平行四边形的面积教案
作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。那么教案应该怎么写才合适呢?下面是小编精心整理的平行四边形的面积教案,欢迎阅读与收藏。
平行四边形的面积教案1
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的.学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
平行四边形的面积教案2
教学内容:
人教版五年级上册第六单元86页---88页,
教学目标:
1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。
2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。
3、培养学生,观察分析,概括推导,和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,
教学难点:
通过转化的方法理解平行四边形的面积计算公式、
教学过程:
一、回忆旧知,谈话导入
1、今天我们来平行四边形面积的`计算,在以前我们学过哪些图形面积的计算?(长方形和正方形)是怎样算的呢?
2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?
平行四边形的面积教案3
【设计理念】
本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容
【教学内容】
《义务教育教科书》人教版数学课本五年级上册87——88页。
【教材、学情分析】
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
【教学目标】
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
【教学重点】
推导平行四边形面积计算公式。应用公式解决实际问题。
【教学难点】
理解平行四边形的面积计算公式的推导过程。
【教学准备】
平行四边形纸片若干,直尺、剪刀、。
【教学过程】
一、创设情境,激发兴趣。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】
二、组织探究,推导公式。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
大胆猜想:平行四边形的.面积可能和哪些条件有关呢?该怎样计算?
【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)
学生数方格并来验证自己的猜想。
【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)
能否将平行四边形转化成我们学过的图形再来进行计算呢?
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)
【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】
4、观察比较,推导公式。
剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?
小结: 长方形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
把平行四边形转化成长方形面积。(剪拼—转化)
然后找到转化前、后图形之间的联系。(寻找—联系)
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)
【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】
三、实践应用,解决问题。
1、解决实际问题
平行四边形花坛底是6米,高是4米,它的面积是多少?
2、出示如下图
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】
四、总结全课,拓展延伸。
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】
五、板书设计
平行四边形的面积
长 方 形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
平行四边形的面积教案4
教材分析
本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
教学目标
1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”
教学方法
《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
教学过程
教学环节
教学活动
设计意图
一、创设情境,引入新知
二、动手实践、探索新知
三、尝试练习,提升能力
四、课堂小结,梳理提高
以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
(一)提出猜想
【提问】平行四边形的面积可能等于什么?
受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)
(二)动手验证
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
【追问】如果让你测量花坛的面积,你也用数格法吗?
【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?
再次验证,并提出活动要求
(1) 你把平行四边形转化成什么图形?
(2) 什么变了,什么没变?
(3) 平行四边形的面积怎么算?
2.交流反馈(一个演示,一个讲解)
【提问】看懂这种方法吗?有谁的和他不同?
(三)动眼观察
【提问】这两种方法有什么共同之处?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
【追问】什么变了,什么没变?
学生发现,形状变了,面积没有变。因为平行四边形的'底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
(四)自学课本
引导学生自学课本,用字母表示公式。
S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)
【追问】要求平行四边形的面积,必须知道什么?
(一)基本技能训练
(1) 计算平行四边形的面积
(2) 蓝色线这条高的长度
(二)解决实际问题
快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
(三)提升思维能力
1.在方格纸上画一个面积是24平方厘米的平行四边形
2.如果这个平行四边形的底是4厘米,那么能画出几种?
这节课你学习了什么,有哪些收获?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
感受数格法不受用,从而激发起探究欲望。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
打破学生思维定势,感受高和底的对应。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
平行四边形的面积教案5
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的'面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
平行四边形的面积教案6
教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:
多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格平行四边形底底边上的'高面积
长方形长宽面积
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑P79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)、两个平行四边形的高相等,它们的面积就相等( )
(2)、平行四边形的高不变,底越长,它的面积就越大( ) 。
(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2 比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
平行四边形的面积教案7
目标:
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
教学准备:多媒体、平行四边形纸片. 剪刀、三角尺
一、创设情境
同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?
师:你们准备怎样解决呢?
生:分别算出长方形和平行四边形的面积就行了。
师:谁来说怎样计算长方形的面积?
生:长方形的面积等于长乘宽。
师:怎样列式?(10×6=60平方米)
师:求长方形的面积有公式很方便,那你会算平行四边形的面积吗?
生:-------
师:那么今天我们就来研究怎样求平行四边形的面积.(板书课题:平行四边形的.面积)
二、探究新知
1、学生尝试解决,
师:同学们,仔细观察这块平行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。
学生活动,独立尝试解决。
教师巡视,
2、反馈学生尝试计算结果。
师:同学们有结果了吗?
学生汇报结果。
师:求一个图形的面积出现了这么多的结果,可能吗?(不可能)
到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出平行四边形纸,通过剪、拼的方法把这个平行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。
3、学生汇报验证过程。
师:请你上台把这过程演示一遍。
学生演示。
师:我想问一下,你这一剪是随便剪的吗?
生:不是,是沿高剪的。
师:哦,这位同学是这样剪的。
师:不错,谁还有不同的剪法?
学生汇报。
师:大家听明白了吗?这两个同学都是沿着平行四边形的一条高剪开,将平行四边形转化成一个长方形。看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。
师:现在,我请一位同学用老师的教具把平行四边形转化的过程再演示一遍。谁来上台演示?
师:大家边看边想:转化后的长方形和原来的平行四边形比,什么变了?什么不变?
生:形状变了,面积没有变。
师:面积没有变,也就是――(转化后长方形的面积与原来的平行四边形的面积相等。)
师:非常正确!
师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的平行四边形的底和高有什么关系?
师演示教具。
生:转化后的长方形,长与原来的平行四边形的底相等,宽与原来平行四边形的高相等。
师:说得真好。那现在平行四边形的面积你们会算了吗?
生:平行四边形的面积等于底乘高。
师:不错。如果用S表示平行四边形的面积,用a 表示底,用h表示高,平行四边形的面积公式用字母怎样表示呢?
学生说完,师完成板书:长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示:S=a×h=ah
师:同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲
请同学们打开数学书81页,把平行四边形的面积公式补充完整。这个面积公式适用于所有的平行四边形。
师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说平行四边形的面积是怎样推导出来的,(出示课件)你会填吗?
4、解决问题
师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?
生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。
师:谢谢你们为小熊和小兔解决了交换菜地的问题。
师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生尝试练习,生上台板演。
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
生:底和高。
师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。
三、巩固练习
1、计算下列图形的面积。
师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。
生上台板演。
师:同学们,算完了吗?我们来看看这位同学做对了没有?
师:今后我们在求平行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。
师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?
2、课本82页第2题。
师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做? 女生算第1个图形,男生算第2个图形。我们比一比
学生上台展示。,
3、考考你。
师:比完了,接下来老师又要出题目考你们了。
4、小小设计师。
师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24平方分米,那么底和高各是多少分米?(底和高都是整数)
四、小结
师:今天这节课的知识你们是怎样学会的呢?
师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。
平行四边形的面积教案8
教学内容:
义务教育六年制小学《数学》第九册P64-P66
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:
掌握平行四边形面积公式。
教学难点:
平行四边形面积公式的推导过程。
教具、学具准备:
1、多媒体计算机及课件;
2、投影仪;
3、硬纸板做成的可拉动的长方形框架;
4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程:
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的'推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
⑴、(微机显示例一)求平行四边形的面积
⑵、判断题(微机显示,强调高是底边上的高)
⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
平行四边形的面积教案9
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
3.培养同学们分析问题、解决问题的能力。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
卡片
教学过程:
一、基本练习
1.口算。
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,底6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的`面积:25078010000=1.95公顷,
再求共收小麦多少千克:70001.95=13650千克
(3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与(2)比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
(1)你能找出图中的两个平行四边形吗?
(2)他们的面积相等吗?为什么?
(3)生计算每个平行四边形的面积。
(4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习第10题:已知一个平行四边形的面积和底,求高。
分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
第7题。
四、小结
本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?
平行四边形的面积教案10
一、 教学目的:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2、培养学生运用转化的方法探索规律、解决实际问题的能力,发展学生的空间观念。
3、并通过实例培养学生热爱家乡、爱护环境的意识。
二、教学重难点:
1、教学重点:掌握平行四边形的面积计算公式,并能正确运用。
2、教学难点:理解平行四边形面积计算公式的推导过程。
三、教具:
电脑、课件(cai),实物投影,两个平行四边形的硬纸,剪刀一把。
四、学具:
学生每人准备平行四边形的两个,方格纸一张,剪刀一把。
教学过程:
一、谈话引入:
1、鼓励学生。
师:王老师听说四(1)班的同学特别棒,我想考考大家,愿意接受挑战吗?(愿意)
(cai:出示十运会吉祥物金麟的形象)认识吗?(金麟)这就是今年南京将要举办的十运会的吉祥物金麟,)为了使南京以更加优美的环境来迎接十运会,政府投入了大量的资金绿化环境,连小动物们也行动起来了。一天金麟到小狗家做客,它们在一起商量着什么呢?同学们请看:(cai出示一只小狗并播放录音,出示商量的内容)
小狗说:“金麟,我家前、后面各有一块空地,我想把它们绿化一下,但我不知道空地的面积各是多少,你能帮我吗?”(cai:出现两块不规则空地,书第42页上面右边的两幅图。)
(评析:注重数学问题生活化,生活问题数学化,培养学生生活中处处有数学的思想。如课中联系实际,选择学生感兴趣的、社会生活中鲜活的题材:十运会的吉祥物金麟引入绿化环境,再引出求图形的面积。既激起了学生对家乡的热爱,又使学生体会到:原来这就是数学。培养学生用数学的眼光去观察世界、了解世界。使学生对数学产生亲切感,激发了学生的学习兴趣。)
2、师:“这就是那两块空地,同学们,你能用学过的方法帮帮小狗吗?(数方格)(cai:覆盖上方格)数方格时,不满一格按?(半格计算)数第二幅图王老师想请同桌两位同学合作,一人数整格、一人数半格。数一数这两个图形各有几个方格?(15个)。(cai:闪动一个小方格,接着闪动各个图形的方格换颜色。如果每一个方格表示1平方米,它们的面积各是多少?(各是15平方米)
3、小组讨论:不数方格,还有别的办法吗?
(生1:把左边凸出的部分剪下来,补到右边凹进去的地方。生2:这样就拼成了一个长方形。)(cai出示剪拼的过程。)
4、小结:
先沿虚线剪下,再向左平移到缺口处,就将不规则的图形转化成了学过的长方形,这是一种重要的数学思想即“转化思想”。在今后的数学学习中会经常用到。(板书:转化)现在转化成了什么图形?面积怎么求?公式?
5、到此为止,求平面图形的面积用了两种方法,第一种数方格求面积,第二种应用公式计算,你觉得哪一种方法更简便,为什么?
6、观察思考:小结:大家想一想,我们在转化的过程中,图形的什么变了?什么没变?(形状变了,面积没有变)
转化成什么图形?(长方形)面积怎样计算?板书:长方形的面积=长×宽
7、引入:今天我们就要用转化思想来学习新的知识——平行四边形面积的计算。(板书课题)
(评析:在数、算、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,得出自己喜欢的方法。同时也渗透了“转化”的数学思想,为后面的学习研究作铺垫。)
二、教学新知。
1、创设情境。
(1)出示平行四边形。(cai)师:这是什么图形?(平行四边形)请同学们拿出这个平行四边形,你能告诉我它的底和高各是多少。(底是6厘米、高是3厘米)(师板书 )你能马上说出它的面积是多少吗?(18)怎样算的?(用6乘3)为什么?(底乘高)你知道为什么用底乘高呢?这就是我们这节课所要研究的内容。同学们大胆地猜想一下,平行四边形可以转化成我们学过的什么图形呢?(长方形),对不对?我们需要验证。
(评析:教师抓住契机,引导学生大胆地提出解决问题的方法,并渗透验证的思想。)
2、引导发现。
(1)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出这个平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!
(2) 拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(学生投影仪上展示)
(3)观察:你是怎样剪的?这种转化方法是沿着什么剪的?(都是沿着高剪的)为什么要沿高剪开呢?(这样才能形成直角。因为长方形的四个角都是直角)
(4) 教师演示:
(师拿出两个平行四边形),我这儿也有两个平行四边形,现在我把它们?(重合)说明什么?(这两个平行四边形完全一样)请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。(师动手操作)
第一步剪:沿着平行四边形的高剪,剪下了一个什么?(直角三角形)
第二步移:把剪下的直角三角形沿着底边慢慢地向右平移。我是怎样移的?(沿着平行四边形的底平移。)
第三步拼:直至拼成了一个?(长方形)
(5)、我分了几个步骤?(剪)剪下了什么?(直角三角形)、然后呢?(移)沿着什么平移?(底边)最后呢?、(拼),拼成了什么图形?(长方形)
(6)、想看电脑演示吗?(cai演示剪、移、拼的过程。)
(7)、你能像电脑演示的'那样把平行四边形转化成长方形吗?(能)好,请同学们把刚才剪下的直角三角形放回原处,再重新操作一遍。(学生操作)
3、引导学生得出结论。
(1)思考讨论:
①转化后的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?(形状变了,面积没变)(cai分别闪动两个图形的表面。)
平行四边形的面积我们不会求,但是你们却把它转化成了一个已经学过的长方形,如果我们把长方形的面积求出来,不就是平行四边形的面积吗?要求长方形的面积我们需要知道什么条件?(长和宽)(板书)各是多少?(长6宽3)为什么?(长就是底,高就是宽)面积怎么计算?(6乘3得18平方厘米)那么平行四边形的面积是多少?(18)为什么?(面积相等)
②是不是每个平行四边形都能转化成长方形?都有这些联系呢?我们需要验证。想做这个实验吗?(想)请同学们自己制作一个平行四边形。(学生操作)
要求:把这个平行四边形也转化成长方形,并填写书第43页的表格,再在小组内讨论,现在的这个长方形与原来的长方形有什么关系?(学生操作、填表、讨论)
(小黑板出示书43页表格,指名多位学生填数据。)请同学们观察表中的这些数据,你有什么发现?(底就是长,高就是宽,面积相等)(cai出示书43页的填空),学生填在书上,(cai出现答案)。
(2)讨论得出:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,长方形的面积与平行四边形的面积相等。(板书)(3)长方形的面积是怎样计算的(长×宽)。那么平行四边形的面积怎样计算?为什么?板书:
因为 长方形的面积 =长×宽,所以 平行四边形的面积=底×高。
师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。(同桌互说)
(4)用字母怎样表示呢,请打开书第44页,自己读一读。(指读师板书)
(5)、问:要求平行四边形的面积,需要知道哪两个条件?(需要知道平行四边形的高和底)如果给出平行四边形的底和高,你会求它的面积吗?(会)
(评析:教师根据教学内容和目的,为学生创造了充分地动手操作的空间,每一次操作目的都很明确。
第一次,猜想、尝试:让学生根据自己的猜想进行尝试,动手剪、拼、割、补,动脑思考,进一步感知平行四边形与长方形的关系。采用小组合作的形式,为学生创设了主动参与学习活动的机会,提供了探究的材料,真正地把学生推到了学习的主体地位。
第二次,交流、思考:请学生介绍自己的探究结果,在实物投影上操作转化的过程,并说一说怎样想的。让学生交流彼此的方法,培养学生善于倾听他人发言进行思考、取长补短的能力。
第三次,观察、思考:教师操作转化的过程,对学生的发现进行整合,帮助学生整理出完整的过程,学生仔细观察明晰步骤。
第四次,观察、比较:cai再演示剪、移、拼的过程,既形象直观、又生动,发挥了其它教学手段不可替代的作用。让学生再一次完整连贯地体会整个转化的过程,进一步比较平行四边形与长方形,明确它们之间的联系。
第五次,练习、比较:让学生在已有的基础上再一次操作,边操作边观察边思考边比较,从而得出平行四边形与长方形之间的联系,并整理成文字叙述的形式。
第六次,提问、验证:提出是不是每个平行四边形都能转化成长方形,都有这样的关系呢?让学生自己剪一个任意的平行四边形进行再验证,从而得出结论引导出公式。
培养了学生通过观察、尝试、交流、练习、思考、提问、猜想、验证、比较等活动,自主探索求异创新的能力。)
4、应用公式进行面积计算。
(1)(cai出示例题):一块平行四边形玻璃(如右下图),它的面积是多少?
解答后提问:你是根据什么来计算平行四边形的面积?注意单位名称是?
5、指导看书,小结质疑:
师:这节课你学会了什么?重点知识是什么?还有什么不明白的地方?
三、巩固练习
1、书第44页的“练一练”,(学生自己读题、再独立完成、集体核对问清根据什么列式计算的?)
2、书第45页练习九的第3题。(同上)
四、(cai)以下练习共有三关,每闯过一关,屏幕就会出现一幅画面,如果闯过全部四关,屏幕上将会向你展示一幅完整的画面(十运会已经建成的场馆外观和周遍的绿化结合图。),向你表示祝贺。想闯过去吗?(想)1、三个平行四边形a、b、c中哪一个的面积是3×2=6(平方厘米)?(单位:厘米)
2、求下图的面积。(强调找准对应的底和高)
3、为了迎接“十运会”,金麟打算在家门前的空地上开辟出一块面积是24平方米的平行四边形绿地,你能同时说出它的底和高吗?有不同的吗?看谁想出的答案多。
最后教师在揭晓有关十运会所拍摄的画面中以宣传爱护绿化、保护环境,争做“小小东道主”结束全课。
(评析:体现了练习的趣味性和开放性,学生情绪高涨,课堂气氛活跃。不仅巩固了知识提高了能力,而且加深了学生对家乡的热爱和积极争当“小小东道主”,为南京将要举行的十运会献一份力的意识。)
案例总评:
《数学新课程标准》(实验稿)指出:“学生的数学学习内容应当是现实的有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理和交流等数学活动。” 教材是主要的课程资源,但不是唯一的课程资源。教材所提供的仅仅是学生学习活动的基本线索,如果一味的固守“教材决定论”,认为教材就是唯一的教学资源,生搬硬套地使用教材,利用现有的有限的教材对学生实施着以教材为本的数学教学,完全忽略了教师在课堂教学中的主导作用,也放弃了学生在学习过程的主体地位,把教学进程限制于数学课本的教学之中,学生的学习目标只是为了会解几道书上的习题而已,教材怎样说教师就怎样教。必然难以实现生动活泼的、主动的和富有个性的数学学习。
我们作为教师应该要创造性地使用教材,积极开发、利用各种教学材料以及数学课程可以利用的各种教学资源,为学生提供丰富多彩的学习素材,使我们的教学内容源于教材而高于教材。根据学生学习的实际情况,采用灵活的方式,从多种角度、多个途径为学生的学习提供有结构的学习资源,为学生的数学学习提供更具现实性与挑战性、探索性与人文性的丰富素材,赋予数学学习材料以生命的活力,让学生自主建构自己的数学知识体系,且拥有高品位的数学学习过程,发展情感,生成智慧,使数学学习活动更具生命的价值。
在本节课中我选择了南京将要举行的十运会为切入点,即对学生进行了十运会的宣传,也很好的过渡到了知识点的教学上,在学生充满兴趣的氛围中开始了这节课的学习。变枯燥的图形教学为学生感兴趣的解决实际问题的亲身的实践过程,在动画演示和自己“动手操作中,学生都得到了运用所学知识、通过自己的思考动脑解决一个又一个他们感兴趣的实际问题的成功感,获得了满足感。在闯关的过程中、在画面揭晓的过程中,不仅激发了学生强烈的闯关的欲望,同时还进行了热爱南京、以南京为傲的教育。在这节课的最后我对学生提出了倡议:爱护花草树木、积极参加保护环境的活动“争做小小东道主”。
平行四边形的面积教案11
教学目标:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。
3、培养学生的小组合作意识,发展学生的空间观念。
教学重难点:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教具准备:
教学课件、平行四边形教具和学具、剪刀等。
教学过程:
一、情境引入
师:这节课老师将和大家一起学习一个新知识,同学们有信心吗?
师:看到同学们精神饱满的样子,老师也有信心。让我们一起努力吧!
师:首先老师想考考大家,知道的同学请举手。
t1:你们认识哪些平面图形?
t2:你们认识老师手中的图形吗?
t3:(出示课件2)请同学们观察学校门前的两个花坛,它们分别是什么形状?
t4:哪个花坛面积大?你会计算它们的面积吗?(出示课件3)
师小结:(板书;长方形的面积=长×宽)
这节课我们就来学习平行四边形的面积。(板书:平行四边形的面积)
二、探究建模
(一)数格子法(出示课件4)
1、师:前面我们已经知道可以用数格子的方法得到一个图形的面积,看大屏,请同学们用数格子的方法数数出这两个图形的面积。注意一个方格代表1平方米,不满一格的都按半格计算。
t1:谁来汇报一下你数的结果?
2、师小结:刚才,我们用数格子的方法得到了这个平行四边形的面积,可是,在日常生活中,是不是每一个平行四边形的面积都有方格让我们去数呢?(不是)所以说数方格的方法也不是任何时候都适用的。如果平行四边形的面积也能像长方形一样有它的面积计算公式就更好了,对不对?
那么在研究这个问题之前,让我们看大屏幕,继续观察这两个图形,并且完成第80页下方的表格。
t2:通过这个表格,你发现了什么呢?
3、师小结:是的,通过这个表格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
t3:根据你的发现,请同学们做个大胆的猜测,平行四边形的面积可以怎样计算?(师板书学生的猜测)
(二)转化法
1、用画图的方法验证猜想一。(平行四边形的面积=邻边之积)
学生画图,同桌交流,教师演示。
师小结:可见“平行四边形的面积=邻边之积”的猜测是不对的。
2、用“剪—平移—拼”的方法验证猜想二(平行四边形的面积=底×高)学生剪拼,同桌讨论,课件演示。(出示课件5)
t1:拼成的长方形和原来的平行四边形相比,什么变了,什么没有变?
t2:再看看,转化后的长方形的长与平行四边形的底,转化后的长方形的宽与平行四边形的高有什么关系?
生:转化后的长方形的长等于平行四边形的底,转化后的长方形的`宽等于平行四边形的高。
t3:那么,现在同学们知不知道平行四边形的面积可以怎样计算呢?
生:平行四边形的面积=底×高
t4:有没有不同的验证方法呢?(出示课件6)
师小结:其实,我们沿着平行四边形的任意一条高都能将一个平行四边形转化成长方形,因为转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高,所以,平行四边形的面积=底×高
(三)整理结论
1、师:我们一起读一下我们发现的结论。
刚才同学们不仅用不同的方法验证了两个猜想,并且用了转化的方法,真是了不起。
2、师:现在请同学们翻开书,自己看书学习81页倒数第2自然段的内容。
3、师:你学到了些什么?
4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah
师:有了平行四边形的面积计算公式,现在同学们就可以用它来计算了。
t5:现在同学们能知道这两个花坛哪个的面积大了吗?(出示课件7)
师小结:同学们学得真不错!我们鼓掌奖励自己吧!
师:下面老师再出几个题考考大家,敢挑战吗?
三、解释应用
1、计算平行四边形车位面积。(出示课件8)
t6:要计算一个平行四边形的面积需要知道哪些条件?
t7:(教师画图,平行四边形的底和高不对应)你能计算书这个平行四边想的面积吗?
2、选择条件计算平行四边形的面积。(出示课件9)
3、终极挑战。(出示课件10)
4、奖励题。知道平行四边形的面积和底,求高。(出示课件11)
四、课堂总结
通过这节课的学习你有哪些新的收获?
平行四边形的面积教案12
设计理念:
教学中以学生为主,放手让学生亲身体验,把充足的时间让给学生思考操作探究。本课的关键是让学生理解掌握平行四边形面积公式。因此在教学中让学生通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟获得数学的思想方法。让学生形成图形转化思维能力。并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。
设计意图:
1、课堂导入:提出问题,激发学生的探究欲望。复习长方形的面积和平行四边形的有关知识,利用旧知为新知作铺垫。再开门见山地抛出问题:平行四边形的面积,你们会求吗?这样过渡衔接自然。
2、自学课本:让学生自学课本80页内容,教师提出要求,不足一格的算半格。让学生数方格,让学生参与学习,发现其规律。形成了自主学习的好习惯。
3、合作探究:重视操作试验,发展合作能力。本节课教学我充分让学生合作参与学习,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
4、优化练习:练习设计的优化是优化教学过程的一个重要方面。设计的练习有坡度又注重变式。拓展了学生的思维能力。使学生感到数学与生活的联系,培养学生的数学应用意识,体验数学的应用价值。
总之,我设计的这一课是一堂快乐的课,是一堂健康的课,真正体现了以学生为主,让学生学有所获,而且真正让学生由“让我学”变为了主动的“我要学”的愉悦心境。
教学目标:
1、知识与技能:
(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能应用公式正确计算平行四边形的面积。
(2)以应用平行四边形的面积计算公式解决相应的实际问题。
2、过程与方法:
使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等数学活动过程、体会“等积变形”的思想方法,培养空间观念,发展初步的推理能力。
3、情感态度与价值观:
(1)渗透转化的数学思想方法。
(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
教学重点:
探究并推导平行四边形面积的`计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法—转化与等积变形。并能正确应用平行四边形的面积计算公式解决相应的实际问题。
教学过程:
一、巧设情境,铺垫导入。
师:同学们好!(出示教具,这是一个长方形框架)。它是什么图形?
师:同学们异口同声的回答真让教师高兴。
师:它的面积是怎样计算的?
师:你的记性可真好,回答的很棒!(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示)同学们看看,现在变成了什么图形?(平行四边形)
师:对了,你们观察真仔细。
师:你认为平行四边形的面积是怎样计算的?这节课就让我们就一起来探讨平行四边形面积计算吧。(板书课题:平行四边形的面积)
二、自学课本,发现规律。
(课件出示情境图。)
师:请同学们看大屏幕,根据图中的情境,你能提出哪些数学问题?
师:大家提出的问题都很好。你认为哪个花坛大呢?如何比较它们的大小呢?
师:9号同学你这么快想到了,你很聪明,请坐。
师:其实人们早就学会了用数方格的方法来验证花坛的面积大小。
师:(大屏幕出示自学指导)请同学们看自学指导:一个方格表示1平方米,不满一格的按半格计算。
师:请你们根据自学指导的要求自己认真数一数,并把你的结论填在表中。
师:同学们数的真仔细,请4号、17号、30号同学把你们填好的表格贴在黑板上给大家展示一下。
师:大家填写的表格和老师填写的是一样的吗?请看大屏幕,是这样填写的请举手,好,同学们填得很正确。(课件出示表格)
师:请你们仔细观察,从这个表中发现了什么?谁来说一说?
师:大家的发现和老师的发现是一样的,你们真厉害呀!
师:刚才我们用数方格的方法数出了平行四边形的面积,如果有一个平行四边形有操场这么大,用数方格的方法好不好呢?
师:请同学们想一想,太麻烦而且得到的数据也不准确,
师:平行四边形的面积计算还有没有更好的方法吗?谁猜一猜。
师:提出猜想:平行四边形的面积等于底乘高,平行四边形的面积等于相邻两条边的乘积。那谁说的对呢?下面我们还是动手操作实验来揭晓答案吧。
三、合作探究,迁移创造。
师:请同学们以小组合作学习的形式剪一剪,拼一拼,将你们手中的平行四边形转化为我们学过的图形,看哪个小组拼的快。
师:各小组展示你们拼出的图形。(学生演示:这是第一小组的拼法,这是第四小组的拼法很特别唷。)第四小组讲一下你们的拼法。
师:老师很佩服你们的钻研劲儿!希望继续努力!
师:下面我以第一小组的拼法为例,再一次演示一下平行四边形与长方形的关系。请第一小组派代表来作解说。(师课件演示剪拼过程,学生说过程。)(4号同学说:这是平行四边形的高,这是它的底,我们沿着平行四边形的高剪开,把剪下来的直角三角形平移到四边形的右侧,这样平行四边形就转换成了长方
形。平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等.,因为长方形的面积是长乘宽,所以平行四边形的面积是底乘高,用底乘邻边来求面积是错误的。)
师:你说得可真好,都可以做小老师了,大家掌声鼓励一下。
师:好,现在老师把4号同学说的用板书的形式体现出来。(师板书)请同学齐读平行四边形面积公式。
师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那平行四边形面积的字母公式该怎样写?请同学们跟老师一起读字母公式。
师:这里老师要强调一点,就是求平行四边形面积时一定要把它的底和底相对应的高相乘,记住了吗?
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,高80m,这块地有多少公顷?在这块地里共收小麦7680千克,平均每公顷收小麦多少千克?
8、一平行四边形的一条底边长18厘米,这条底边上的高是20厘米,另一条底边是15厘米,求这个底上的高是多少厘米?
平行四边形的面积教案13
一、谈话导入
1、组织课堂纪律
2、比眼力游戏:哪个图形面积大
学生1、
学生2、
学生3、
学生4.、
师演示,全体同学看
3、小结:转化法:拼、补
二、用上面的方法学习新知识
1、停车位。哪个大?学生1、学生2、学生3、引导学生说出要算面积,才知道哪个大。
2、揭示课题,板书
1、长方形的面积只要量出什么就可以算出来?
2、猜想平行四边形的面积要量出什么?
学生1:底、高
学生2:邻角(边)
豆豆猜想:邻边x邻边=平行四边形面积
3、课件演示:平行四边形变化
引导学生说:面积越来越小,邻边不变。说明:面积与邻边有什么关系:(排除第二种猜想)
4、学生操作:(1个同学数,1个同学填表格)
(1)用数表格方法求平行四边形的面积
学生1、平行四边形面积=底x高
(2)挑战:没有方格怎样验证底x高=平行四边形面积
学生忙着量、师及时提示,转化。
学生2/、演示、解说
问题:从哪里剪,还可以从哪里
师演示,学生观察,什么变了,什么不变,变成了什么?有什么关系?
长方形面积=长x高
平行四边形=底x高
S=axh
(3)解决停车位问题
1、要测量长和宽(长方形)底和高(平行四边形)
2学生算
学生1:(及时表扬)
三、出示
1、学生1:15x812x8
2、为什么12cm也是底,12x8不对?
3、对应的高
(5)、小小设计师
1、在小方格纸里画出一个12平方cm的平行四边形
2、学生展示,说说画得的原因与大家分享。
学生2、
(3)扩展延伸,底是2cm,高是6cm可以画多少种?(无数种)它的底都2cm高都是6cm.说明面积怎样。
四、总结:
学生总结,今天这节课你学习有什么收获。
评析:刘老师通过引导学生比较不规则图形,分别让学生1、学生2、学生3、学生4、说并说理由,顺势引出转化法,并让转化贯穿于整节课,参透转化思想,这是空间与图形学习的重要而常用的方法。
通过让学生比较长方形与平行四边形停车位哪个大?来让学生产生需要求图形面积的需求,顺势引出平行四边形的面积一、计算,揭示课题。要算长方形的面积只要量出长和宽就可算出来,进而让学生猜想平行四边形的面积计算要量出什么?与什么有联系?引导学生积极猜想,学生1、量出底和高,就可以算出面积,学生2、学生3说量出两条邻边就可以算出来,针对以上两种猜测,教师课件演示平行四边形四边不变,高矮变化的情况,让学生仔细观察,讨论:平行四边形的什么变了,什么不变,说明面积与什么没有关系。排除第2种猜想,重点探究底1种猜想接着让学生用数表格的方法求平行四边形的面积并填写观察表内数据找出规律。学生1、学生2、说平行四边形面积=底x高,进而引导学生验证。让学生操作,经历平行四边形转化为长方形的过程。一开始,学生忙着量,教师及时提示,学生马上明白,通过操作转化为另一种已学过的图形。学生1、学生2、上台演示解说过程。紧接着,师问:从哪里剪?还可以从哪里剪?引导学生悟出平行四边形有无数条高,从哪条高剪都可以。课件演示让学生观察,转化过程中,什么变了,什么不变,变成了什么,有什么联系,让学生看清楚平行四边形变成长方形,面积不变,长方形的长和宽相当于平行四边形的底和高。使学生经历平行四边形转化为长方形的具体过程。学生掌握平行四边形的面积,计算公式水到渠成,用字母s=ah表示。经历知识形成过程是新课标强调的内容。在这个过程,转化的`方法和思想赶着重要作用。
练习环节,循序渐进,第1题强调平行四边形面积时,要找到对应的底和高。第2题小小设计师,开放题,学生通过努力细心观察可以完成得很好。
这节课你有什么收获,让学生自己总结,改变了以往教师小结的习惯。
建议:在剪三前,要让学生找出平行四边形的高,沿着高剪。找不到高,转化为长方形难以操作。如:引导学生悟出无数条高,许多学生还需要时间和空间。
值得借鉴之处:
1、让学生动手操作,经历知识重要过程,体现注重过程的观点。如:1、用数表格的方法求平行四边形的面积,观察结果找规律,初次感知计算方法。
2、验证计算方法,参透转化思想,空间与图形的探究和学习的重要方法是转化。为后面学习三角形、梯形面积计算奠定了基础。
3、著于引导学生质疑,引发知识冲突,促使学生积极参与活动。如:要比较长方形与平行四边形车位哪个大?使学生产生求它们的面积需求。长方形学习过,可以求,那么平行四边形呢?进而让学生猜测。然后引导学生观察排除猜想。在转化过程中,引导学生观察比较,什么不变,什么变了,变成了什么,有什么联系。如:从哪里剪?还可以从哪里剪?
4、课堂组织方式较好。
平行四边形的面积教案14
教学目标:
1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认以转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3、引导学生初步理解转化的思想方法,培养学生的逻辑思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导平行四边形面积的计算公式。
教学准备:
平行四边形纸板一个
教学过程:
一、创设情境,引入新课。
(课件出示主题图)引导学生观察小羊和小马的草地分别各是什么形状?师:猜想这两块草地的面积哪一块大?哪一块小?课件出示:长方形草地的平面图。学生用自己喜欢的方法计算出它的面积。
二、探究新知。
1、探索计算平行四边形面积的方法。
(1)用数格子的方法计算面积。(课件出示:平行四边形草地)问:这块平行四边形草地的面积怎样计算?今天我们就来探究平行四边形而积的计算方法。
板书课题:平行四边形的面积
(2)出示课件:平行四边形草地的格子图。
说明要求:一个方格表示1个平方米,不满1格按半格计算,两个半格拼成一个整格。
让学生用数格子的方法计算出它的面积。
把图形放在方格纸上比,通过数方格,我们发现两个图形的面积一样大。学生演示数的方法。随他的演示一起操作一下。
学生数方格,数出长方形,l个方格是1m2,1个图形有24个方格,它的面积是24m2。平行四边形满格有20个,半格有8个算为4m2,他的面积是24m2,证实两个图形的面积是一样大的。
师:做的真棒。强调数的方法。
2、推导平行四边形而积计算公式。用割补转化的方法计算面积。
(1)引导。
用数格子的方法计算很不方便,我们来找一种既简单、又有规律的方法来计算平行四边形的面积。
师:把图形重叠起来观察,你们又有什么发现?学生:我们把两个图形重叠起来比,发现平行四边形一边多了l个小三角形,一边少了l个小三角形。
学生:我发现这两个三角形是一样大的。这两个三角形一样大,我们就可以把多的小三角形,补在少了的那边,这样平行四边形就变成了长方形。
3、师:把多的小三角形剪下来,通过平移的'方法补在少了的那边,这种方法叫割补法。你能把平行四边形通过割补的方法转化成长方形吗?学生动手操作。
学生汇报演示:沿平行叫边形的高剪丌,得到一个直角三角形和一个直角梯形,把得到的直角三角形沿反方向平移,使两条斜边重合就拼成了一个长方形。
教师课件演示:把平行四边形转化成长方形的剪拼过程,并展示演示同。师:同桌观察讨论,你有什么发现:
汇报:生答(1)拼成的长方形的面积等于原平行四边形的面积。
(2)拼成的长方形的长等于原平行四边形的底。拼成的长方形的宽等于原平行四边形的高。
师小结:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。板书公式:平行四边形的面积=底×高
4、用字母表示平行四边形的面积公式。
(1)介绍字母的意义及读法板书字母公式:S=ah。
(2)全班齐读公式。
(3)师小结:从公式看出要求平行四边形的面积必须知道它的底和底边上的高。
5、应用面积公式解决问题。
(1)黑板出示例1和图示。学生读题,师生共同完成。板书:S=ah
=6X 4
=24(m2)(2)课件出示:计学生算一算、比一比这两块草地的面积哪一块大?哪一块小?
(3)学生计算后,发现计算的面积与数方格的面积相等。(师:我国是人口大国,土地资源是有限的,我们要珍惜,要学会合理利用)
教师:从中可以得出什么结论?
学生:可以知道这个平行四边形面积的计算公式是正确的。
(4)小结:回顾刚才的活动过程,我们是怎样推导出平行四边形的面积?
生:运用割补的方法,将平行四边形转化成学过的长方形探索出了平行四边形的面积公式。
教师:在学习这个内容的过程中,我们用到了学习数学的一种重要方法——转化法,转化法在今后的数学学习中我们还会用到,很多问题我们无法解决的时候,就可以用转化法把这个问题转化成我们能够解决的问题加以解决。希望大家能够灵活运用。
齐读面积公式。
师:求平行四边形的面积必须知道什么?(平行四边形的底和底边上的高)
三、解决问题,深化认识。
1、练习十五第1题,让学生独立完成后反馈答案。2、你能想办法求出下面平行四边形的面积吗?
12dm
四、全课总结。
通过今天的学习,你有什么收获?教学反思:
1、创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极弘动地投入到数学活动中去。在探索的过程中找到解决问题的方法,使学生不仅是在学习纯粹的数学知识,而且是在解决生活中的数学问题。在解决问题中了解到平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。学生爱学、乐学,在玩中初步理解了抽象的问题,突出了学生为主体的教学理念,而使课堂教学充满了活力。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。教师对传统的平行四边形而积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到”灵感”的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,从而以积极的姿态投入到数学中。
平行四边形的面积教案15
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的'平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑
四、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
五、巩固运用
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
【平行四边形的面积教案】相关文章:
《平行四边形面积的计算》教案09-14
《平行四边形的面积》教案(精选15篇)08-10
平行四边形面积计算的练习教案04-02
平行四边形面积说课稿11-02
面积的教案11-19
《平行四边形的面积》教学反思09-01
《平行四边形的面积》教学反思03-09
平行四边形面积的教学反思04-23
平行四边形的面积教学反思02-24