当前位置:9136范文网>教育范文>教案>勾股定理的教案

勾股定理的教案

时间:2023-10-13 12:58:35 教案 我要投稿

勾股定理的教案

  作为一位兢兢业业的人民教师,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?下面是小编为大家收集的勾股定理的教案,欢迎大家分享。

勾股定理的教案

勾股定理的教案1

  一、教学目标

  通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数

  学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。

  通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。

  (3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。

  二、教学的重、难点

  重点:探索和验证勾股定理的过程

  难点:

  (1)“数形结合”思想方法的理解和应用

  通过拼图,探求验证勾股定理的新方法

  三、学情分析

  八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。

  四、教学程序分析

  (一)导入新课

  介绍勾股世界

  两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。

  (二)讲解新课

  1、探索活动一:

  观察下图,并回答问题:

  (1)观察图1

  正方形A中含有

  个小方格,即A的面积是

  个单位面积;

  正方形B中含有

  个小方格,即B的面积是

  个单位面积;

  正方形C中含有

  个小方格,即C的面积是

  个单位面积。

  (2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。

  (3)请将上述结果填入下表,你能发现正方形A,B,C,的面积关系吗?

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图1

  9

  9

  18

  图2

  4

  4

  8

  2、探索活动二:

  (1)观察图3,图4

  并填写下表:

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图3

  16

  9

  25

  图4

  4

  9

  13

  你是怎样得到上面结果的?与同伴交流。

  (2)三个正方形A,B,C的面积之间的关系?

  3、议一议(合作交流,验证发现)

  (1)你能发现直角三角形三边长度之间存在什么关系吗?

  勾股定理:如果直角三角形两直角边分别为a、b,斜边为c

  ,那么a2+b2=c2。

  即直角三角形两直角边的平方和等于斜边的`平方。

  (2)我们怎么证明这个定理呢?

  教师指导第一种证明方法,学生合作探究第二种证明方法。

  可得:

  想一想:大正方形的面积该怎样表示?

  想一想:这四个直角三角形还能怎样拼?

  可得:

  4、例题分析

  如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?

  解:∵,

  ∴在中,

  ,根据勾股定理,

  ∴电线杆折断之前的高度=BC+AB=5米+13米=18米

  (三)课堂小结

  勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等

  .

  (四)布置作业

  收集有关勾股定理的证明方法,下节课展示、交流.

  五、板书设计

  勾股定理的探索与证明

  做一做

  勾股定理

  议一议

  (直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)

  六、课后反思

  《新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。

勾股定理的教案2

  一、学生知识状况分析

  本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

  二、教学任务分析

  本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

  三、本节课的教学目标是:

  1.通过观察图形,探索图形间的关系,发展学生的空间观念.

  2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

  3.在利用勾股定理解决实际问题的过程中,体验数学学习的'实用性.

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.

  四、教法学法

  1.教学方法

  引导—探究—归纳

  本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,顺势教学过程;

  (3)利用探索研究手段,通过思维深入,领悟教学过程.

  2.课前准备

  教具:教材、电脑、多媒体课件.

  学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.

  五、教学过程分析

  本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.

  1.3勾股定理的应用:课后练习

  一、问题引入:

  1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。

  2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形

  1.3勾股定理的应用:同步检测

  1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )

  A.锐角弯B.钝角弯C.直角弯D.不能确定

  3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

勾股定理的教案3

  教学目标

  1、知识目标:

  (1)掌握勾股定理;

  (2)学会利用勾股定理进行计算、证明与作图;

  (3)了解有关勾股定理的历史.

  2、能力目标:

  (1)在定理的证明中培养学生的拼图能力;

  (2)通过问题的解决,提高学生的运算能力

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过有关勾股定理的历史讲解,对学生进行德育教育

  教学重点:勾股定理及其应用

  教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程()

  1、新课背景知识复习

  (1)三角形的三边关系

  (2)问题:(投影显示)

  直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

  2、定理的获得

  让学生用文字语言将上述问题表述出来.

  勾股定理:直角三角形两直角边 的.平方和等于斜边 的平方

  强调说明:

  (1)勾――最短的边、股――较长的直角边、弦――斜边

  (2)学生根据上述学习,提出自己的问题(待定)

  学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

  3、定理的证明方法

  方法一:将四个全等的直角三角形拼成如图1所示的正方形.

  方法二:将四个全等的直角三角形拼成如图2所示的正方形,

  方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

  以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

  4、定理与逆定理的应用

  例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

  解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

  ∴ ∠2=∠C

  又

  ∴

  ∴CD的长是2.4cm

  例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

  求证:

  证法一:过点A作AE⊥BC于E

  则在Rt△ADE中,

  又∵AB=AC,∠BAC=

  ∴AE=BE=CE

  即

  证法二:过点D作DE⊥AB于E, DF⊥AC于F

  则DE∥AC,DF∥AB

  又∵AB=AC,∠BAC=

  ∴EB=ED,FD=FC=AE

  在Rt△EBD和Rt△FDC中

  在Rt△AED中,

  ∴

  例3 设

  求证:

  证明:构造一个边长 的矩形ABCD,如图

  在Rt△ABE中

  在Rt△BCF中

  在Rt△DEF中

  在△BEF中,BE+EF>BF

  即

  例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

  解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

  AD+AB+BC=3,AB+BC+CD=3

  图3中,在Rt△DGF中

  同理

  ∴图3中的路线长为

  图4中,延长EF交BC于H,则FH⊥BC,BH=CH

  由∠FBH= 及勾股定理得:

  EA=ED=FB=FC=

  ∴EF=1-2FH=1-

  ∴此图中总线路的长为4EA+EF=

  ∵3>2.828>2.732

  ∴图4的连接线路最短,即图4的架设方案最省电线.

  5、课堂小结:

  (1)勾股定理的内容

  (2)勾股定理的作用

  已知直角三角形的两边求第三边

  已知直角三角形的一边,求另两边的关系

  6、布置作业:

  a、书面作业P130#1、2、3

  b、上交作业P132#1、3

  板书设计

  探究活动

  台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

  (1)该城市是否会受到这交台风的影响?请说明理由

  (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

  (3)该城市受到台风影响的最大风力为几级?

  解:(1)由点A作AD⊥BC于D,

  则AD就为城市A距台风中心的最短距离

  在Rt△ABD中,∠B= ,AB=220

  ∴

  由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

  故该城市会受到这次台风的影响.

  (2)由题意知,当A点距台风中心不超过60千米时,

  将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

  该城市都会受到这次台风的影响

  由勾股定理得

  ∴EF=2DE=

  因为这次台风中心以15千米/时的速度移动

  所以这次台风影响该城市的持续时间为 小时

  (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级.

勾股定理的教案4

  一、教学目标

  (一)教学知识点

  1.掌握勾股定理,了解利用拼图验证勾股定理的方法.

  2.运用勾股解决一些实际问题.

  (二)能力训练要求

  1.学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.

  2.在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识.

  (三)情感与价值观要求

  利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献.借助对学生进行爱国主义教育.并在拼图的过程中获得学习数学的`快乐,提高学习数学的兴趣.

  二.教学重、难点

  重点:勾股定理的证明及其应用.

  难点:勾股定理的证明.

  三.教学方法

  教师引导和学生自主探索相结合的方法.

  在用拼图的方法验证勾股定理的过程中.教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题.

  四.教具准备

  1.每个学生准备一张硬纸板;

  2.投影片三张:

  第一张:问题串(记作1.1.2 A);

  第二张:议一议(记作1.1.2 B);

  第三张:例题(记作1.1.2 C).

  五.教学过程

  Ⅰ.创设问题情景,引入新课

  [师]我们曾学习过整式的运算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?

  [生]利用多项式乘以多项式的法则从公式的左边就可以推出右边.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

  [生]还可以用拼图的方法来推出.例如:(a+b)2=a2+2ab+b2.我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

勾股定理的教案5

  教学目标:

  一知识技能

  1.理解勾股定理的逆定理的证明方法和证明过程;

  2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

  二数学思考

  1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

  2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

  三解决问题

  通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

  四情感态度

  1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的.内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

  2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

  教学重难点:

  一重点:勾股定理的逆定理及其应用.

  二难点:勾股定理的逆定理的证明.

  教学方法

  启发引导分组讨论合作交流等。

  教学媒体

  多媒体课件演示。

  教学过程:

  一复习孕新,引入课题

  问题:

  (1) 勾股定理的内容是什么?

  (2) 求以线段ab为直角边的直角三角形的斜边c的长:

  ① a=3,b=4

  ② a=2.5,b=6

  ③ a=4,b=7.5

  (3) 分别以上述abc为边的三角形的形状会是什么样的呢?

  二动手实践,检验推测

  1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

  学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.

  教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.

  2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

  3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

  三探索归纳,证明猜想

  问题

  1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

  2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

  3.如图18.2-2,若△ABC的三边长

  满足

  ,试证明△ABC是直角三角形,请简要地写出证明过程.

  教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.

  四尝试运用,熟悉定理

  问题

  1例1:判断由线段

  组成的三角形是不是直角三角形:

  (1)

  (2)

  2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?

  教师巡视,了解学生对知识的掌握情况.

  特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

  五类比模仿,巩固新知

  1.练习:练习题13.

  2.思考:习题18.2第5题.

  部分学生演板,剩余学生在课堂练习本上独立完成.

  小结梳理,内化新知

  六1.小结:教师引导学生回忆本节课所学的知识.

  2.作业:

  (1)必做题:习题18.2第1题(2)(4)和第3题;

  (2)选做题:习题18.2第46题.

勾股定理的教案6

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

  本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的'.具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

  (3)通过实际问题的解决,培养学生的数学意识.

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数.

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征.

  教学重点:勾股定理的逆定理及其应用

  教学难点:勾股定理的逆定理及其应用

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:(1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角为 、②垂直、③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

勾股定理的教案7

  一、回顾交流,合作学习

  【活动方略】

  活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

  【问题探究1】(投影显示)

  飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

  思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的',这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

  【活动方略】

  教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

  学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

  【问题探究2】(投影显示)

  一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

  思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

  【活动方略】

  教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

  学生活动:思考后,完成“问题探究2”,小结方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD为直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此这个零件符合要求.

  【问题探究3】

  甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

  思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

  【活动方略】

  教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

  学生活动:课堂练习,与同伴交流或举手争取上台演示

勾股定理的教案8

  一、教学目标

  1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理、

  2、探究勾股定理的逆定理的证明方法、

  3、理解原命题、逆命题、逆定理的概念及关系、

  二、重点、难点

  1、重点:掌握勾股定理的逆定理及证明、

  2、难点:勾股定理的逆定理的证明、

  3、难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法、充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受、

  为学生搭好台阶,扫清障碍、

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角、

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决、

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边a1b1=c,则通过三边对应相等的两个三角形全等可证、

  三、课堂引入

  创设情境:⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想、

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行、

  ⑵如果两个实数的平方相等,那么两个实数平方相等、

  ⑶线段垂直平分线上的点到线段两端点的距离相等、

  ⑷直角三角形中30°角所对的'直角边等于斜边的一半、

  分析:

  ⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用、

  ⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假、

  解略、

  本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系、

  例2(p82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形、

  分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证、

  ⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角、

  ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决、

  ⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边a1b1=c,则通过三边对应相等的两个三角形全等可证、

  ⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法、充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受、

  证明略、

  通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维、

  例3(补充)已知:在△abc中,∠a、∠b、∠c的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

  求证:∠c=90°、

  分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大、②分别用代数方法计算出a2+b2和c2的值、③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形、

  ⑵要证∠c=90°,只要证△abc是直角三角形,并且c边最大、根据勾股定理的逆定理只要证明a2+b2=c2即可、

  ⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证、

  本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大、②分别用代数方法计算出a2+b2和c2的值、③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形、

勾股定理的教案9

  【学习目标】

  能运用勾股定理及直角三角形的判别条件解决简单的实际问题.

  【学习重点】

  勾股定理及直角三角形的判别条件的运用.

  【学习重点】

  直角三角形模型的建立.

  【学习过程】

  一.课前复习

  勾股定理及勾股定理逆定理的区别

  二.新课学习

  探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

  1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

  思考:

  1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为

  这样的线路有几条?可分为几类?

  2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从

  A点到B点的最短路线是什么?你是如何画的?

  1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

  4.你是如何将这个实际问题转化为数学问题的?

  小结:

  你是如何解决圆柱体侧面上两点之间的最短距离问题的?

  探究点二:利用勾股定理逆定理如何判断两线垂直?

  1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,

  但他随身只带了卷尺。(参看P13页雕塑图1-13)

  (1)你能替他想办法完成任务吗?

  1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,

  BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?

  (3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

  探究点三:利用勾股定理的方程思想在实际问题中的应用

  例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.

  1.3

  思考:

  1.求滑道AC的长的问题可以转化为什么数学问题?

  2.你是如何解决这个问题的?写出解答过程。

  小结:

  方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.

  四.课堂小结:本节课你学到了什么?

  三.新知应用

  1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

  1.3

  2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的'长度是()

  1.3

  五.作业布置:习题1.41,3,4题

  【反思】

  一、教师我的体会:

  ①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

  把教材读薄,

  ②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

  ③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

  ④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

  二、学生体会:

  课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。

  不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

勾股定理的教案10

  教学 目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学 重点:

  分式通分的理解和掌握。

  教学 难点:

  分式通分中最简公分母的确定。

  教学 工具:

  投影仪

  教学 方法:

  启发式、讨论式

  教学 过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的' 通分 .

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .

  根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:

  最简公分母为:xx ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:

  (1)xx,xx,xx ;

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy 2

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a 2 b 2 c 2

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:

  (1)取各分母系数的最小公倍数;

  (2)凡出现的字母为底的幂的因式都要取;

  (3)相同字母的幂的因式取指数最大的。

  取这些因式的积就是最简公分母。

勾股定理的教案11

  一、创设问属情境,引入新课

  活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.

  师生行为学生分组讨论,交流总结;教师引导学生回忆.

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.

  生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形.

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

  这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的`结论,培养学生动手操作能力和寻求解决数学问题的一般方法.

  师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长?

勾股定理的教案12

  课题:

  勾股定理

  课型:

  新授课

  课时安排:

  1课时

  教学目的:

  一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

  二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

  教学重点:

  引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题

  教学难点:

  用面积法方法证明勾股定理

  课前准备:

  多媒体ppt,相关图片

  教学过程:

  (一)情境导入

  1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

  2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的'这节课后,同学们就会有办法解决了。

  (二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

  (三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。

  (四)小结

  1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。

  2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?

  (五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

勾股定理的教案13

  学习目标:

  1、通过拼图,用面积的方法说明勾股定理的正确性.

  2、通过实例应用勾股定理,培养学生的知识应用技能.

  学习重点:

  1.用面积的方法说明勾股定理的正确.

  2. 勾股定理的应用.

  学习难点:

  勾股定理的`应用.

  学习过程:

  一、学前准备:

  1、阅读课本第46页到第47页,完成下列问题:

  (1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的20xx年国际数学家大会(TCM-20xx)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?

  2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)

  二、合作探究:

  (一)自学、相信自己:

  (二)思索、交流:

  拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和

  (三)应用、探究:

  1、如图 ,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?

  (四)巩固练习:

  1、如图,64、400分别为所在正方形的面积,则图中字

  母A所代表的正方形面积是 _________ 。

  三.学习体会:

  本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

  2②图

  四.自我测试:

  五.自我提高:

勾股定理的教案14

  一、全章要点

  1、勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

  2、勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

  3、勾股定理的证明 常见方法如下:

  方法一: , ,化简可证.

  方法二:

  四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

  四个直角三角形的面积与小正方形面积的和为

  大正方形面积为 所以

  方法三: , ,化简得证

  4、勾股数 记住常见的勾股数可以提高解题速度,如 ; ; ; ;8,15,17;9,40,41等

  二、经典训练

  (一)选择题:

  1. 下列说法正确的是( )

  A.若 a、b、c是△ABC的三边,则a2+b2=c2;

  B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;

  C.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2;

  D.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2.

  2. △ABC的三条边长分别是 、 、 ,则下列各式成立的是( )

  A. B. C. D.

  3.直角三角形中一直角边的'长为9,另两边为连续自然数,则直角三角形的周长为( )

  A.121 B.120 C.90 D.不能确定

  4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )

  A.42 B.32 C.42 或 32 D.37 或 33

  (二)填空题:

  5.斜边的边长为 ,一条直角边长为 的直角三角形的面积是 .

  6.假如有一个三角形是直角三角形,那么三边 、 、 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边 、 、 满足 ,那么这个三角形是 三角形,其中 边是 边, 边所对的角是 .

  7.一个三角形三边之比是 ,则按角分类它是 三角形.

  8. 若三角形的三个内角的比是 ,最短边长为 ,最长边长为 ,则这个三角形三个角度数分别是 ,另外一边的平方是 .

  9.如图,已知 中, , , ,以直角边 为直径作半圆,则这个半圆的面积是 .

  10. 一长方形的一边长为 ,面积为 ,那么它的一条对角线长是 .

  三、综合发展:

  11.如图,一个高 、宽 的大门,需要在对角线的顶点间加固一个木条,求木条的长.

  12.一个三角形三条边的长分别为 , , ,这个三角形最长边上的高是多少?

  13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.

  14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?

  15.如图,长方体的长为15,宽为10,高为20,点 离点 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 爬到点 ,需要爬行的最短距离是多少?

  16.中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 m处,过了2s后,测得小汽车与车速检测仪间距离为 m,这辆小汽车超速了吗?

勾股定理的教案15

  [教学分析]

  勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

  本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

  [教学目标]

  一、 知识与技能

  1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

  2、应用勾股定理解决简单的实际问题

  3学会简单的合情推理与数学说理

  二、 过程与方法

  引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的.思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

  三、 情感与态度目标

  通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

  四、 重点与难点

  1、探索和证明勾股定理

  2熟练运用勾股定理

  [教学过程]

  一、创设情景,揭示课题

  1、教师展示图片并介绍第一情景

  以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

  周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

  2、教师展示图片并介绍第二情景

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

  二、师生协作,探究问题

  1、现在请你也动手数一下格子,你能有什么发现吗?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  3、你能得到什么结论吗?

  三、得出命题

  勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

  四、勾股定理的证明

  赵爽弦图的证法(图2)

  第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

  第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的

  角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

  因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

  这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

  五、应用举例,拓展训练,巩固反馈。

  勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

  例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

  六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

  2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

  七、讨论交流

  让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

  我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

【勾股定理的教案】相关文章:

勾股定理教案02-11

数学勾股定理教案11-02

勾股定理的教学反思11-24

勾股定理教学反思03-27

勾股定理的教学反思04-11

勾股定理教学反思(精选5篇)04-01

有关勾股定理说课稿3篇11-18

勾股定理的逆定理数学教学反思12-29

勾股定理说课稿锦集9篇01-08