA2+PB2=PC2的三边PA、PB、PC不构成三角形,不能直接应用,通过旋转变换使其集中到一个三角形中,这是解本例的关 键.

  学历训练

  1.如图,P是正方形ABCD内一点,现将△ABP绕点B顾时针方向旋转能与△CBP′重合,若PB=3,则PP′= .

  2.如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB .

  3.如图,四边形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长为 .

  4.如图,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB= ,则此三角形移动的距离AA'是( )

  A. B. C.l D. (20xx年荆州市中考题)

  5.如图,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点C、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF= S△ABC;④EF=AP.

  当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )

  A.1个 B.2个 C .3个 D.4个

  (20xx年江苏省苏州市中考题)

  6.如图,在四边形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四边形ABCD d=8,则BE的长为( )

  A.2 B.3 C . D. (20xx年武汉市选拔赛试题)

  7.如图,正方形ABCD和正方形EFGH的边长分别为 和 ,对角线BD、FH都在直线 上,O1、O2分别为正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线 上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有变化.

  (1)计算:O1D= ,O2F= ;

  (2)当中心O2在直线 上平移到两个正方形只有一个公共点时,中心距O1O2= ;

  (3)随着中心O2在直线 上平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程). (徐州市中考题)

  8.图形的操做过程(本题中四个矩形的水平方向的边长均为a,竖直 方向的边长均为b):

  在图a中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B1B2(即阴影部分);

  在图b中, 将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B1B2B3(即阴影部分);

  (1)在图c中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;

  (2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1= ,,S2= ,S3= ;

  (3)联想与探索:

  如图d,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的.

  (20xx年河北省中考题)

  9.如图,已知点C为线段AB上一点,△ACM、△CBN是等边三角形,求证:AN=BM.

  说明及要求:本题是《几何》第二册几15中第13题,现要求:

  (1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上,请对照原题图在图中画出符合要求的图形(不写作法,保留作图痕迹).

  (2)在①所得的图形中,结论“AN=BM”是否还成立?若成立,请证明;若不成立,请说明理由.

  (3)在①得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并证明你的结论.

  10.如图,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是 cm2.

  11.如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是 .

  (绍兴市中考题)

  12.如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则PA+PB+PC与AB+AC的大小关系是( )

  A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.无法确定

  13.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为( )

  A. B. C .5 D.6

  (20xx年武汉市选拔赛试题)

  14.如图,已知△ABC中,AB=AC,D为AB上一点,E为AC 延长线上一点,BD=CE,连DE,求证:DE>DC.

  15.如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满 ,求△ABC的面积.

  16.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米? (“五羊杯”竞赛题)

  17.如图,△ABC是等腰直角三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离都等于1,将△ABC绕 点O顺时针旋转45°,得△A1BlC1 ,两三角形公共部分为多边形KLMNPQ.

  (1)证明:△AKL、△BMN、△CPQ都是等腰直角三角形;

  (2)求△ABC与△A1BlC1公共部分的面积. (山东省竞赛题)

  18.(1)操作与证明:如图1,O是边长为a的正方形ACBD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值.

  (2)尝试与思考:如图2,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或正五边形的中心O点处,并将纸板绕O点旋转, 当扇形纸板的圆心角为 时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为 时,正五边形的边被纸板覆盖部分的总长度也为定值a.

  (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为 时,正n边形的边被纸板覆盖部分 的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系;若不是定值,请说明理由.

平行四边形教案 篇6

  目标:

  1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。

  3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

  教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

  教学准备:多媒体、平行四边形纸片. 剪刀、三角尺

  一、创设情境

  同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?

  师:你们准备怎样解决呢?

  生:分别算出长方形和平行四边形的面积就行了。

  师:谁来说怎样计算长方形的面积?

  生:长方形的面积等于长乘宽。

  师:怎样列式?(10×6=60平方米)

  师:求长方形的面积有公式很方便,那你会算平行四边形的面积吗?

  生:-------

  师:那么今天我们就来研究怎样求平行四边形的面积.(板书课题:平行四边形的面积)

  二、探究新知

  1、学生尝试解决,

  师:同学们,仔细观察这块平行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。

  学生活动,独立尝试解决。

  教师巡视,

  2、反馈学生尝试计算结果。

  师:同学们有结果了吗?

  学生汇报结果。

  师:求一个图形的面积出现了这么多的结果,可能吗?(不可能)

  到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出平行四边形纸,通过剪、拼的方法把这个平行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。

  3、学生汇报验证过程。

  师:请你上台把这过程演示一遍。

  学生演示。

  师:我想问一下,你这一剪是随便剪的吗?

  生:不是,是沿高剪的。

  师:哦,这位同学是这样剪的`。

  师:不错,谁还有不同的剪法?

  学生汇报。

  师:大家听明白了吗?这两个同学都是沿着平行四边形的一条高剪开,将平行四边形转化成一个长方形。看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。

  师:现在,我请一位同学用老师的教具把平行四边形转化的过程再演示一遍。谁来上台演示?

  师:大家边看边想:转化后的长方形和原来的平行四边形比,什么变了?什么不变?

  生:形状变了,面积没有变。

  师:面积没有变,也就是――(转化后长方形的面积与原来的平行四边形的面积相等。)

  师:非常正确!

  师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的平行四边形的底和高有什么关系?

  师演示教具。

  生:转化后的长方形,长与原来的平行四边形的底相等,宽与原来平行四边形的高相等。

  师:说得真好。那现在平行四边形的面积你们会算了吗?

  生:平行四边形的面积等于底乘高。

  师:不错。如果用S表示平行四边形的面积,用a 表示底,用h表示高,平行四边形的面积公式用字母怎样表示呢?

  学生说完,师完成板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  用字母表示:S=a×h=ah

  师:同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲

  请同学们打开数学书81页,把平行四边形的面积公式补充完整。这个面积公式适用于所有的平行四边形。

  师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说平行四边形的面积是怎样推导出来的,(出示课件)你会填吗?

  4、解决问题

  师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?

  生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。

  师:谢谢你们为小熊和小兔解决了交换菜地的问题。

  师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。

  出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生尝试练习,生上台板演。

  师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

  生:底和高。

  师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。

  三、巩固练习

  1、计算下列图形的面积。

  师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。

  生上台板演。

  师:同学们,算完了吗?我们来看看这位同学做对了没有?

  师:今后我们在求平行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。

  师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?

  2、课本82页第2题。

  师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做? 女生算第1个图形,男生算第2个图形。我们比一比

  学生上台展示。,

  3、考考你。

  师:比完了,接下来老师又要出题目考你们了。

  4、小小设计师。

  师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24平方分米,那么底和高各是多少分米?(底和高都是整数)

  四、小结

  师:今天这节课的知识你们是怎样学会的呢?

  师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。

平行四边形教案 篇7

  教材分析

  本节课既是七年级平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础。本节课是在学生掌握了平移等知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用。

  学情分析

  八年级学生有一定的自学、探索能力,求知欲强。并且,学生 在小学里已经初步学习过平行四边形,对平行四边形有直观的感知和认识。在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。借助于远教资源的'优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。在此基础上学习平行四边形的性质,可以比较自然地得出平行四边形的性质。

  教学目标

  ㈠、知识与技能:

  1、理解并掌握平行四边形的定义;

  2、掌握平行四边形的性质定理;

  3、理解两条平行线的距离的概念;

  4、培养学生综合运用知识的能力;

  ㈡、过程与方法:经历探索平行四边形的有关概念和性质的过程, 发展学生的探究意识和合情推理的能力。

  ㈢、情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。

  教学重点和难点

  重点:平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用。

  难点:运用平行四边形的性质进行有关的论证和计算。

平行四边形教案 篇8

  教学内容:

  义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。

  3、培养学生学习数学的兴趣及积极参与、团结合作的',渗透品德教育。

  教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:平行四边形面积公式的推导过程。

  教具准备:多媒体课件、剪刀、平行四边形

  教学过程:

  一、情景引入,激趣导课

  建国60年来,我们的生活水平越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水平提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?

  导入新课,揭示图形板书课题。

  二、动手操作,探究新知

  1、复习:复习平行四边形的底和高。

  2、归纳意见,提出验证

  学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。

  3、学生汇报结果,展示操作过程

  小组的代表来展示各组的操作方法。

  4、演示过程,强化结果

  多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?

  5、填空、归纳公式

  根据刚才的操作过程,完成填空题,并归纳板书公式。

  把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。

  6、提问质疑

  学生阅读课本81页的内容,质疑。

  三、分层练习,内化新知

  1、用公式分别算一算两个停车位的面积。

  2、计算相对应的底和高的平行四边形花圃面积。

  3、计算平行四边形牌两面涂漆的面积。

  4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。

  四:课堂。

  今天我们学习了什么?通过学习,你有那些新的收获呢?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  (转化)

  平行四边形的面积=底×高

  S=a×h

平行四边形教案 篇9

  教学内容:教材第16-15页例2及“想想做做”1—5题。

  教学目标:

  1.使学生通过观察、比较、操作等实践活动,感知平行四边形的特点,初步认识平行四边形,能指出平行四边形和围出平行四边形。

  2.使学生经历从直观、操作中抽象出平行四边形的过程,形成平行四边形的直观表象,并能操作再现平行四边形的形状,积累通过多种感官学习平面图形的经验,发展初步的空间观念。

  3.使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。

  教学重点:

  平行四边形的直观认识

  教学难点:

  平行四边形的直观表象

  教具或学具准备:

  三角尺、钉子板、小棒、长方形木框(教具)

  教学过程:

  一、直观认识

  1.观察图形:三角形、四边形、五边形、六边形

  你准备怎样把这些图形分类?

  说明:有四条边的图形是四边形,四边形有各种各样的形状,今天我们认识一种特殊的四边形(出示例2)

  2.学习例2

  1.这是生活里常见的情境。你能在这些情境中找出四边形并用手沿四条边指一指吗?小朋友在课本例2的图上用笔描出这样的四边形。

  交流:生活里一定看到过这样的四边形,你还在哪里看到过?

  2.操作

  请同学们拿出两个完全一样的三角尺。你能拼出这样的.四边形吗?

  交流:把你的拼法介绍给大家。

  说明:小朋友都拼出了生活里见到的这样的四边形,像这样的四边形是平行四边形(板书课题)

  3.抽象出图形

  引导:像这样的图形是平行四边形,你能在钉子板上围一个平行四边形吗?

  学生操作,老师引导,让学生交流围法,老师适当引导(对边的方向、长短完全一样)。

  二、练习巩固:

  1.想想做做第1题

  学生独立完成。交流:哪些是平行四边形?第一个为什么不是,说说你的理由。

  2.想想做做第3题

  学生画图,老师巡视指导。

  交流所画的平行四边形,指出这些图形虽然大小不同,位置形状不一

  样,但都是平行四边形。

  3.想想做做第4题

  同桌合作,动手操作,老师指导。

  交流操作方法,想想平行四边形对边的要求。

  4.想想做做第5题

  演示,让学生注意观察,你有什么发现。

  说明:一个长方形,不管怎样拉,虽然形状、大小会发生变化,但都是平行四边形。

  三、回顾总结:

  今天我们学习了什么?请你说说认识平行四边形的过程。

  你有什么收获和体会。

  四、布置作业

  《补充习题》第 页。

平行四边形教案 篇10

  一、教学目标:

  1、理解和掌握平行四边形的面积计算公式。

  2、会计算平行四边形的面积。

  二、教学重点:

  理解公式并正确计算平行四边形的面积。

  三、教学难点:

  理解平行四边形的面积公式的推导过程。

  四、学具准备:平行四边形纸

  五、教学过程:

  (一)、板书课题,揭示目标

  同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)

  平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)

  一个方格代表12,不满一格的都按半格计算。

  谁来数一数两个图形的面积各是多少?(出示)

  平行四边形的底和高各是多少?(出示)

  长方形的长和宽各是多少?(出示)

  (出示)你发现了什么?

  同学们今天这节课我们就来学习“平行四边形的`面积”(板书课题)

  本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)

  要想完成学习目标,还要靠同学们认真自学,请看自学指导。

  (二)出示自学指导

  1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。

  2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?

  (6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)

  现在开始自学,注意看书的姿势,用剪刀时要注意安全!

  (三)、学生自学

  1、学生看书自学,教师巡视,督促每个学生都能认真自学。

  2、检测学生自学效果

  师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)

  观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?

  想一想平行四边形的面积应该怎样计算?(师板书面积公式)

  教师小结(展示动画):

  同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。

  (边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)

  下面就用你所学的知识去解决一下实际问题。

  出示检测题

  出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?

  抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。

  (四)、后教

  1、学生自由更正

  在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。

  2、讨论归纳

  问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?

  板书:写公式——代入数——计算(单位)——写答话。

  (五)、当堂训练

  1、

  2、

  (六)、全课总结

  这节课,你有什么收获?

  六、板书设计

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  写公式——代入数——计算(单位)——写答话

  5

【平行四边形教案】相关文章:

《平行四边形的判定》教案06-03

平行四边形的认识教案03-09

认识平行四边形教案03-05

精选平行四边形教案10篇05-23

精选平行四边形教案四篇05-19

平行四边形教案三篇05-25

平行四边形教案四篇05-21

平行四边形教案3篇05-26

精选平行四边形教案4篇05-16

平行四边形教案4篇05-13