当前位置:9136范文网>教育范文>教案>七年级数学上册《绝对值》教案

七年级数学上册《绝对值》教案

时间:2023-10-16 16:32:50 教案 我要投稿
  • 相关推荐

七年级数学上册《绝对值》教案

  在教学工作者实际的教学活动中,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?以下是小编整理的七年级数学上册《绝对值》教案,希望对大家有所帮助。

七年级数学上册《绝对值》教案

七年级数学上册《绝对值》教案1

  一、教学目标

  1、知识与技能

  (1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  2、过程与方法目标:

  (1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的

  (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;

  (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

  2、在组长的组织下进行讨论、交流。(约5分钟)

  3、小组分任务展示。(约25分钟)

  4、达标检测。(约5分钟)

  5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)、温故知新:

  前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的.三要素什么?

  (二)小组合作交流,探究新知

  1、观察下图,回答问题:(五组完成)

  大象距原点多远?两只小狗分别距原点多远?

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:4的绝对值记作,它表示在上与的距离,所以| 4|= 。

  2、做一做:

  (1)、求下列各数的绝对值:(四组完成)—1.5,0,—7,2

  (2)、求下列各组数的绝对值:(一组完成)

  (1)4,—4;

  (2)0.8,—0.8;

  从上面的结果你发现了什么?

  3、议一议:(八组完成)

  |+2|=,1=|+8.2|=;5(2)|—3|=|—0.2|=|—8|= 。(3)|0|=;

  你能从中发现什么规律?

  小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的绝对值等于什么吗?

  (通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、

  (1)在数轴上表示下列各数,并比较它们的大小:

  — 3,— 1

  (2)求出(1)中各数的绝对值,并比较它们的大小

  (3)你发现了什么?

  2、比较下列每组数的大小。

  (1)—1和5;(五组完成)

  (2)—8和—3(七组完成)

  5和— 2.7(六组完成)

  五、达标检测:

  1、填空:

  绝对值是10的数有()

  |+15|=() |4|=()

  | 0 |=() | 4 |=()

  2、判断

  (1)、绝对值最小的数是0.()

  (2)、一个数的绝对值一定是正数。()

  (3)、一个数的绝对值不可能是负数。()

  (4)、互为相反数的两个数,它们的绝对值一定相等。()

  (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

  六、总结:

  1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值

  2绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0

  因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=—a(3)如果a=0,那么|a|=0

  3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小

  七、布置作业

  P50页,知识技能第1,2题

七年级数学上册《绝对值》教案2

  教学目标:

  1.了解绝对值的概念,会求有理数的绝对值;

  2.会利用绝对值比较两个负数的大小;

  3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

  一、重点、难点分析

  绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

  教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

  二、知识结构

  绝对值的定义绝对值的表示方法用绝对值比较有理数的大小

  三、教法建议

  用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的,初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱,可以把利用数轴给出的定义作为绝对值的一种直观解释。

  此外,要反复提醒学生:一个有理数的`绝对值不能是负数,但不能说一定是正数,“非负数”的概念视学生的情况,逐步渗透,逐步提出。

  四、有关绝对值的一些内容

  1.绝对值的代数定义

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零

  2.绝对值的几何定义

  在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值

  3.绝对值的主要性质

  (1)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零

  (2)两个相反数的绝对值相等

  五、运用绝对值比较有理数的大小

  两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小

  比较两个负数的方法步骤是:

  (1)先分别求出两个负数的绝对值;

  (2)比较这两个绝对值的大小;

  (3)根据“两个负数,绝对值大的反而小”作出正确的判断

七年级数学上册《绝对值》教案3

  一、学习与导学目标:

  知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

  过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

  情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

  二、学程与导程活动:

  A、创设情境(幻灯片或挂图)

  1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和—8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

  再如测量误差问题、排球重量谁更接近标准问题

  2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

  B、学习概念:

  1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,—8的绝对值分别是10,8.

  如在数轴上表示数—6的'点和表示数6的点与原点的距离都是6,所以,—6和6的绝对值都是6,记作︱—6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

  2、尝试回答

  (1)︱+2︱=,︱1/5︱=,︱+8.2︱=;

  (2)︱—3︱=,︱—0.2︱=,︱—8.2︱=;

  (3)︱0︱= 。(幻灯片)

  思考:你能从中发现什么规律?引导学生得出:(幻灯片)

  性质:一个正数的绝对值是它本身;

  一个负数的绝对值是它的相反数;

  零的绝对值是零。

  如果用字母a表示有理数,上述性质可表述为:

  当a是正数时,︱a︱=a;

  当a是负数时,︱a︱=—a;

  当a=0时,︱a︱=0.

  解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

  在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

  3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

  显然,结合问题的实际意义不难得到:—4—202。

  因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

  再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

  通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

  两个负数,绝对值大的反而小。

  4、师生活动比较下列各对数的大小:P17例,P18练习。

  5、师生小结归纳(幻灯片)

  三、笔记与板书提纲:

  1、幻灯片

  2、师生板演练习P15/1

  四、练习与拓展选题:

  P19/4,5,9,10

七年级数学上册《绝对值》教案4

  一、教学目标

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  —3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。

  (三)巩固练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的.区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数—100和—90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的"空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学上册《绝对值》教案5

  教学目标

  1.知识与技能

  会利用绝对值比较两个负数的大小.

  2.过程与方法

  利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.

  3.情感、态度与价值观

  敢于面对数学活动中的困难,有学好数学的自信心.

  教学重点难点

  重点:利用绝对值比较两个负数的大小.

  难点:利用绝对值比较两个异分母负分数的大小.

  教与学互动设计

  (一)创设情境,导入新课

  投影 你能比较下列各组数的大小吗?

  (1)│-3│与│-8│ (2)4与-5 (3)0与3

  (4)-7和0 (5)0.9和1.2

  (二)合作交流,解读探究

  讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.

  思考 若任取两个负数,该如何比较它的大小呢?

  点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

  【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.

  注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的`反而小.

  ②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.

  ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.

【七年级数学上册《绝对值》教案】相关文章:

绝对值教案02-13

《绝对值》教案09-11

七年级数学《绝对值》教学反思03-01

七年级数学上册教案01-31

七年级上册数学教案07-20

[精]绝对值教案15篇08-04

七年级数学上册人教版教案02-13

数学七年级上册教学反思02-12

七年级上册地理教案11-25