当前位置:9136范文网>教育范文>教案>小学数学教案

小学数学教案

时间:2023-08-20 13:19:21 教案 我要投稿

小学数学教案7篇(优秀)

  作为一名教学工作者,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么你有了解过教案吗?以下是小编精心整理的小学数学教案7篇,仅供参考,大家一起来看看吧。

小学数学教案7篇(优秀)

小学数学教案 篇1

  本节课主要教学混合运算在实际生活中的应用,教材已经提供好了大体的框架和思路线索,教学时可以按照教科书提出的问题组织学生逐一解决,大体分为三大步骤,先引导学生从情境中发现问题,收集信息,能够从具体的情境中抽象出数学信息和数学问题;再尝试探索、寻找综合运用所学知识解决问题的方法,在学习与他人合作、交流的过程中,形成解决问题的基本策略;最后通过反思解决方法的正确与否,让学生在交流、评价中进一步明确解决问题的思路和策略。

  学情分析

  这节课是学习了两步混合运算的计算顺序后教学的,是引导学生利用所学知识解决实际问题的一节应用课,前面学生已经积累了一定的解决问题的思路和方法,教学时通过多种方式进行,进一步培养学生分析问题、解决问题的能力,加强学生对混合运算知识的掌握。

  教学目标

  1.让学生在解决实际问题的过程中,学会用色条图(线段图的邹形)分析数量关系,感受其使问题简明、直观、便于分析的作用,渗透数形结合思想,丰富解决问题的策略。

  2.使学生解决问题的完整过程,学会用找出中间问题的方法解决需要两步解决的问题,丰富学生解决问题的策略。

  3.在分步列式解决问题的基础上,逐步学会列综合算式解决问题,会合理运用小括号改变运算顺序。

  4.在解决问题的过程中,培养学生认真观察、独立思考、合作交流等良好的学习习惯和热爱数学的情感。

  重点难点

  1.利用线段图分析数量关系,掌握解决需要两步解决的问题的步骤和方法。

  2.会找出隐藏的中间问题,并合理利用小括号列综合算式解决问题。

  方法指导

  引导法,提示法,学会观察,讨论法,探究法

  预设流程

  具 体 内 容

  激趣导入

  (约3分钟)

  一顿营养的早餐是一天生活的开始。对将近10个小时不停消耗能量却没有补充的身体来说,早餐格外重要。早餐唤醒了身体,开启了身体高效的新陈代谢;早餐能把能量最先供给到大脑,以便让我们有清晰的思路和判断力进行一天的.工作、学习。不吃早餐,不仅会营养失衡、引起胃肠疾病,还会出现身体不适、容易衰老、精神无法集中等各种问题,所以,要想学习好,早餐要吃好哦!

  自主学习

  (约7分钟)

  剩下的还要烤几次?

  1. 仔细观察,你知道了什么?

  2. 谁能完整地说说这道题的意思?

  3.要求“剩下的还要烤几次”你们会解决吗?

  合作交流

  (约10分钟)

  1.深入理解,体会方法

  (1)一共要考(90 )个,已经烤了(36)个,剩下(54)个没有烤,每次烤9个,剩下的要烤(6)次。

  (2)在图示中,把要考的90个看做一个整体,分成( 已烤的 )和(剩下的 )两部分,要求剩下的还要烤几次,必须先求出(剩下的量 ),再用剩下的数量除以每次烤的数量9个,就是要烤的( 次数 )。

  (3)尝试解决,小组交流。

  (4)全班交流,教师板书。

  (90-36)÷9

  = 54÷9

  = 6(次)

  分步列式: 综合算式:

  90-36=54(个)

  54÷9=6(次)

  追问:说说你是怎么想的。

  (5)说出自己的想法。

  (6)教师精讲,再次理清题意。

  2.检查反思,归纳总结

  问题:

  (1)解答正确吗?说说你的想法。

  (2)今天研究的问题为什么必须两步解答?

  精讲点拨

  (约5分钟)

  小结:解决一个问题需要两个和它有关的信息,如果其中的一个

  信息直接给了,另一个信息没有直接告诉我们,我们要先

  求出它来,再解决最后的问题。

  测评总结(约15分钟)

  1.达标测试。

  (1)

  问题:

  ① 你知道了什么?

  ②想求“平均每个笼子放几只” 你会解答吗?请写一写。

  (25+15)÷8

  =40÷8

  =5(只)

  ③说一说你是怎么做的,也可以用画图的方法来帮助说明。

  ④为什么要先求“一共有多少只兔子”?

  ⑤ 解答正确吗?你是怎么知道的?

  (2)剩下的要用5天挖完,平均每天挖多少米?问题:

  ①你知道了什么?

  ②要求“平均每天挖多少米” 你会解答吗?

  画一画,算一算,把你的想法表示出来。

  (60-15)÷5

  = 45÷5

  = 9(米)

  ③解答正确吗?你是怎么知道的?

  ④为什么这道题要用两步来解决?

  ⑤剩下的要用5天挖完,平均每天挖多少米?

  (3) 同学们在做操,如果9个人一排,可以站几排?

  问题:

  ①你知道了什么?

  ②你会解答吗?把你的想法写出来。

  6×3÷9

  =18÷9

  =2(排)

  ③为什么这道题要用两步来解决?

  ④这道题的综合算式不需要加小括号吗?

  ⑤解答正确吗?

  2.课堂总结

  解决一个问题需要两个和它有关的信息,如果其中的一个信息直接给了,另一个信息没有直接告诉我们,我们要先求出它来,再解决最后的问题。

  3.布置作业

  作业:第55页练习十二,第2题、第3题。第56页练习十二,第5题。

  板书设计

  解决问题

  例4:

  (90-36)÷9

  = 54÷9

  = 6(次)

  分步列式: 综合算式:

  90-36=54(个)

  54÷9=6(次)

  追问:说说你是怎么想的。

小学数学教案 篇2

  【学习目标】

  1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。

  2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

  3、体会到数学问题在日常生活中的应用。

  【学习重难点】

  1、重点是尝试用不同的方法解决“鸡兔同笼”问题。

  2、难点是在解决问题的过程中培养逻辑推理能力。

  【学习过程】

  一、故事引入

  在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  阅读书本P112鸡兔同笼的`故事,能用你自己的话表述一下题目的意思吗?

  二、探索新知

  1、阅读P113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?

  (完成课本表格。)

  2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?

  (会用假设法解决“鸡兔同笼”问题)

  3、自己动笔,尝试用方程的方法解决鸡兔只数的问题?

  (有困难的可参考书本P114)

  4、用假设或者解方程的方法解决P112“鸡兔同笼”问题

  (1)方程解:(2)算术解:

  解:设鸡有x只,那么兔就有(35-x)只。解:假设都是鸡。

  根据鸡兔共有94只脚来列方程式2×35=70(只)

  2x+(35-x)×4=9494-70=24(只)

  2x=4624÷(4-2)=12(只)

  x=2335-12=23(只)

  35-23=12(只)答:鸡有23只,兔有12只。

  答:鸡有23只,兔有12只。

  5、以上三种解法,哪一种更方便?

  ☆友情小提示:

  要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

  6、阅读P114阅读资料,了解下古人是怎样解决鸡兔同笼问题的。

  三、知识应用:独立完成P115“做一做”,组长检查核对,提出质疑。

  四、层级训练:1.巩固训练:完成P116练习二十六第1--5题。

  2.拓展提高:练习二十六第6、7题。及P117“思考题”

  五、总结梳理

  回顾本节课的学习,说一说你有哪些收获?

  学习心得XXXXXXXXXX(a.我很棒,成功了;b.我的收获很大,但仍需努力。)

  自我展示台:(把你个性化的解答或创新思路写出来吧!)

小学数学教案 篇3

  教学目标

  1.理解圆柱的侧面积和表面积的含义.

  2.掌握圆柱侧面积和表面积的计算方法.

  3.会正确计算圆柱的侧面积和表面积.

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算.

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题.

  教学过程

  一、复习准备

  (一)口答下列各题(只列式不计算).

  1.圆的半径是5厘米,周长是多少?面积是多少?

  2.圆的直径是3分米,周长是多少?面积是多少?

  (二)长方形的面积计算公式是什么?

  (三)回忆圆柱体的特征.

  二、探究新知

  (一)圆柱的侧面积.

  1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

  2.小结:因为长方形的`面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

  (二)教学例1.

  例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)

  2.学生独立解答

  教师板书: 3.140.51.8

  =1.75l.8

  2.83(平方米)

  答:它的侧面积约是2.83平方米.

  3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

  (三)圆柱的表面积.

  1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.

  2.比较圆柱体的表面积和侧面积的区别.

  圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

  (四)教学例2.

  1.出示例2

  例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  2.学生独立解答

  侧面积:23.14515=471(平方厘米)

  底面积:3.14 =78.5(平方厘米)

  表面积:471+78.52=628(平方厘米)

  答:它的表面积是628平方厘米.

  3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

  (五)教学例3.

  1.出示例3

  例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

  2.教师提问:解答这道题应注意什么?

  这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积.

  3.学生解答,教师板书.

  水桶的侧面积:3.142024=1507.2(平方厘米)

  水桶的底面积:3.14

  =3.14

  =3.14100

  =314(平方厘米)

  需要铁皮:1507.2+314=1821.21900(平方厘米)

  答:做这个水桶要用1900平方厘米.

  4.教师说明:这里不能用四舍五入法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

  5.四舍五入法与进一法有什么不同.

  (1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

  (2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

  三、课堂小结

  这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.圆柱的表面积在实际应用时要注意什么呢?

  归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.

小学数学教案 篇4

  设计说明

  在日常生活中,学生对物体的轻重已经积累了一些感性的认识,对常用的质量单位也有初步的了解,但是由于质量单位不像长度单位那样具体、直观,且大部分学生对质量的认识还比较模糊,因此对于三年级的学生来说,要想建立千克与克的质量观念具有一定的挑战性。基于上述情况,本设计关注了下面几点:

  1.注重学生的自主探索。

  在教学中,给学生提供学具,并给学生充分的时间,让他们在称一称、掂一掂、估一估等活动中,获得有关千克的丰富体验,从而牢固地建立千克的质量观念。

  2.注重对实践过程的指导和实践结果的总结。

  在学生的操作过程中,注意实时调控和指导,使学生的实践更有层次,目的性更强;在每项操作之后都帮助学生得出相应的结论,有效地促进了知识的`生成。

  课前准备

  教师准备

  PPT课件 天平 盘秤

  学生准备

  盐 牛奶 黄豆 回形针 花生米 军棋 2分硬币 苹果 鸡蛋等

  教学过程

  ⊙创设情境,导入新课

  观察主题图,找出有关信息。

  提问:(1)图中淘气和小鸟分别在做什么?

  (2)淘气和小鸟分别有多重?

  (3)谁的体重更重一些?你是怎样知道的?

  引导学生发现:淘气的体重是30千克,小鸟的体重是50克,淘气比小鸟重。

  小结:淘气的体重用“千克”作单位,小鸟的体重用“克”作单位,我们这节课就来认识这两个质量单位。

  ⊙探究新知

  1.认识秤,学会读数的方法。

  (1)了解学生知道的秤。

  师:在生活中,我们可以通过直接看物品包装袋上标示的净重知道物品的质量,但是很多物品没有包装。例如桌上摆的鸡蛋、苹果等。要想知道它们的质量该怎么办呢?在生活中你见过哪些秤?在什么地方见过?(课件出示各种秤)

  请学生说一说在生活中见过的秤,比如学生可能通过看图,看电视,逛市场见过盘秤、台秤、电子秤、天平、弹簧秤、磅秤等。

  (2)了解读数的方法。

  出示盘秤,提问:你知道圆盘上的刻度数表示的是什么意思吗?如果指针指向1,表示托盘上的物品有多重?

  学生观察盘秤上的圆盘,知道一个大格表示1千克。

  过渡:下面我们就来认识质量单位“千克”。

  2.动手实践,建立“千克”的质量观念。

  (1)称一称。

  以小组为单位,称一称两袋盐的质量,知道两袋盐的质量是1千克。

  (2)掂一掂。

  请每个小组的成员轮流把两袋盐放在手里掂一掂,感受1千克有多重。

  (3)估一估。

  用手掂一掂苹果,估计一下大约几个苹果的质量是1千克,然后用秤来称一称,验证自己的估计。

  (4)找一找。

  找一找周围哪些物品的质量大约是1千克。

  预设

  生1:2瓶矿泉水大约是1千克。

  生2:1大袋洗衣粉大约是1千克。

  生3:10本数学书大约是1千克。

  (5)体会几千克有多重。

  以小组为单位,想办法任意称出几千克重的物品,然后用手掂一掂。(苹果、洗衣液、白菜等课前准备好的物品)

  (6)抱一抱。

  汇报自己的体重,互相抱一抱,感受几十千克(或几十几千克)的质量。

  设计意图:通过以上环节,学生依次体会到了1千克、几千克、几十千克(或几十几千克)的质量,给了学生直观的感受和体验,对于帮助学生建立“千克”的质量观念大有益处。

小学数学教案 篇5

  内容分析:

  本堂课是新课程标准实验教科书第一册第三单元的课程。本课教学内容的实质是求相差多少的问题。通过操场上这一场景,使学生进一步体验加减法的含义。借助主题情境,让学生初步学会解决谁比谁多(少)几的问题。尝试解决学生比老师多几人这一问题。是加减法的强化训练。这里的比较多少,不但比较谁多,谁少。而且比出多几或少几?是第二单元比较的`深入。同时用文字代替了图形。

  学习目标:

  1、进一步体验加减法的含义。

  2、初步学会解决谁比谁多(少)几的问题。

  教学重难点:

  初步学会解决谁比谁多(少)几的问题。

  教学准备:实物投影、小圆片。

  课时安排:1~2课时

  设计意图:

  通过实际情境的创设,和学生自己动手实践,初步掌握谁比谁多(少)几的问题的解决方法,并能用语言表达,进一步体验加减法的含义。

  教学过程:

  一、创设情境,导入新课。

  投影出示操场上图片。问:同学们看到了这幅图,会想到什么数学问题?

  老师有()人?学生有()人?男同学有()人?女同学有()人?一共有多少人?学生比老师多几人?老师比学生少几人?女同学比男同学多()人?男同学比女同学少()人?

  二、学生操作,探索新知

  1、请同学们拿出小圆片,根据刚才提出的问题在桌子上摆一

  摆,并列出算式。

  2、学生操作,教师巡视。

  3、指名汇报交流,并说说

  8-2=65-3=2

  4、评价。通过刚才的学习,你觉得哪位同学说得比较好?好在哪里?

  三、练习巩固、及时反馈。

  1、摆一摆、填一填,要求独立完成。

  2、看图,列式计算。

  3、小游戏,10把椅子8位同学坐,还剩几把椅子,列式计算。

  4、联系生活,拓展练习。

  四、课外延伸。

  调查本班的男女学生数,并试着提一些数学问题。

  五、课堂小结

  这节课你学会了什么知识?

小学数学教案 篇6

  教材说明

  密铺,也称为镶嵌,是生活中非常普遍的现象,它给我们带来了丰富的变化和美的享受。教材在四年级下册就安排了密铺的内容,通过让学生观察用长方形、正方形、三角形密铺起来的图案,了解什么是密铺。本册教材中,通过实践活动继续让学生认识一些可以密铺的平面图形,会用这些平面图形在方格纸上进行密铺,从而进一步理解密铺的特点,培养学生的空间观念。

  整个实践活动分为两个层次:

  1.通过动手操作,探索哪些平面图形可以密铺,哪些不能密铺,使学生认识一些可以密铺的平面图形。

  由于学生已经了解了密铺概念,教材不再给出密铺的概念及图案,而是直接呈现了学生熟悉的6种平面图形(即圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形),并提出问题哪些图形可以密铺。接着,让学生利用附页中的图形,通过小组合作的形式,任选一种图形拼一拼、铺一铺,探索并找出可以密铺、不能密铺(圆形、正五边形)的平面图形,进一步理解密铺的特点。找出可以密铺的平面图形后,再让学生实际铺一铺,在操作的过程中感受密铺,并感受这些图形的特点。

  需要指出的是,这里每次密铺的基础图形都是大小和形状相同的同一种平面图形,两种或两种以上平面图形拼接在一起,也能进行密铺,但教材并不做要求。

  2.综合运用已有知识,在方格纸上根据给定的两组图形设计密铺图案,计算出每次密铺中不同平面图形所占的面积,使学生感受数学在生活中的应用,用数学的眼光欣赏美和创造美。

  这部分内容包括三部分:

  (1)从实际出发引出问题,让学生从两组瓷砖中任选一组在方格纸上设计密铺图案,体验用数学的乐趣。这里的两组瓷砖,一组由两个形状和大小相同、颜色不同的等腰直角三角形组成,另一组由一个平行四边形和一个直角三角形(一条直角边的长度等于平行四边形长边所在的高)组成,前一组密铺可以是用同一种基础图形将平面密铺,后一组密铺则是用两种基础图形密铺平面。

  完成设计的方式,可以由学生在方格纸上画出,也可以由教师准备好相应的`图形卡片,让学生拼出。建议学生在画或拼摆密铺图案时,要有序地进行。

  (2)综合运用有关密铺、面积等方面的知识,统计自己在方格纸上设计的图案中,每种基础图形一共用了多少块,以及所占的面积,运用所学的知识解决生活中的实际问题,进一步体会数学和现实生活的联系,发展学生解决实际问题的能力。

  (3)让学生利用附页中提供的图形,自由地设计密铺图案,这种图案可以由一种或两种基础图形组成(也可以由多种基础图形组成,尊重学生的选择,但不要求),通过学生的创作及交流,开拓学生的思维,培养学生用几何图形进行美术创作的想像力,让学生体验自己创作的数学美,培养学生学习数学的兴趣及学好数学的信心。

  教学建议

  (1)这部分内容可以用1课时进行教学。主要是在数学活动中,借助观察、猜测、验证等方式解决问题。

  (2)教师可以在课前搜集一些密铺的图案,也可以事先让学生在生活中寻找一些密铺图案,课上展示给大家,以此帮助学生复习已了解的密铺知识,从直观上为学习新内容做好准备。搜集的图案可有多种,如由形状和大小相同的一种基础图形组成的密铺图案,两种或两种以上基础图形组成的密铺图案,不规则图形组成的密铺图案等。呈现图案后,可以引导学生观察,这些密铺图案是由什么基础图形组成的?

  (3)教师提出问题如果密铺平面时只用一种图形,比如圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形(同时出示该图形的彩色卡片并贴在黑板上),请你们猜猜看,哪种图形能用来密铺?引导学生进行猜测和想像,然后再通过铺一铺等操作活动进行验证并获得结论。或者先让学生想一想他们见过的哪些图形能够用来密铺平面,教师根据学生说出的图形呈现相应的图形卡片,然后围绕学生说出的图形,让学生以小组合作的形式动手拼摆,找出哪些图形可以密铺,哪些图形不可以密铺,验证自己的猜测是否正确。

  (4)学生汇报验证的结果,并让学生任选一种可以密铺的图形铺一铺,上台展示并与大家交流拼的过程,加深学生对密铺的理解以及对图形性质的认识。

  (5)在学生了解可以密铺的图形后,教师可以直接提出问题,让学生用密铺的知识设计地砖图案;也可以先请学生说一说,生活中哪里用到了密铺。学生可能会有很多答案,大致包括建筑(地砖、篱笆和围墙)、玩具、艺术(图画)等几个方面,让学生体会数学的广泛应用。然后再让学生任选一组瓷砖,在方格纸上设计新颖、美观的密铺图案。教师在巡视的过程中,让先设计完的学生数一数自己设计的图案中,不同的基础图形分别用了多少块,所占面积是多少。

  (6)展示作品过程中,引导学生比一比,看看谁的设计更美观、更有新意,激发学生之间互评作品,在交流中理解并接纳别人较好的方法。

  (7)汇报交流之后,让学生进行更开放的设计活动,在活动中充分感受数学知识与艺术的密切联系,经历创造数学美的过程。

  (8)要注意,后面的教材中会继续安排有关密铺的内容,例如较复杂些的密铺、密铺的方法等等,因此在这里注意不要拔高要求,如图形能够密铺的条件(同一顶点的各个拼接图形角的和为360)会在中学的教材中介绍,这里就不需要让学生研究。

  参考资料:

  密铺的历史背景

  1619年数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。

  1891年苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。

  1924年数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。

  最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。

小学数学教案 篇7

  教学内容:

  北师大版三年级上册数学教科书第10至第11页。

  教学目标:

  1.探索并掌握一位数除两位数的口算方法,能正确计算,体会算法的多样化。

  2.经历从实际情境中提出问题、解决问题的过程,感受数学在实际生活中的应用,培养数学思维能力。

  3.经历与他人交流算法的过程,培养学习兴趣,学会合作学习。

  教学重点:

  探索并掌握一位数除两位数的口算方法,并能正确地进行计算,提倡算法的多样化。

  教学难点:

  结合具体情境,用除法知识解决简单的实际问题,感受数学在实际生活中的运用。

  教学用具:

  课件、幻灯、小黑板。

  教学设计:

  一、复习

  1、口算表内除法

  6÷3,12÷4,18÷6,35÷7

  2、口算整十、整百、整千数除以一位数

  30÷3,600÷2,560÷7,360÷9

  说说你们是怎样想的?

  3、师出题:84÷4

  观察这道算式,比较与第1、第2题算式有什么不同?

  4、根据这道算式你能编一道应用题吗?

  二、师生互动、合作探究

  1、学生汇报所编应用题,尝试计算解答。

  2、探索计算方法,让学生在独立思考的基础上,组织学生同桌互相交流计算方法。鼓励学生算法的多样化。

  3、全班汇报,交流思考方法。通过交流、讨论、反思解决问题的过程,启发学生总结归纳两位数除以一位数的'口算方法。

  4、优化算法。你认为哪种方法?为什么?

  师小结:同学们,这几种方法都是你们自己的想法,各有各的理由,你喜欢哪种就用哪种。

  5、运用知识,解决例题。

  (1)让生根据课件创设情境。

  生:阳春三月,鸟语花香,一年一次的植树节到了,老师带领同学们在山坡下植树,他们又说又笑,干劲可大啦。

  (2)在画面中加入条件“有36人,每组3人”。你能提出问题吗?

  让生独立思考,提出解决的问题“可以分成多少组?”。

  (3)你想用自己喜欢的方法解答吗?

  (4)让生独立思考后,列式解答;师巡视,了解学生情况。

  (5)全班交流,指名说是怎样算的,允许学生多种方法并存。

  三、灵活运用、拓展延伸

  1、 46÷2 84÷4 630÷9 96÷3

  66÷3 100÷5 720÷8 48÷2

  2、7元 84元

  ⑴、一双鞋子的价钱是一副手套的几倍?

  ⑵、一双鞋子的价钱比一副手套贵多少倍?

  ⑶、你还能提出哪些数学问题?

  结合具体的情境,引导学生理解“几倍”,培养学生提出问题和解决问题的本领,感受数学与生活的密切联系。

  四、全课小结、自我评价。

  这节课,你有什么收获?请把你的收获与大家共同分享。