当前位置:9136范文网>教育范文>教案>“分数应用题”教案设计

“分数应用题”教案设计

时间:2023-11-20 10:30:20 教案 我要投稿
  • 相关推荐

“分数应用题”教案设计

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?下面是小编为大家整理的“分数应用题”教案设计,仅供参考,欢迎大家阅读。

“分数应用题”教案设计

“分数应用题”教案设计1

  教学目标:

  1、掌握解题思路。

  2、会正确解答稍复杂的分数应用题。

  3、培养探索精神与分析解决问题的能力。教学重点:稍复杂的分数应用题的解题思路。教学难点:寻找新旧知识之间的联系。教学准备:教学软件(逐步演示的线段图及学生提供的知识)、贴纸(出示例4)、

  投影片(提供练习题)、纸条(收集不同算法)

  教学过程:

  一、谈话引入师:同学们,上新课前老师先提一个问题,大家先思考,然后抢答。如果要你们查找广州市市长热线电话,有什么办法呢?师:(汇报完)同学们想到了查114,找报纸等不少的办法,不管什么方法,我们都是通过联系一些能找到市长热线电话的有关资料去查找,同样,解决数学问题也要联系我们学过的有关知识。

  二、教学例41、引出例4。 下面同学们就利用这种解决问题要联系有关知识的方法,来解决今天学习的分数应用题(贴纸出示例4,后板书课题)

  例4:出示一个发电厂原有煤2500吨,用去3/5,还剩多少吨?

  2、出示目标。解答应用题时,我们通常是怎样做的?(1理解题意;2联系学过的知识去分析数量关系;3会解答。板书目标:会分析、会解答)

  3、理解题意。

  那么下面大家就先默读题目,看一下你是怎样理解这道题的题意的,用自己的语言组织一下。(独立进行理解题意)汇报。(提问几个学生,教师边根据学生的回答边逐步计算机出示线段图)若学生不会答可补充问用去3/5表示什么意思?(表示用去的是原有的3/5)说明什么?(把把原有的2500吨看作单位“1”) 2500吨 还剩?吨

  用去3/5

  4、查找资源。 刚才大家都能比较准确地理解题意,那么看到题目的条件与问题,你想到什么知识对我们解决这个问题有帮助?(独立思考→小组交流、师参与引导→汇报→教师根据汇报计算机出示有关知识)1)求一个数的几分之几是多少用乘法计算。2)总量-用去量=还剩量 3)用去3/5→用去?吨4)用去3/5→还剩2/5

  5、主动探索,尝试解决。

  (1)经过一段时间的学习,同学们现在都学会了准确去寻找解决问题的有关知识,根据这些知识你们能解答例题了吗?如果能的就直接解答;不能的再重温这些有关知识,然后尝试解答,(如果确实有困难的可以和老师交流一下怎样解,做完的想一想还能有其他方法吗?有的就写出来)

  (2)小组内互相说自己怎样想?怎样算?(组长组织,已经完成的先说,没做完的先听其他人说。交流过程中指名不同的同学出来板算两种不同的方法)

  6、归纳思路,提炼方法。

  (1)汇报:(指着算法)要求还剩多少吨,就要用原有的吨数减去用去的吨数,因为用去的吨数题目中没有直接告诉我们,所以要先用原有的2500吨乘以用去3/5求出用去的`吨数,再求还剩的吨数;要求还剩多少吨,就是求2500吨的2/5是多少,因为题目没有直接告诉我们还剩2/5,所以要先用1-3/5求出还剩几分之几,再求还剩多少吨。(先由板算的同学说,再看其他同学有什么补充或象他们那样根据自己的算法说说自己是怎样想的。边汇报边计算机闪动线段图,如下图) 订正:你们认为他们算得怎样? 2500吨 (用去?吨) 还剩?吨 用去3/5 (还剩几分之几) 解法一:2500-2500×3/5 解法二:2500×(1-3/5) =2500-1500 =2500×2/5 =1000(吨) =1000(吨)(2)还有其他不同的算法吗?(对可能的错误如2500×3/5要指出其错误的原因。对如这样的解法χ+2500×3/5=2500要加以肯定,但说明体现不了解题的优越性)

  7、小结。(1(指着两种解法)比较一下:两种解法有什么区别?有什么联系?先别急,下面先由同学们带着问题看书P83例4,把例4补充完整后,先想一想,用自己的语言归纳出来。(稍后)下面大家把自己的想法在组内交流一下。汇报。 区别:两种方法解题思路不同,第一种主要用总量减去用去量得到还剩量,第二种用总量乘以还剩的占总量的几分之几得到还剩量。

  联系:都把原有的吨数看作单位“1”,都要用到求一个数的几分之几是多少用乘法计算。(边听边观察计算机)(2)回忆一下,我们刚才是怎样解答例4的?(理解题意,联想学过的知识帮助解决

“分数应用题”教案设计2

  教学内容:

  教科书第117—118页,例4和“做一做”,练习二十五的第1—4题。

  教学目标:

  1.整理和复习与“一个数比另一个数多(或少)几分之几”有关的分数应用题,进一步理解这些稍复杂的分数应用题之间的内在联系,掌握它们的解答方法。

  2.在计算过程中进一步培养学生良好的观察、分析、判断能力。

  3.体会数学的实用价值,提高同学们对学习数学的兴趣。

  教学重点:

  稍复杂的分数应用题的数量关系。

  教学难点:

  稍复杂的分数应用题之间的内在联系。

  教具准备:

  教师准备两块小黑板,一块写好口算练习题,另一块写好教科书第117页例4及下面讨论的问题。

  教学过程:

  一、口算练习

  教师出示小黑板上的.口算练习题。

  二、教学例4

  1.复习“求一个数比另一个数多(或少)几分之几”的应用题。

  “下面我们来复习分数应用题。”(出示小黑板上的例4。)

  例4 学校举办的美术展览中,有50幅水彩画,80幅蜡笔画,蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?

  “请同学们先自己解答这道应用题,解答完以后,想一想这道题中的两个问题有什么相同之处,有什么不同之处?”

  (80 - 50)÷50 =

  (80 - 50)÷80 =

  答:蜡笔画比水彩画多:水彩画比蜡笔画少。

  解答完以后,教师让学生说明这道题中两个问题的相同点和不同点。

  小结:我们在解答分数应用题时,一定要认真分析数量关系,要弄清以哪个数量作为标准,也就是说:要弄清以哪个数量作为单位“1”。

  2.复习“已知一个数比另一个数多(或少)几分之几和其中的一个数,求另一个数”的应用题。

  “接着例4的这两个问题,我们再来讨论下面的两个问题。”(出示小黑板上其余的问题。)

  (1)根据“蜡笔画比水彩画多”这个条件

  如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

  如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

  (2)根据“水彩画比蜡笔画少”这个条件

  如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

  如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

  分析的时候,教师要引导学生弄清什么时候用乘法计算,什么时候列方程解答或用除法计算。一般可以概括成:当我们知道了作为单位l的数量,要求它的几分之几时,就用乘法计算(根据乘法的意义1);反之,如果是求作为单位“1”的数量时,列方程解答,或者是用除法计算(根据除法的意义)就比较方便。

  3.复习百分数应用题。

  “如果我们把以上各题中的分数都改为百分数,解答的方法一样吗?”(一样)

  (例如。把例4的问题改为求“蜡笔画比水彩画多百分之几?水彩画比蜡笔画少百分之几?”解答的结果是百分数。)“百分数应用题与分数应用题实质是一样的,只不过是把比较两个数量关系的分数用百分数来表示。”

  1.做教科书第117页“做一做”的第l题。

  教师巡视,做完后集体订正。订正时,可以请一名学生说一说合格率与废品率的关系,以加深学生对这些实际问题的理解。

  2.做教科书第117页“做一做”的第2题。

  谈谈这节课你的收获?

  练习二十五的第1—4题。

“分数应用题”教案设计3

  教学目标

  1.进一步理解稍复杂的分数除法应用题的数量关系.

  2.能够比较熟练地列方程解应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  分析数量关系.

  教学难点

  找等量关系.

  教学过程

  一、复习.

  (一)找出单位1

  1.一本书已经看了

  2.实际比计划节约

  3.今年产量比去年提高

  4.乙数比甲数少

  (二)谈话导入

  今天我们继续学习分数应用题.

  二、讲授新课.

  (一)教学例7

  例7.某工厂十月份用水4800吨,比原计划节约了 ,十月份原计划用水多少吨?

  1.读题理解题意,画出线段图.

  2.教师提问

  (1)哪句话是说明数量关系的`?

  (2)怎样理解这句话?

  (3)你能根据这句话画出线段图吗?

  3.分析数量关系

  把原计划用水的吨数看作单位1,原计划用水的吨数是未知的,可以用 表示.

  已知实际用水比原计划节约 ,也就说计划用水吨数-节约的吨数=实际用水吨数或者说原计划用水吨数 =实际用水吨数.根据这样的等量关系式可以列方程解答.

  4.列方程,解方程.

  解:设十月份原计划用水 吨.

  答:原计划用水540吨.

  三、巩固练习.

  (一)根据方程补充一个已知条件.

  学校种了苹果树和桃树,苹果树有20棵,________________,桃树有 棵.

  1.

  2.

  3.

  (二)找出单位1,说等量关系.

  1.海豚每小时可以游70千米,比蓝鲸的速度快 ,蓝鲸的速度是多少?

  2.有一本故事书,小明第一天看了48页,第二天比第一天少 ,第二天看了多少页?

  3.李红家一月份用煤气20立方分米,二月份比一月份节约了 ,二月份用煤气多少立方米?

  四、质疑小结.

  列方程解应用题的关键是什么?和数学方法有什么主要区别?

  五、板书设计.

  分数应用题

  例7.某工厂十月份用水4800吨,比原计划节约了 ,十月份原计划用水多少吨?

  解:设原计划用 吨,

  答:原计划用540吨.

“分数应用题”教案设计4

  教学目标:

  1、使学生学会用方程方法和算术方法解答两步计算的分数一般应用题。

  2、培养学生分析、解答两步计算的的能力和知识迁移的能力。

  3、培养学生的推理能力。

  教学重点:

  培养学生分析、解答两步计算的的能力

  教学难点:

  使学生正确地解答两步计算的分数一般应用题。

  教学过程:

  一、复习引新

  (一)全体学生列式解答,再说一说列式的依据。

  两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

  13x2-5

  =6.5-5

  =1.5(千米)

  根据:路程X相遇时间-甲速度=乙速度

  (二)教师提问:谁来说一说相遇问题的三量关系?

  速度和相遇时间=总路程

  总路程除以相遇时间=速度和

  总路程除以速度和=相遇时间

  (三)引新

  刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为3小时)

  二、讲授新课

  (一)教学例1

  例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇。甲每小时行5千米,乙每小时行多少千米?

  1、读题,分析数量关系。

  2、学生尝试解答。

  方法一:解:设乙每小时行X千米

  3、质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

  相同:解题思路和解题方法相同;

  不同:数据不同,由整数变成分数。

  4、练习

  甲、乙两车同时从相距90千米的两地相对开出,1.5小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

  (二)教学例2

  例2、一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?

  1、学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系。

  由此得出:一批水果的重量 第一次+第二次

  2、列式解答

  方法一:解:设这批水果有X千克

  方法二

  3、以组为单位说一说解题的思路和依据。

  4、练习

  六年级一班有男生23人,女生22人,全班学生占六年级学生总数的五分之一,六年级有学生多少人?

  三、巩固练习

  (一)写出下列各题的等量关系式并列出算式

  1、甲、乙两车同时从相距184千米的两地相对开出,2.5小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

  2、打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的十分之一,这部书稿有多少页?

  (二)选择适当的'方法计算下面各题

  1、一根长绳,第一次截去它的三分之一,第二次截去2.5米,还剩7米,这根绳子长多少米?

  2、甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行4千米,两人多少小时后相遇?

  四、课堂小结

  今天我们学习的和以前所学的知识有什么联系?有什么区别?

  五、课后作业

  1、商店运来苹果4吨,比运来的橘子的2倍少0.9吨.运来橘子多少吨?

  2、一套西装160元,其中裤子的价格是上衣的三分之一,上衣和裤子的价格各是多少元?

“分数应用题”教案设计5

  教学目标

  1、使学生学会用方程方法和算术方法解答两步计算的分数一般应用题、

  2、培养学生分析、解答两步计算的的能力和知识迁移的能力、

  3、培养学生的推理能力、

  教学重点

  培养学生分析、解答两步计算的的能力

  教学难点

  使学生正确地解答两步计算的分数一般应用题、

  教学过程

  一、复习引新

  (一)全体学生列式解答,再说一说列式的依据、

  两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

  132-5

  =6.5-5

  =1.5(千米)

  根据:路程相遇时间-甲速度=乙速度

  (二)教师提问:谁来说一说相遇问题的三量关系?

  速度和相遇时间=总路程

  总路程相遇时间=速度和

  总路程速度和=相遇时间

  (三)引新

  刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)

  二、讲授新课

  (一)教学例1

  例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇、甲每小时行5千米,乙每小时行多少千米?

  1、读题,分析数量关系、

  2、学生尝试解答、

  方法一:解:设乙每小时行 千米、

  方法二: (千米)

  3、质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

  相同:解题思路和解题方法相同;

  不同:数据不同,由整数变成分数、

  4、练习

  甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

  (二)教学例2

  例2、一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?

  1、学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系、

  由此得出:一批水果的重量 第一次+第二次

  2、列式解答

  方法一:解:设这批水果有 千克

  方法二:

  3、以组为单位说一说解题的思路和依据、

  4、练习

  六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 、六年级有学生多少人?

  三、巩固练习

  (一)写出下列各题的等量关系式并列出算式

  1、甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

  2、打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 、这部书稿有多少页?

  (二)选择适当的'方法计算下面各题

  1、一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?

  2、甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?

  四、课堂小结

  今天我们学习的和以前所学的知识有什么联系?有什么区别?

  五、课后作业

  1、商店运来苹果4吨,比运来的橘子的2倍少 吨、运来橘子多少吨?

  2、一套西装160元,其中裤子的价格是上衣的 、上衣和裤子的价格各是多少元?

  六、板书设计

  例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过

  小时相遇、甲每小时行5千米,乙每小时行多少千米?

  例2、一个水果店运一批水果,第一次运了50千克,第二次运了

  70千克,两次正好运了这批水果的 ,这批水果有多少千克?

  解:设乙每小时行 千米

  答:,乙每小时行 千米、

  解:设这批水果有 千克

  答:这批水果有480千克、

  教案点评:

  教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。

“分数应用题”教案设计6

  教学目标:

  1.使学生加深理解和掌握的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。

  2.使学生进一步明确简单的和稍复杂的之间的联系,以及不同类型的的结构特征和解题规律;进一步提高分析、推理和判断等思维能力。

  教学过程:

  一、揭示课题

  1.口答算式或方程.

  (1)20米是50米的百分之几?

  (2)50米的 是多少?

  (3)多少米的 是20米?

  学生口答后提问:第(1)题的40%是怎样求的,表示什么意义?第(2)、(3)题是按怎样的数量关系列式的,这两个式子都表示什么意义?

  2.引入课题。

  我们根据分数的意义和求一个数的几分之几(或百分之几)是多少用乘法的数量关系,学习过。这节课就复习。(板书课题)我们学过的,分为简单的和稍复杂的两种情况。通过复习,要能进一步理解井掌握它们的数量关系、解题思路,更加明确它们的结构特征和解题规律,提高分析、解答的能力。

  二、复习解题思路

  1.选择下面三个条件里的一个条件作问题,编出三道不同的应用题。

  (1)松树30棵 (2)杨树50棵

  (3)松树棵数是杨树的

  学生回答时,分别出示三道应用题

  (1)松树30棵,杨树50棵,松树棵数是杨树的几分之几?

  (2)杨树50棵,松树棵数是杨树的 ,松树多少棵?

  (3)松树30棵,正好是杨树棵数的 ,杨树多少棵?

  指名学生口答算式或方程,老师板书。提问:第(1)题为什么用杨树棵树做除数?第(2)、(3)题为什么都用杨数棵数乘言?你认为解答的关键是什么?(板书:关键:确定单位1的数量)追问:上面题里与对应的数量是什么?求一个量是另一个量的几分之几要怎样算?第(2)、(3)题都是技怎样的数量关系列式子的?

  2.归纳基本思路。

  从上面的题可以看出,解答的关键是确定单位1的数量,并且找出与几分之几(百分之几)对应的量,然后联系分数、百分数的意义,或者一个数乘分数 (或百分数)可以表示求一个数的几分之几(或百分之几)是多少的意义列出数量关系式,再列出式子解答。如果要求一个量是另一个量的几分之几,就用几分之几对应的数量除以单位1的数量;当几分之几是已知条件时,就要根据单位1的量乘几分之几等于与几分之几对应的数量来列算式或方程解答。

  3.组织练习。

  (1)做练一练第1题。

  提问各把哪个数量看做单位1。让学生填写数量关系式,然后口答。结合提问学生第(2)题的数量关系式里为什么是节约的数量,强调数量对应关系。提问:从上面可以看出的基本数量关系是怎样的?找数量关系时要注意什么?

  【板书:基本关系:对应数量单位1的量=几分之几(百分之几)

  单位1的量几分之几(百分之几)=对应数量】

  指出:我们解答,一般根据含有几分之几或百分之几这句话确定单位1的量和题里的数量关系,这样就可以根据数量关系式来列式解答。

  (2)做练一练第2题。

  让学生默读题目,提问学生两个问题有什么不同。学生做在练习本上。指名学生口答算式,老师板书。提问:求这两个问题有什么相同的地方?【都用除法算,都用单位1的量做除数】有什么不同的地方?为什么不同? 指出:解答一个数量是另一个数量的几分之几或百分之几的应用题,要先确定好单位1的量.再根据问题里数量间的对应关系找准需要的数量,然后列式解答。

  (3)做练一练第3题第(1)、(2)题。

  学生默读题目。提问:这两题哪个数量是单位1的数量?指名两人板演,其余学生做在练习本上。集体订正。提问:这两题都是按怎样的数量关系式列式的?为什么第(1)题用算术方法直接列乘法算式解答,第(2)题用方程解答?指出,这两题都是已知谁是单位1的几分之几这个条件,解答时也是看这个条件先确定好单位1的数量,再根据单位1的数量乘几分之几,等于几分之几的对应数量列式解答。当单位1的量已知时,就可以按数量关系式直接列算式解答;当单位1的量未知时,就要按数量关系式列出方程解答。

  (板书:单位1已知算术方法解答单位1未知列出方程解答)

  (4)做练一练第3题第{3}题。

  学生改编应用题,老师依次出示。提问:你能从改变后的条件看出求小麦面积的数量关系各是怎样的吗?指名两人板演,其余学生做在练习本上。集体订正,结合让学生说一说怎样想的'。提问:为什么这两题的式子都是两步计算的?解题方法为什么不一样?指出:解答,要注意数量之间的对应关系,(板书:注意:数量的对应关系)当题里的数量与题里的几分之几、百分之几不对应时,就是稍复杂的。解答时,要根据条件和问题的联系确定数量关系式,并按照单位1已知还是未知确定解题方法,然后对照数量关系列算式或方程解答。

  三、综合练习

  1.做练习十六第7题。

  提问:这两题有什么相同?让学生在练习本上列出算式,然后提问怎样列式的,老师板书。提问:这两题的数量关系式是不是相同?数量关系式相同,为什么列出的算式不同?指出:根据数量关系式列式时,要找准相应的数量。

  2.做练习十六第8题。

  让学生在练习本上解答。指名口答算式和方程,老师板书。提问:这两题有怎样的数量关系?为什么所用的解题方法不一样?

  3.做练习十六第9题。

  提问:这两题有什么不同的地方?指名两人板演,其余学生做在练习本上。集体订正。提问:为什么问题相同,而解题方法不一样?这两题各是按怎样的数量关系式列式子的?

  指出:解答,一般先确定单位1的量,(板书:定1)再根据单位1已知还是未知确定解题方法,明确用算术方法还是用方程解答,然后对照数量关系式列出式子解答。

  四、课堂小结

  通过复习,对于解答,你进一步明确了些什么?

  五、课堂作业

  完成练习十六第7题的计算;练习十六第10、11题。

“分数应用题”教案设计7

  教学目标

  1.理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的数量关系.

  2.会列方程解答这类应用题.

  3.培养学生分析推理能力.

  教学重点

  分析应用题的数量关系.

  教学难点

  找应用题的等量关系.

  教学过程

  一、复习旧知.

  小红买来一袋大米重40千克,吃了 ,还剩多少千克?

  1.画图理解题意

  2.指名叙述解答过程.

  3.列式解答40-40 40(1- )

  教师小结:解答分数应用题,关键是找准单位1,如果单位1是已知的,求它的几分之几是多少,就可以根据一个数乘分数的意义直接用乘法计算.

  二、探究新知.

  (一)变式引出例6

  例6.小红买来一袋大米,吃了 ,还剩15千克买来大米多少千克?

  1.读题

  2.画线段图

  3.分析数量关系,列方程.

  4.教师提问:题中表示等量关系的三个量是什么?可以怎样列方程?

  (1)解:设买来大米 千克.

  买来大米的重量-吃了的重量=剩下的重量

  (2)买来大米的重量剩下几分之几=剩下的.重量

  5.学生自己解方程并检验.

  答:这袋大米重40千克.

  副标题#e#

  (二)归纳总结.

  例6中的单位1是未知的,而已知剩下的量和吃了的分率,要求的恰好是单位1的重量,所以不能直接用乘法直接乘,可以列方程解答.或是找准和已知量相对应的分率用除法解答.

  三、巩固练习

  (一)找出下面各题的等量关系和对应关系.

  1.某修路除要修一条路,已经修了全长的 ,还剩240米没修,这条路全长是多少米?

  等量关系:

  一条路的长度-已经修的米数=没修的米数

  一条路的长度没修的分率=没修的米数

  对应关系:

  剩的米数剩下的分率=全长的米数

  2.一根电线杆,埋在地下的部分是全长的 ,露地面的部分是5米.这根电线杆长多少米?

  3.选择正确的列式.

  一个畜牧场卖出肉牛头数的 ,还剩300头,这个畜牧场共有肉牛多少头?正确列式是

  解:设共有肉牛 头.

  (1) (2)

  (3) (4)

  四、质疑小结

  列方程解应用题的关键是什么?怎样准确迅速地找出题中等量关系?

  五、板书设计

  列方程解分数应用题

  例6.小红买来一袋大米,吃了 ,还剩15千克买来大米多少千克?

  解:设一袋大米重 千克.

  一袋大米重量-吃去的重量=还剩的重量

  答:一袋大米重40千克.

“分数应用题”教案设计8

  教学目标:

  1、认识分数应用题的特点,理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  2、认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。

  教学重点:

  理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  教学过程:

  一、 复习引新

  1、出示复习题(见幻灯课件)

  问:把哪个量看作单位1?题中每个分数表示的意义是什么?

  2、做15页复习题

  问:为什么要用乘法计算?这里的一个数和分数相乘表示什么意义?

  3、引入新课--学习分数应用题

  二、教学新课

  1、教学例1

  (1)出示例1,学生读题

  找条件,想问题,画线段图,想方法

  (2)分析两种不同的方法

  找相同点、不同点以及存在的联系

  (3)巩固练习做17页练一练1

  2、教学例2

  (1)出示例1,学生读题

  找条件、想问题、画线段图

  (2)列式并说说想的过程

  重点指出把谁看作单位1

  3、教学想一想

  (1)读题、思考、画线段图

  问把谁看作单位1

  (2)列式

  (3)问:算式中的3/2是什么分数?

  (4)说明:条件里一个数量是另一个数量的几分之几,可以是假分数,也可以是真分数。

  (5)做练一练2

  4、小结

  问:今天学习的.分数应用题都告诉我们哪两个条件,要求的是什么问题?分析数量关系时都是要先确定哪个数量?

  三、巩固练习

  1、说一说下面各题里单位1的量

  (见幻灯课件)

  2、做练习三第1题

  3、做练习三第5题

  问:这三题有什么相同的地方?都用什么方法?

  4、作业

  练习三第2~4

  四、课后感受

  初次接触应用题,学生在说想法上还存在一点问题,常常是明白但不知道该怎么表达。特别是数量关系方面,可加强说想法的练习,形式也可多样些。

“分数应用题”教案设计9

  教学目的:使学生掌握分数连除应用题的结构及数量关系,学会分析解答分数连除应用题,发展学生的思维能力。

  教学过程:

  一、复习

  1.判断单位1的练习。

  (1)黑羊的只数是白羊只数的2/3。

  (2)一年级人数占全校人数的1/4。

  (3)汽车速度相当于飞机速度的20%。

  2.解答教科书第51页的复习题。

  光明小学美术组有30人,生物组的人数是美术组的,航模组的人数是生物组的。航模组有多少人?

  二、新课

  1.教学例4。

  (1)指名读题,并引导学生画出线段图。

  指名找出已知条件和所求问题。

  教师:这道题里有几个数量?需要用几条线段来表示?(引导学生出题里有三个数量,需要有三条线段表示。)

  教师:先根据哪个条件来画线段,表示哪个组的人数?(根据生物组人数是美术组的。可以画出表示美术组和生物组人数的线段。)

  教师:根据这个条件确定谁为单位1?先画哪个组的人数?(美术组人数为单位1,先画美术组人数。)

  教师画一条线段表示美术组的人数后提问:再画哪个组的人数?怎样画?(把表示美术组人数的这条线段平均分成3份,再画一条与其中1份同样长的线段表示生物组的人数。)

  教师:现在该画表示哪个组人数的线段?根据哪个条件来画?怎样画?(启发学生说出把表示生物组人数的线段平均分成5份,画出与这样的4份同样长的线段,表示航模组的人数。)

  教师:还有什么已知条件没画出来?这道题的.问题是什么?谁能在线段图上表示出来?

  通过以上一系列提问完成下面的线段图。

  (2)引导学生分析解答。

  教师:想一想,美术组的人数和哪个组的人数有关系?有什么关系?(引导学生说出美术组人数的是生物组的人数,也就是:美术组的人数=生物组的人数。)

  教师:生物组的人数还和哪个组的人数有关系?有什么关系?(生物组人数的是航模组的人数,也就是:生物组的人数=航模组的人数。)航模组的人数知道吗?(8人。)

  教师:根据这些条件,你能找出这道题里数量间的相等关系吗?(美术组人数的是生物组的人数,而生物组人数的是航模组的人数,航模组的人数等于8。)教师边说边在上面等式上注明。如:

  教师:根据上面的分析,应该设哪个量为x?(设美术组有x人。)

  教师让学生列方程解答,做完后教师再问,我们知道了航模组有8人和航模组人数是生物组的,能不能求出生物组的人数?(因为生物组人数=8,根据分数除法的意义,生物组人数=(8)人。)

  教师:我们知道了生物组的人数和生物组的人数是美术组的,能不能求出美术组的人数?

  教师:8=?是例4的算术解法,也是为什么我们把例4这样的题目作为分数连除应用题的理由。大家求出美术组的人数跟刚才用方程解法求出的得数是否一样。

  2.做教科书第51页做一做的题目。

  指名说出线段图的画法,教师在黑板上完成下面的线段图:

  全体学生在练习本上解答,订正时指名分析。

  三、巩固练习

  1.做练习十三的第1题。

  让学生独立完成,集体订正时,指名分析题目的数量关系。

  2.做练习十三的第2题。

  教师先让学生审题,教师问:这道题前面学习的和做过的题目有什么区别?(前面题目中。两个数量之间都是几分之几的关系,这题中有停车场里有36辆小汽车,是大汽数量的4倍。)教师:大家分析题目的数量关系后画线段图。教师指名说出线段图的画法,并在黑板上画出下面的线段图。

  教师让学生列式计算,做完后集体订正。

  四、小结

  教师:今天我们学习的应用题有什么特点?(使学生明确今天学习的应用题是由以前学过的两道分数除法应用题复合成的。)

  教师:遇到这样的应用题,分析解答时应该注意什么?(启发学生说出要弄清题里有哪三个数量,它们之间有什么样的关系,找出题目里数量间的相等关系,再确定设哪个量为c,并列出方程或直接用连除算式解答。)

  五、作业

  练习十三的第3题。

“分数应用题”教案设计10

  (一)教学目标

  1.使学生了解储蓄的意义和一些有关利息的初步知识,知道本金、利息和利率的含义,会利用利息的计算公式进行一些有关利息的简单计算。

  2.提高学生分析、解答应用题能力,培养认真审题的良好习惯。

  教学重点和难点

  理解本金、利息和利率三者之间的关系及运用公式进行计算。

  教学过程设计

  (一)复习准备

  1.某工厂的一车间有男工51人,女工40人。男工是女工的百分之几?女工是男工的百分之几?

  2.六一班有男生25人,女生是男生的80%。女生有多少人?

  3.小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽从银行共取回105.22元。小丽现在取回的`钱比存入银行前多了百分之几?

  板书:(105.22-100)÷100

  =5.22÷100

  =5.22%

  问:这道题叙述了一件什么事?

  师述:今天我们就来研究有关储蓄问题的应用题。

  板书课题:百分数应用题

  (二)学习新课

  1.导入。

  师述:人们常常把暂时不用的钱存入银行储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  问:谁去银行存过钱?那你知道储蓄都有哪几种方式吗?

  存款主要分为定期存款、活期存款和大额存款等。

  板书:存入银行的钱叫本金。

  问:在刚才那道题中,哪个数是本金?

  板书:取款时银行多付的钱叫做利息。

  问:哪个数是利息?

  板书:利息与本金的百分比叫做利率。

  问:哪个数是利率?

  师述:利率的高低是由中国人民银行按照国家经济发展的程度来制定。银行会按照国家经济的发展来调整利率的。利率有按年计算的,称年利率;按月计算的,称月利率。

  2.出示例1。

  例1 张华把400元钱存入银行,存定期3年,年利率是5.22%。到期后,张华可得利息多少元?本金和利息一共是多少元?

  (1)学生默读题。

  (2)年利率5.22%是什么意思?是怎样得到的?(用利息除以本金等于5.22%。)

  板书:利息÷本金=利率

  怎样求利息呢?

  板书:本金×利率=利息

  这样求的是几年的利息?一年的还是三年的?为什么?(是一年的利息,因为一年的利率是5.22%。)

  要想求三年的利息,还应怎么办?这说明利息的多少还和什么有关系?是怎样的一个关系?

  板书:×时间

  (3)那么求利息应怎样列式计算呢?

  板书:400×5.22%×3=20.88×3=62.64(元)

  (2)要求本金和利息一共多少元应怎样列式?

  板书:400+62.64=462.64(元)

  答:张华可得利息62.64(元),本金和利息一共462.64元。

  3.出示例2。

  例2 五年级一班今年1月1日在银行存了活期储蓄180元,每月的月利率是0.315%。存满半年时,可以取出本金和利息一共多少元?

  (1)学生默读题。

  (2)指名学生说解题思路。

  (3)应怎样列式计算呢?

  板书: 180×0.315%×6+180=3.402+180≈183.40(元)

  答:可以取出本金和利息一共约183.40元

  问:为什么要保留两位小数?(人民币的单位是元、角、分,只有两位小数,再往下就没有了,所以应自动保留两位小数。)

  问:有一个同学这样列的算式,你们大家判断一下,他列得对不对,为什么?

  板书:180×(1+0.315%×6)

  学生讨论。

  师追问:0.315%×6表示什么意思?

  又追问:1+0.315%×6又表示什么呢?

  再追问:再用180乘以这个结果得到什么?

  (三)课堂总结

  今天我们学习了哪些知识?

  师述:我们学习了有关储蓄的知识,知道了本金、利息和利率,以及它们三者之间的关系。特别是学会了求利息的方法:本金×利率×时间=利息。还知道了储蓄的意义。

  (四)巩固反馈

  1.小华今年1月1日把积攒的零用钱50元存入银行,定期一年。准备到期后把利息捐赠给“希望工程”,支援贫困地区的失学儿童。如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

  2.王宏买了1500元的国家建设债券,定期3年。如果年利率是13.96%,到期后他可获得本金和利息一共多少元?

  3.赵华前年10月1日把800元存入银行,定期2年。如果年利率按11.7%计算,到今年10月1日取出时,她可以取出本金和利息共多少元?下列列式正确的是 [ ]

  A.800×11.70%

  B.800×11.70%×2

  C.800×(1+11.70%)

  D.800×(1+11.70%×2)

  4.王老师两年前把800元钱存入银行,到期后共取出987.2元。问两年期定期存款的利率是多少?

  5.1993年末,我国城乡储蓄存款余额达14764亿元,比1992年末增加3219亿元。增长百分之几?(百分号前面保留一位小数。)

  6.李佳有500元钱,打算存入银行两年。有两种储蓄办法,一种是存两年期的,年利率是11.70%;另一种是先存一年期的,年利率是10.98%,第一年到期时再把本金和利息取出来合在一起,再存入一年。选择哪种办法得到的利息多一些?

  课堂教学设计说明

  本节课是在学生学习了一个数是另一个数的百分之几和求一个数的百分之几是多少的基础上进行的。教学时,紧紧抓住这两种类型的应用题,引到新知识上。在教学方法上采用了老师讲解和学生自学相结合,让学生有较大的空间去发挥自己的思路。在整个教学过程中,都渗透着爱国主义教育。另外,本节课中概念较多,在教学时,注意在教授解题方法和分析解题思路中去帮助学生理解和记忆概念。在最后练习中,还设置了一道离生活比较近、但难度不是很大的题,既利于帮助学生巩固知识,而且学生也会比较有兴趣。

  板书设计

“分数应用题”教案设计11

  一、教学目标:

  1、 通过解决简单的实际问题,使学生进一步掌握分数乘、除法应用题的解题思路以及它们之间的内在联系 ,激发学习兴趣。

  2、 经历把实际问题转化为数学问题的过程,提高分析问题和解决问题的能力。

  二、教学重点:掌握分数应用题的解题方法。

  三、教学难点:分析实际问题中的数量关系。

  四、教学过程:

  (一)、复习:

  1、出示例题:

  某村今年植树20xx棵,_________,去年植树多少棵?

  (设去年植树x棵)

  2、连线:

  1.去年植树是今年的3/5 (1-1/4) ⅹ=20xx或20xx÷(1-1/4)

  2.今年植树是去年的3/5 20xx×(1+1/4)

  3.今年比去年少1/4 20xx×3/5

  4.去年比今年少1/4 3/5 ⅹ=20xx或20xx÷ 3/5

  5.去年比今年多1/4 (1+1/4) ⅹ=20xx或20xx÷(1+1/4)

  6.今年比去年多1/4 20xx× (1-1/4)

  (二)、解法分类,归纳总结。

  1、小组交流:

  A:解决分数应用题的步骤。

  B:把这六题进行分类,并说说分类的'依据。

  2、小组汇报:

  A:解决分数应用题的步骤。

  a:画出分率句,找出单位“1”。

  b:写出数量关系式。

  c:列出方程再解方程。

  B:把这六题进行分类,并说说分类的依据。

  a:当单位“1”是已知的的量时如果是求一个数的几分之几是多少用乘法计算。

  b:如果是求一个数是另一个数的几分之几用除法计算。

  c:当单位“1”是未知的量时用除法或用方程计算。

  (三)、练习

  1、说出单位“1”的量,写出数量关系。

  (1)行驶了全程的3/4。

  (2)一本书,看了2/5。

  (3)今年比去年增产1/4。

  (4)本月用水量比上月节约3/11。

  (5)铁丝比铜丝短1/3。

  (6)科技组的人数是美术组的4/5。

  2 、 根据问题写算式,根据算式提问题,不计算。

  一批水果900吨,第一周运了它的2/9,第二周运了它的1/4。 ⑴第一周运了多少吨?(算式 )

  ⑵两周共运多少吨?(算式 )

  ⑶900×(1-2/9-1/4)(问题: )

  ⑷900×(2/9-1/4)(问题: )

  ⑸再运多少吨就正好运了这批水果的一半?(算式: )

  (四)、全课小结。

“分数应用题”教案设计12

  教学内容:人教版小学数学第十一册p37。“已知一个数的几分之几是多少,求这个数”类型的应用题。

  教学目标:

  1、使学生理解“已知一个数的几分之几是多少,求这个数”类型的应用题的数量关系,能用方程解答。

  2、培养学生的分析、比较、迁移等能力。

  3、建构知识间的联系,渗透“事物间是相互联系的”这一辩证思想。

  教学重难点:

  1、理解数量关系,掌握分析方法。

  2、正确分析数量关系并解答。

  教学过程:

  一、复习准备。

  1、下面这些句子中,哪两个量进行比较,谁为单位“1”?

  ⑴一桶水用去3/4。 ⑵书的价钱是钢笔价钱的1/3。

  师:第一题是部分与总数的比,总数为单位“1”。第二题是一个量同另一个量比。和谁比?谁为单位“1”。

  [点评: 通过对比练习, 帮助学生理解“两个数量的比较”有两种情况: 一是部分与整体之间的关系; 二是两个相对独立的数量之间的关系。 ]

  2、出示准备题。说出关系式,再列式计算。

  爸爸体重75kg,小明的体重是爸爸的7/15。

  ⑴小明的体重是多少千克?

  爸爸的.体重×7/15=小明的体重 75×7/15=35(kg)

  ⑵小明体内水分的质量占小明体重的4/5,小明体内有多少千克水分?

  小明的体重×4/5=小明体内水分的质量 35×4/5=28(kg)

  二、探究新知。

  1、激趣引入。

  师:我们对自己的身体应该是再熟悉不过了, 我们的身体内有很多科学知识藏在里面呢,你们知道自己体内水分的含量吗?

  [点评: 通过创设情境, 调动学生积极参与的情感, 让学生在轻松愉快的数学活动中提高分析能力。 ]

  2、出示:

  根据测定,成人体内的水分约占体重的2/3,儿童体内的水分约占体重的4/5,照这样计算,小明体内有28kg的水分,和爸爸体内的水分差不多重了。可是小明的体重才是爸爸的7/15。

  [点评: 设计有多余条件的问题, 让学生有目的地筛选, 使学生进一步理解应用题的结构和解题方法, 训练了学生整理信息、解决问题的能力。 ]

  问题一:小明的体重是多少千克?

  出示思考问题,学生先分小组进行讨论。

  ①小明的体重与什么数量有关系?有什么关系?

  ②应该把哪个量看做单位“1”, 为什么?

  ③单位“1”所表示的数已知吗?

  ④怎样求单位“1”所表示的这个数?你能列出关系式吗?讨论后汇报。

  方法一:

“分数应用题”教案设计13

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的'

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

“分数应用题”教案设计14

  教学目标

  1.进一步掌握分数乘法应用题的数量关系.

  2.学会用一个数乘分数的意义解答两步分数乘法应用题.

  教学重点

  1.掌握两步分数应用题的解题思路和方法.

  2.画线段图分析应用题的能力.

  教学难点

  分析两次单位“1”的不同之处.

  教学过程

  一、复习、质疑、引新

  (一)指出下面分率句中的单位“1” .

  1.乙是甲的

  2.小红的身高是小明的

  3.参加合唱队的同学占全班同学的

  4.乙的 相当于甲

  5.1个篮球的价钱是一个排球价钱的 倍

  (二)口头分析并列式解答

  1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?

  2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?

  (三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

  (出示课题——分数应用题)

  二、探索、悟理

  (一)出示组编的例题

  例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?

  1.思考讨论

  (1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?

  (2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?

  2.汇报思路讲方法

  根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .

  由此基础上试列综合算式:

  (二)巩固练习

  小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?

  1.分析数量关系,独立画图并列式解答.

  2.学生板演.

  (张)

  (张)

  答:小明有40张.

  3.综合算式

  三、归纳、明理

  用连乘解答的题有什么特点?”“解题思路是什么?”

  1.认真读题弄清条件和问题

  2.确定单位“1”找准数量关系

  根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

  3.列式解答

  板书:抓住分率句,找准单位“1”,

  画图来分析,列式不用急.

  四、训练、深化

  (一)联想练习根据下面的每句话,你能想到什么?

  1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)

  2.修了全长的

  3.现在的售价比原来降低了

  (二)先口头分析数量关系,再列式解答.

  1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?

  2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?

  (三)提高题.

  六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?

  五、课后作业

  (一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?

  (二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的,小勇跑的.是小雄的 .小刚和小勇各跑多少千米?

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?

  教案点评:

  解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几,分数乘法应用题,小学数学教案《分数乘法应用题》。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

  这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

“分数应用题”教案设计15

  教学目标

  1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

  2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

  教学重点和难点

  1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

  2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

  教学过程

  (一)复习准备

  1.谈话、提问。

  我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

  为什么呢?

  分5份后取其中的2份是多少。)

  当一个数乘以分数时求的是什么?

  (一个数乘以分数就是求这个数的几分之几是多少。)

  2.口述下列算式的意义。

  求一个数的几分之几是多少怎样列式呢?

  3.列式。

  (二)学习新课

  1.出示例1。

  2.分析题意。

  (1)读题,找出已知条件和所求问题。

  (2)分析已知条件。

  ①谈话提问:

  题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

  那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

  ③汇报讨论结果。

  均分成5份,吃了的占其中的4份。)

  ④那么我们应把谁看作单位1?(100千克)

  ⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

  3.列式解答。

  (1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

  10054=80(千克)

  1005求的是什么?再乘以4呢?

  (2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

  所以把谁看作单位1?(100千克)

  根据一个数乘以分数的意义应怎样列式?

  答:吃了80千克。

  4.课堂练习。

  队的有多少人?

  (1)读题,找出已知条件和问题。

  (3)请你们以小组为单位进行分析,并画出线段图,解答出来。

  (4)反馈。

  说一说你们小组的分析思路及解答方法。

  是多少。)

  5.小结。

  刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?

  (分析含有分率的.句子,找准单位1,再根据一个数乘以分数的意义列式解答。)

  6.下面我们来看这样一道题,看看它与上面的题有什么不同?

  (1)出示例2。

  (2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

  (3)分析、画图。

  ①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)

  ②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

  ③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

  (4)看图列式。

  少。)

  ②怎样列式解答?

  7.改动上题,你能独立分析吗?

  米?

  (2)画图分析解答。

  (3)提问反馈:

  ①把谁看作单位1?

  ②小林身高怎样用线段图表示?

  ③求小林身高就是求什么?

  求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

  (三)课堂总结

  例1、例2有什么相同点和不同点?

  (四)巩固反馈

  (画图,解答)

  球价格多少元?

  3.对比练习:

  少元?

  (五)布置作业

  20页第1~5题。

  课堂教学设计说明

  本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

  例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

  例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

【“分数应用题”教案设计】相关文章:

分数应用题教学反思03-07

分数除法应用题教学反思05-02

分数乘法应用题教学反思11-25

分数除法应用题教学反思06-13

《分数应用题》教学反思范文06-21

分数除法应用题教学反思15篇11-04

《百分数应用题》教学反思09-26

《图文应用题》教学反思08-29

应用题一教学设计11-18