当前位置:9136范文网>教育范文>教案>平行线教案

平行线教案

时间:2023-11-01 13:52:33 教案 我要投稿

平行线教案

  作为一无名无私奉献的教育工作者,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。快来参考教案是怎么写的吧!下面是小编精心整理的平行线教案,仅供参考,大家一起来看看吧。

平行线教案

平行线教案1

  教学建议

  1、教材分析

  (1)知识结构:

  由平行线的画法,引出平行线的判定公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.

  (2)重点、难点分析:

  本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习平行线的性质打下了基础.

  本节内容的难点是:理解由判定公理推出判定定理的证明过程.学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.

  2、教学建议

  在平行线判定公理的教学中,应充分体现一条主线索:“充分实验?仔细观察?形成猜想?实践检验?明确条件和结论.”

  教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线.在此过程中,注意角的变化情况.事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行.

  平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行”.教师可组织学生按所给图形进行讨论.如何利用已知和几何的公理、定理来证明这个显然成立的事实.也可多叫几个同学进行重复.逐步使学生欣赏到数学证明的严谨性.另一个定理的发现与证明过程也与此类似.

  教学设计示例1

  一、 教学目标

  1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.

  2.会用判定公理及第一个判定定理进行简单的推理论证.

  3.通过模型演示,即“运动?变化”的数学思想方法的运用,培养学生的“观察?分析”和“归纳?总结”的能力.

  二、学法引导

  1.教师教法:启发式引导发现法.

  2.学生学法:独立思考,主动发现.

  三、重点?难点及解决办法

  (一)重点

  在观察实验的基础上进行公理的概括与定理的推导.

  (二)难点

  判定定理的形成过程中逻辑推理及书写格式.

  (三)解决办法

  1.通过观察实验,巧妙设问,解决重点.

  2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.

  四、课时安排

  l课时

  五、教具学具准备

  三角板、投影胶片、投影仪、计算机.

  六、师生互动活动设计

  1.通过两组题,复习旧知,引入新知.

  2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.

  3.通过教师提问,学生回答完成归纳小结.

  七、 教学步骤

  (-)明确目标

  掌握平行线判定公理和第一个判定定理及运用其进行简单的推理论证.

  (二)整体感知

  以情境设计,引出课题,以模型演示,引导学生观察,、分析、总结,讲授新知,以变式训练巩固新知,在整节课中,较充分地体现了逻辑推理.

  (三) 教学过程

  创设情境,引出课题

  师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影).

  1.两条直线不相交,就叫平行线.

  2.与一条直线平行的直线只有一条.

  3.如果直线、都和平行,那么、就平行.

  学生活动:学生口答上述三个问题.

  【教法说明】通过三个判断题,使学生回顾上节所学知识,第1题在于强化平行线定义的前提条件“在同一平面内”,第2题不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.

  师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?

  学生:能判定垂直,根据垂直的定义.

  师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗?

  学生活动:学生思考,如何测定两条直线是否平行?

  教师在学生思考未得结论的情况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?

  学生活动:学生思考,在前面复习平行公理推论的情况下,有的学生会提出,再作一条直线,让,再看是否平行于就可以了.

  师:这种想法很好,那么,如何作,使它与平行?若作出后,又如何判断是否与平行?

  学生活动:学生思考老师的提问,意识到刚才的回答,似是而非,不能解决问题.

  师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判定方法,就是今天我们要学习的平行线的判定(板书课题).

  [板书]2.5平行线的.判定(1).

  【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断.这时,学生会考虑平行公理推论,此时教师只须简单地追问,就让学生弄清问题未能解决,由此引入新课内容.

  探究新知,讲授新课

  教师给出像课本第78页图2?20那样的两条直线被第三条直线所截的模型,转动,让学生观察,转动到不同位置时,的大小有无变化,再让从小变大,说出直线与的位置关系变化规律.

  【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.

  图1

  学生活动:转动到不同位置时,也随着变化,当从小变大时,直线从原来在右边与直线相交,变到在左边与相交.

  师:在这个过程中,存在一个与不相交即与平行的位置,那么多大时,直线呢?也就是说,我们若判定两条直线平行,需要找角的关系.

  师:下面先请同学们回忆平行线的画法,过直线外一点画的平行线.

  学生活动:学生在练习本上完成,教师在黑板上演示(见图1).

  师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?

  图2

  学生:保证了两个同位角相等.

  师:由此你能得到什么猜想?

  学生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.

  师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?

  教师用计算机演示运动变化过程.在观察实验之前,让学生看清角和角(如图2),而后开始实验,让学生充分观察并讨论能得出什么结论.

  学生活动:学生观察、讨论、分析.

  总结了,当时,不平行,而无论取何值,只要,、就平行.

  图3

  教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理.

  [板书]两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

  简单说成:同位角相等,两直线平行.

  即:∵(已知见图3),

  ∴?(同位角相等,两直线平行).

  【教法说明】通过实际画图和用计算机演示运动?变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影).

  图4

  1.如图4,,,吗?

  2.,当时,就能使.

  【教法说明】这两个题目旨在巩固所学的判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师教学时要注意逐渐培养学生的这种数学思想.

  (出示投影)

  直线、被直线所截.

  图5

  1.见图5,如果,那么与有什么关系?

  2.与有什么关系?

  3.与是什么位置关系的一对角?

  学生活动:学生观察,思考分析,给出答案:时,,与相等,与是内错角.

  师:与满足什么条件,可以得到?为什么?

  学生活动:,因为,通过等量代换可以得到.

  师:时,你进而可以得到什么结论?

  学生活动:.

  师:由此你能总结出什么正确结论?

  学生活动:内错角相等,两直线平行.

  师:也就是说,我们得到了判定两直线平行的另一个方法:

  [板书]两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

  简单说成:内错角相等,两直线平行.

  【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯.

  师:上面的推理过程,可以写成

  ∵(已知),

  (对顶角相等),

  ∴.

  [∵(已证)],

  ∴(同位角相等,两直线平行).

  【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取的精神.

  教师指出:方括号内的“∵ ”,就是上面刚刚得到的“∴ ”,在这种情况下,方括号内这一步可以省略.

  尝试反馈,巩固练习(出示投影)

  1.如图1,直线、被直线所截.

  (1)量得,,就可以判定,它的根据是什么?

  (2)量得,,就可以判定,它的根据是什么?

  2.如图2,是的延长线,量得.

  (1)从,可以判定哪两条直线平行?它的根据是什么?

  (2)从,可以判定哪两条直线平行?它的根据是什么?

  图1图2

  学生活动:学生口答.

  【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.

  变式训练,培养能力

  (出示投影)

  1.如图3所示,由,可判断哪两条直线平行?由,可判断哪两条直线平行?

  2.如图4,已知,,吗?为什么?

  图3图4

  学生活动:学生思考后回答问题.教师给以指正并启发、引导得出答案.

  【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度、全方位考虑问题,从而得到一题多解.提高了学生的解题能力.

  (四)总结扩展

  2.结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式.

  八、布置作业

  课本第97页习题2.2A组第4、5、6(1)(2)题.

  作业答案

  4.当时,就能使.

  5.(1)从,推出,根据同位角相等,两直线平行.

  (2)从,推出,根据内错角相等,两直线平行.

  6.(1)可断定,根据同位角相等,两直线平行.

  (2)可断定,根据内错角相等,两直线平行.

平行线教案2

  学习目标

  1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点

  探索和掌握平行公理及其推论.

  学习难点

  对平行线本质属性的理解,用几何语言描述图形的性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:

  (一)选择题:

  1、下列推理正确的`是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

平行线教案3

  教学目标

  1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念

  2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、

  3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、

  重点:

  探索和掌握平行公理及其推论、

  难点:

  对平行线本质属性的理解,用几何语言描述图形的性质、

  教学过程

  一、创设问题情境

  1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

  学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?

  2、教师演示教具、

  顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?

  3、教师组织学生交流并形成共识、

  转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、

  二、平行线定义表示法

  1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、

  直线a与b是平行线,记作“∥”,这里“∥”是平行符号、

  教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、

  2、同一平面内,两条直线的位置关系

  教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系、

  在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、

  三、画图、观察、归纳概括平行公理及平行公理推论

  1、在转动教具木条b的过程中,有几个位置能使b与a平行?

  本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、

  2、用直线和三角尺画平行线、

  已知:直线a,点B,点C、

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  3、通过观察画图、归纳平行公理及推论、

  (1)由学生对照垂线的.第一性质说出画图所得的结论、

  (2)在学生充分交流后,教师板书、

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行、

  (3)比较平行公理和垂线的第一条性质、

  共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的

  不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、

  4、归纳平行公理推论、

  (1)学生直观判定过B点、C点的a的平行线b、c是互相平行、

  (2)从直线b、c产生的过程说明直线b∥直线c、

  (3)学生用三角尺与直尺用平推方验证b∥c、

  (4)师生用数学语言表达这个结论,教师板书、

  结果两条直线都与第三条直线平行,那么这条直线也互相平行、

  结合图形,教师引导学生用符号语言表达平行公理推论:

  如果b∥a,c∥a,那么b∥c、

  (5)简单应用、

  练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、

  本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、

  四、作业:课本P16、7,P17、11、

平行线教案4

  学习目标:

  1、熟练证明的基本步骤和书写格式;

  2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

  辅助教学:多媒体

  7.3平行线的判定:知识点

  教学目标

  知识与技能

  1、平行线的性质定理的证明.

  2、证明的一般步骤.

  过程与方法

  1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.

  2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.

  情感与价值观

  通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.

  教学重点

  证明的步骤和格式.

  教学难点

  理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.

  教学过程:

  一、创设现实情境,引入新课

  上节课我们通过推理证明了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换之后得到的命题是真命题吗?

  节课我们就来研究“如果两条直线平行”.

  二、讲授新课

  在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:

  同位角相等两直线平行,.

  议一议

  利用这个公理,你能证明哪些熟悉的.结论?

  想一想

  (1)根据“两条直线被第三条直线所截,如果内错角相等那么这两条直线平行”.你能作出相关的图形吗?

  (2)你能根据所作的图形写出已知、求证吗?

  (3)你能说说证明的思路吗?

  7.3平行线的判定同步测试

  1.如果一个角的两边与另一个角的两边分别平行,那么这两个角( )

  A.相等B.互补C.相等或互补D.不能确定

  2.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向和原来的方向相同,这两次拐的角度可能是( )

  A.第一次向左拐30°,第二次向右拐30°

  B.第一次向左拐50°,第二次向右拐130°

  C.第一次向右拐30°,第二次向右拐130°

  D.第一次向左拐50°,第二次向左拐130°

  3.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC,DB中,相互平行的线段有( )

  A.4组B.3组C.2组D.1组

平行线教案5

  课时:一课时

  课型:新授课

  【教学目标】

  1条直线在什么情况下互相平行,体会平行线在现实生活中的作用。

  23【教具学具准备】

  教师准备多媒体课件和视频展示台;学生准备三角板。

  【教学过程】

  一、引入课题

  教师:前一节我们学习了相交,你能画出两条相交的直线吗?

  学生画后,抽几个学生作业在视频展示台上展示。

  教师:同学们能画两条相交的直线了,生活中有两条永不相交的直线吗?如果有,想象一下它们是什么样子。

  学生想象后,教师用多媒体课件出示单元主题图。

  教师:图中的跑道线延长出去会相交吗?

  学生回答:不会相交。

  用多媒体课件延长跑道,证实学生的结论是正确的。

  教师:这就是我们这节课要研究的另一个内容,平行。(板书课题)

  二、进行新课 1

  教师:我们来看一看生活中的一些平行现象。

  多媒体课件突出双杠、吊杆、长方形花台和新增加的铁轨图。

  教师:这些图形都反映了这样一些数学现象。

  多媒体课件闪动图中平行的两条边,并隐去图中的其他图形,只留下闪动的两条线。

  教师:这4组直线有什么共同特点?指导学生说出每组直线之间的距离是一样宽的,并且把每组直线延长出去,都永远不会有交点。

  教师:同学们选一组你喜欢的直线延长一下,看你的想法是不是正确的。学生选一组直线来延长后,汇报自己的结果。

  教师:你们所说的直线延长是在同一个平面内进行的延长。

  在同一平面内不相交的两条直线叫做?

  引导学生说出:在正方形和长方形中,第①条边和第③条边互相平行,第②条边和第④条边互相平行。在第3个图形中,第①条边和第④条边互相平行,第②条边和第⑤条边互相平行,第③条边和第⑥条边互相平行。

  教师:我们可以用两个三角板或一个三角板和一把直尺画平行线。

  教师示范画平行线后,学生照老师的方法画平行线。画完后抽一个学生的练习在视频展示台上展出,并且要求学生说一说自己是怎样画的.。

  教师:同学们能画出下面直线的平行线吗?

  学生画后,抽一个学生的作业在视频展示台上展出,并要求学生说一说自己是怎样画的。

  教师:画平行线时要注意些什么?你能给同学们提个醒吗?

  引导学生回答:画平行线时,用一个三角板的一条直角边与已知直线的延长线重合。另一条直角边与另一个三角板的一条直角边(或直尺的短边)靠紧,另一个三角板(或直尺)靠着这个三角板移动到合适的位置。就可以画已知直线的平行线了。

  教师:用画平行线的方法还可以检验两条直线是不是互相平行的。

  教师用视频展示台上学生的作业来进行检验,让学生看清教师用三角板检验平行线的过程。

  教师:你们能用这种方法检验图6边是不是互相平行的吗?图6

  7中上下两条边、左右两条

  学生检验后,让学生在视频展示台上演示检验的过程。

  三、巩固练习

  1、永不相交的两条直线叫做平行线( ×)

  2、组成平行线的两条直线相互平行。(√ )

  四、课堂小结(略)

  五、课堂作业

平行线教案6

  教学内容:

  课本第160 163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。

  第一课时

  4.7.1 垂线

  教学目标

  ▲ 知识与能力

  1、分析和探索垂直的概念,体会垂直的性质。

  2、理解过平面中一点有且只有一条垂线的性质。

  ▲ 过程与方法

  1、复习相关内容并引入新课。

  2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。

  3、通过对例题图形的操作得到垂直的性质。

  ▲ 情感、态度与价值观

  通过对课件的分析,引导学生得出生垂直的定义,从而进一步培养学生探索精神和探索能力。

  教学重、难点及突破

  ▲ 重点

  两条直线的垂直概念以及垂直的性质。

  ▲ 难点

  能充分理解垂直的定义,并能应用于解决实际问题。

  ▲ 教学突破

  本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的.习惯。

  教学准备

  ▲教师准备

  有关相交直线移动的课件

  ▲学生准备

  预习相交线的概念

  教学流程设计

  教师指导

  学生活动

  1.设问,引导学生回顾两直线相交的内容,并引入新课

  2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.

  3.引导学生动手画得到垂 直的唯一性.

  4.布置适当练习,巩固所学

  1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.

  2.通过对动画效果的分析,能总结出两直线垂直的概念.

  3.通过亲手画图得到垂 直的唯一性.

  4.完成练习,对所学内容有进一步的理解.

  一、导入新课

  教师活动

  学生活动

  1、导入:我们在以前学习了相交直线的知识,让我们一起回忆一下。

  2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。

  1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。

  2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。

  二、对相交线的探索

  教师活动

  学生活动

  1、 用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。

  2、 引导学生完成课本第161页“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。

  3、 让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短

  4、 总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.

  5、 组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.

  6、 练习:课本第162页练习1-3题.

  7、 教师小结本内容

  8、 布置作业:课本第166页习题4.7第1题

  1)认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。

  2)认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。

  3)认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。

  4)结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。

  5)通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转90度得到的,从而理解旋转思想。

  6)认真完成练习,巩固所学的知识。

  7)学生完成作业

平行线教案7

  本节课的重点是平行线的概念和平行公理及其推论,联系学生的实际情况,本节课的难点在于画平行线、平行公理及其推论的应用。但是,由于平行线是直线,而直线在我们的实际生活中并不存在,所以,我们需要借助同学们的想象力,将线段想象为直线。

  首先,教师只做了两个硬纸条,用磁铁将两个硬纸条贴在黑板上,教师用手旋转其中一个硬纸条,学生观察这两个硬纸条的位置变化,从而得到平行线定义。但是,教师要着重强调,不再同一平面内的两条直线,即使不相交也不一定会平行。并且运用了班级里的粉笔盒进行说明,这能让学生们较形象、直观的理解“在同一平面内”这几个字的意义。

  其次,让学生回顾了小学时学习的画平行线的方法,并利用画平行线的方法进行自主探究:过直线外一点可以画几条直线与已知直线平行。通过学生的自己动手的实践,学生明确了平行公理及其推论的的存在,最后将课后练习作为巩固新知识的`题目,要求学生们自己完成。教师进行巡视,指导。

  本节课的成功之处在于:学生动手、动脑,独立思考,完全参与到知识的探索之中,不再是单纯的知识的接受者,而是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,指导者,符合新的课堂理念。

  不足之处在于:由于某些学生家庭原因所致,不能及时购买三角板和直尺,导致部分学生不能用正确的方法画出平行线。学生们的动手能力,画图能力还是有很大的不足,在做练习时,不能明确直线、射线、线段的特征,需要老师提醒才能发现自己的错误。

  需要改正的:学生数学基础的薄弱性导致教师上课要有很多很多的耐心来帮助学生回忆旧的知识,也需要老师多多的放手让学生去自己发现问题,解决问题,以此来逐渐培养学生的动手、动脑的能力,这是长期努力才能达到的,应该用很多的耐心坚持下去。并且要以学生能听懂为主,不能因进度问题就放快速度去讲,以能让学生学会为主。

平行线教案8

  [教学目标]:

  1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

  2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。

  [教材分析]

  教材设置了一个通过测量探索平行线特征的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线的性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。

  [教学重点]

  平行线的特征的探索

  [教学难点]

  运用平行线的.特征进行有条理的分析、表达

  [设计理念]

  为学生提供充足的探索与交流的时间和空间,重视学生在实际操作以及在操作过程中的思考,使学生的空间观念、推理能力得到培养。

  [教学过程()]

  一、巩固旧知,问题引入。

  巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论

  在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题。

  二、实验验证,探索特征。

  1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)

  2、学生实验(发印好平行线的纸单)

  (1)已知,a//b,任意画一条直线c与平行线a、b相交。

  (2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系

  (要求学生多画几条截线试试,鼓励学生用多种方法进行探索)

  3、实验结论:

  两条平行线被第三条直线所截,同位角相等。

  简记为“两直线平行,同位角相等”

  识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?

  4、问题讨论:

  我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢

  如图,已知直线a//b,思考∠1与∠2、 ∠2与∠3之间有什么关系?为什么?

  (小组讨论,给予充足的时间交流,可引导学生

  与同位角进行比较,从而得出结论,关注学生在

  此能否积极地、有条理地思考)

  结论: “两直线平行,内错角相等”

  “两直线平行,同旁内角互补”

  (识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)

  5、归纳平行线的三个性质及三个判定

  三个性质:

  三个判定:

  三、例题学习,实践运用。

  (一)找找看:

  如图所示,AB∥CD,AC∥BD,分别找出与∠1相等或互补的角。

  (学生可通过讨论交流找到所有的答案,

  并标注在图中)

  (二)做一做:

  如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,

  (1)∠1、∠3的大小有什么关系?∠2与∠4呢?

  (2)反射光线BC与EF也平行吗?

  先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。

  (1) AB∥CD→∠1=∠3→∠2=∠4

  (2) ∠2=∠4→BC∥EF

  (三)考考你:

  如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°。已知梯形的两底AD//BC,请你求出另外两个角的度数。

  (学生尝试用自己的方式书写说理过程)

  (四)填空:

  已知:如图,∠ADE=60°,∠B=60°,∠C=80°。

  问∠ AED等于多少度?为什么

  ∵ ∠ADE=∠B=60° (已知)

  ∴ DE//BC( )

  ∴ ∠AED=∠C=80° ( )

  (通过填空题,检验学生对平行线的判定与性质的区分)

  四、课堂小结:

  1、说说平行线的三个性质是什么?

  2、平行线的性质与平行线的判定的区别:

  判定:角的关系 平行关系

  性质:平行关系 角的关系

  3、证平行,用判定;知平行,用性质。

  五、课后作业:

  教材62页1、2、3题平行线的

平行线教案9

  一、教学目标

  1了解平行线的概念,理解学过的描述图形形状和位置关系的语句

  2掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图

  3通过画平行线和按几何语句画图的题目练习,培养学生画图能力

  4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力

  二、学法引导

  1教师教法:尝试法、引导法、发现法

  2学生学法:在教师的引导下,尝试发现新知,造就成就感

  三、重点、难点及解决办法

  (一)重点

  平行公理及推论

  (二)难点

  平行线概念的理解

  (三)解决办法

  通过引导学生尝试发现新知、练习巩固的方法来解决

  四、教具学具准备

  投影仪、三角板、自制胶片

  五、师生互动活动设计

  1通过投影片和适当问题创设情境,引入新课

  2通过教师引导,学生积极思维,进行反馈练习,完成新授

  3学生自己完成本课小结

  六、教学步骤

  (-)明确目标

  掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力

  (二)整体感知

  以情境引出课题,以生活知识和已有的知识为基础,引导学生学习平行公理及其推论,并以变式训练强化和巩固新知

  (三)教学过程

  创设情境,引出课题

  师:前面我们学习了两条直线相交的情形,下面清同学们看投影片观察投影片中的铁路桥梁以及立在路边的三根电线杆,再请同学们观察黑板相对的两条边和横格本中两条横线,若把它们向两方延长,看成直线,它们还是相交直线吗?

  学生齐声答:不是

  师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

  [板书]24平行线及平行公理

  【教法说明】通过具体的实物和实物的图形,使学生建立起不相交的感性认识,同时在头脑中初步形成平行线的图形

  探究新知,讲授新课

  师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

  学生:窗户相对的棱,桌面的对边,书的对边……

  师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

  [板书]在同一平面内,不相交的两条直线叫做平行线

  【教法说明】初中几何必须重视几何概念的直观性,所以让学生多观察实物形状,在形成了感性认识的基础上,认识数学名称,让学生从中感受到数学的实在性,减少抽象性

  教师出示投影片(课本第74页图2?17)

  师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

  学生:不会相交

  师:那么它们是平行线吗?

  学生:不是

  师:也就是说平行线的定义必须有怎样的前提条件?

  学生:在同一平面内

  师:谁能说为什么要有这个前提条件?

  学生:因为空间里,不相交的直线不一定平行

  【教法说明】通过教师的引导,学生观察分析,自己得出结论,从而使学生切实体会到平行线的“在同一平面内”这个前提条件的重要性

  教师在黑板上给出课本第73页图2

  讲解:平行用符号“”表示,如图直线与是平行线记作“”(或)读作“平行于”(或平行于)也就是说平行是相互的

  【教法说明】这里教师不必赘述,让学生清楚平行线符号表示、读法和记法就可以了,对于平行线的图形经常会使用变式图形,不要总是横平竖直的,以防形成思维定式

  师:请同学们思考,在同一平面内任意画两条不同的直线,它们的位置关系只能有几种情况,试画一画,同桌的可以讨论

  学生:两种相交和平行

  由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

  尝试反馈,巩固练习(出示投影)

  1判断正误

  (1)两条不相交的直线叫做平行线()

  (2)有且只有一个公共点的两直线是相交直线()

  (3)在同一平面内,不相交的两条直线一定平行()

  (4)一个平面内的两条直线,必把这个平面分为四部分( )

  2下列说法中正确的是()

  A在同一平面内,两条直线的位置关系有相交、垂直、平行三种

  B在同一平面内,不垂直的两直线必平行

  C在同一平面内,不平行的两直线必垂直

  D在同一平面内,不相交的两直线一定不垂直

  学生活动:学生回答,并简要说明理由

  【教法说明】这组练习旨在巩固学生掌握平行线定义及平面内两直线的位置关系,通过判断(1)、(3)题让学生进一步体会平行线的“在同一平面内”的前提条件,通过判断(2)、(4)题和选择题使学生对两直线位置关系,尤其是对垂直是相交的一种特殊情况有更深层的理解

  师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

  已知直线和外一点,过点画直线

  师:请根据语句,自己画出已知图形

  学生活动:学生在练习本上画出图形

  师:下面请你们按要求画出直线

  学生活动:学生能够很快完成,然后请一个学生在黑板上板演,其他学生观察他的画图过程是否正确,然后师生一起订正

  注意:(1)在推动三角尺时,直尺不要动;

  (2)画平行线必须用直尺三角板,不能徒手画

  【教法说明】画平行线是几何画图的基本技能之一,在以后的画图中常常会遇到,要求学生使用工具,不仅能养成良好的学习习惯,也能培养学生严谨的学习态度

  尝试反馈,巩固练习(出示投影)

  1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

  2读下列语句,并画图形

  (1)点是直线外的一点,直线经过点,且与直线平行

  (2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

  (3)过点画,交的延长线于

  学生活动:学生在练习本上按要求画图,并由两个学生在黑板上画第2题的(2)、(3)题,学生画完后教师给出第1题的图形(提前做好的投影片),请学生回答测量的`结果,然后共同订正第2题的(2)、(3)题

  【教法说明】这组练习重点巩固平行线的画法及理解描述图形形状和位置关系的语句,能够根据语句画出正确图形,注意要求学生用准确的几何语言反映图形,同时真正理解几何语言才能画好图形

  师:我们练习了过直线外一点画已知直线的平行线,请同学们回忆,过直线外一点能不能画直线的垂线,能画几条?

  学生活动:学生思考并回答,能画,而且只能画一条

  师:下面请你试一试,前面我们完成的过直线外一点与已知直线平行的直线可以画几条,想一想,你能得到什么结论?

  学生活动:学生动手操作,思考后总结出结论:经过直线外一点,有且只有一条直线与已知直线平行

  师:我们把这个结论叫平行公理,教师板书

  【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

  【教法说明】学生对垂线的惟一性比较熟悉,通过对惟一性的回顾,学生能够用类比的思想,把自己动手得到的实验结论采用准确的几何语言描述出来,这样不仅培养了学生善于类比的思想,同时也训练了学生语言的规范性

  师:过直线外一点,能画这条直线的惟一平行线,若没有条件“过直线外一点”,问你能画已知直线的平行线吗?能画多少条?

  学生:思考后,立即回答,能画无数条

  师:请同学们在练习本上完成

  (出示投影)

  已知直线,分别画直线、,使,

  学生活动:学生在练习本上完成

  师:请同学们观察,直线、能不能相交?

  学生活动:观察,回答:不相交,也就是说

  师:为什么呢?同桌可以讨论

  学生活动:学生积极讨论,各抒己见

  【教法说明】几何的学习不仅要求学生有较强的识图能力,而且要求学生有过硬的分析能力,也就是说理能力初一几何课是几何课的起始课,从开始就让学生养成自己动手、动脑、思考、分析问题的习惯,即加强几何思维不惯的培养,这是个很重要的内容

  学生活动:教师让学生积极发表意见,然后给出正确的引导

  师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

  学生活动:学生在教师的启发引导下思考、讨论,得出结论

  师:同学们想得很好,因为,,于是过点就有两条直线、都与平行,根据平行公理,这是不可能的,这就是说,与不能相交,只能平行,由此我们得到平行公理的推论

  [板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

  师:在同一平面内,不相交的两条直线是平行的,那么不相交的两条射线(或线段)也是平行的,对吗?为什么?

  学生活动:学生思考,回答:不对,给出反例图形,

  例如:如图1所示,射线与就不相交,也不平行

  师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

  生:它们所在的直线平行

  尝试反馈,巩固练习(投影)

平行线教案10

  教学目标:

  1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。

  2、通过说理渗透合情推理的.思想,培养学生逻辑推理能力。

  3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。

  教学重难点:

  重点:学会平行线识别的方法,能在实际生活和数学图形中识别平行线.

  难点:能根据图形中的已知条件,学会用数学语言简单的说理。

  教学准备:

  三角板、直尺、硬纸片(角的形状)

  教学过程:

  一、创设问题情景

  1、组织学生进行如下活动:

  (1)用硬纸片制作一个角;

  (2)这个角放在白纸上,描出∠AOB;(如图)

  (3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;

  (4)探索这个过程,你能得到什么结论?为什么?

  2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。请同学们根据这样的一个事实用一句话来叙述。

  3、学生分组交流二、探索结论1、同位角相等,两直线平行。

  2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∥b.如果∠1=∠3,可得a∥b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。

  3、如果∠1+∠4=,能识别两直线a∥b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。

  4、组织学生分组讨论,归纳总结平行线的识别方法。(略)

  三、识别方法的应用例

  1、按课本讲,但注意书写格式:∵∠1=∠2,根据“内错角相等,两直线平行”,∴a∥b.

  例2、如图,在四边形ABCD中,已知,∠B=,∠C=,AB与CD平行吗?AD与BC平行吗?若不平行添加什么条件平行呢?例3、如图,直线a、b被直线c所截,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=;④∠5+∠8=其中能识别a∥b的条件的序号是。

  课堂练习:课本第170—171页练习题四

  课堂小结:

  1、本节课学习了什么?

  2、谈谈使用识别方法的体会。

平行线教案11

  教学目标:

  1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

  2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

  重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

  难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。

  教学过程

  一、引导学生逆向思维

  现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

  二、实践探究

  1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5。3—1)。

  2、学生测量这些角的`度数,把结果填入表内。

  角∠1∠2∠3∠4∠5∠6∠7∠8

  度数

  3、学生根据测量所得数据作出猜想。

  (1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?

  (3)图中哪些角是同旁内角?它们具有怎样的数量关系?

  4、学生验证猜测。

  学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

  5、师生归纳平行线的性质,教师板书。

  平行线具有性质:

  性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。

  性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。

  性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。

  教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。

  平行线的性质平行线的判定

  因为a∥b,因为∠1=∠2,

  所以∠1=∠2所以a∥b。

  因为a∥b,因为∠2=∠3,

  所以∠2=∠3,所以a∥b。

  因为a∥b,因为∠2+∠4=180°,

  所以∠2+∠4=180°,所以a∥b。

  6、教师引导学生理清平行线的性质与平行线判定的区别。

  学生交流后,师生归纳:两者的条件和结论正好相反:

  由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。

  由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。

  7、进一步研究平行线三条性质之间的关系。

  教师:大家能根据性质1,推出性质2成立的道理吗?

  结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。

  因为a∥b,所以∠1=∠2(两直线平行,同位角相等);

  又∠3=∠1(对顶角相等),所以∠2=∠3。

  教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。

  学生仿照以下说理,说出如何根据性质1得到性质3的道理。

  8、平行线性质应用。

  讲解课本P23例题

  三、巩固练习:课本练习(P22)。

  四、作业:课本P22。1,2,3,4,6。

平行线教案12

  教材分析

  这部分内容是在学生认识了点和线段,以及射线、直线的基础上安排的,先认识直线直线的平行,在识别直线相交和不香相交的基础上认识平行线,学会画平行线。这节内容也是进一步学习空间和图形的重要基础之一。

  学情分析

  学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,在日常生活中能见到的平行关系不注意,通过学习能成分认识平行线。

  教学目标

  1、使学生联系生活实际,体验直线的相交与不相交关系,认识两条直线互相平行,能判断两条直线互相平行,能判断两条直线的平行关系。

  2、使学生能根据直线平行的`意义,画出平行线;

  3、培养学生的操作能力及空间观念;初步了解生活里的平行现象,产生学习图形位置关系的兴趣。

  教学重点和难点

  1、结合生活场景,使学生感知平面上两条直线的平行关系,认识平行线。

  2、能借助直尺、三角板等画出平行线。

  教学过程

  (教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。)

平行线教案13

  学习目标:

  1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

  2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

  3、通过辨别对顶角与邻补角,培养识图的能力。

  学习重点:邻补角和对顶角的.概念及对顶角相等的性质。

  学习难点:在较复杂的图形中准确辨认对顶角和邻补角。

  学具准备:剪刀、量角器

  学习过程:

  一、学前准备

  1、预习疑难:。

  2、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。②同角或的补角。

  二、探索与思考

  (一)邻补角、对顶角

  1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。

平行线教案14

  【教学目标】

  1。经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;

  2。感受原命题与逆命题,从而了解平行线的性质公理与判定公理的'区别,能在推理过程正确使用。

  【教学重点】

  平行线的性质以及应用。

  【教学难点】

  平行线的性质公理与判定公理的区别。

  【对话设计】

  〖探索1〗反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0。这两个句子都是正确的。

  现在换一个例子:如果两个角是对顶角,那么这两个角相等。它是对的。反过来,如果两个角相等,这两个角是对顶角。对吗?

  再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?

  〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确。

  〖探索2〗

  上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想。

  〖推理举例〗

  如果把平行线性质1———"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等"。

  如图,已知:直线a、b被直线c所截,且a∥b,

  求证:∠1=∠2。

  证明:∵a∥b,

  ∴∠1=∠3(__________________)。

  ∵∠3=∠2(对顶角相等),

  ∴∠1=∠2(等量代换)。

  〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补。请模仿范例写出证明。

  如图,已知:直线a、b被直线c所截,且a∥b,

  求证:∠1+∠2=180?。

  证明:

  〖探索4〗

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2。根据什么?

  (2)若∠1=∠2,可以得到a∥b。根据什么?根据和(1)一样吗?

  〖练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:

  (1)∵a∥b,∴∠1=∠3(___________________);

  (2)∵∠1=∠3,∴a∥b(_________________)。

  (3)∵a∥b,∴∠1=∠2(__________________);

  (4)∴a∥b,∴∠1+∠4=180?

  (_____________________________________)

  (5)∵∠1=∠2,∴a∥b(___________________);

  (6)∵∠1+∠4=180?,∴a∥b(_______________)。

  〖练习2〗

  画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由。

  〖作业〗

  P25。1、2、3、4。

平行线教案15

  在本次活动中,教师应重点关注:

  (1)学生从简单的具体实物抽象出相交线、平行线的能力.

  (2)学生认识到相交线、平行线在日常生活中有着广泛的应用.

  (3)学生学习数学的'兴趣.

  教师出示剪刀图片,提出问题.

  学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.

  教师提出问题.

  学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.

  在本次活动中,教师应关注:

  (1)学生画出两条相交线的几何图形,用语言准确描述.

  (2)学生能否从角的位置关系上对角进行分类.

  (3)学生是否能够正确区分邻补角、对顶角.

  (4)学生参与数学学习活动的主动性,敢于发表个人观点.

  《相交线与平行线》单元测试题

  25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D

  (1)若点C恰在EF上,如图1,则∠DBA=_________

  (2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由

  (3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)

  《第五章相交线与平行线》单元测试题

  一、选择题(每题3分,共30分)

  1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()

  A.50°B.60°C.140°D.160°

【平行线教案】相关文章:

平行线的性质教案03-25

《平行线》说课稿12-21

平行线的判定教学反思05-24

平行线的判定教学反思10篇05-27

相交线与平行线教学反思(通用6篇)03-09

七年级下册《相交线与平行线教学反思07-25

教案中班教案02-23

大班教案认识a的教案10-10

小班教案健康教案07-08