当前位置:9136范文网>教育范文>教案>《约分》教案

《约分》教案

时间:2023-11-21 07:11:17 教案 我要投稿

《约分》教案

  作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?以下是小编精心整理的《约分》教案,欢迎阅读与收藏。

《约分》教案

《约分》教案1

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的.分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

《约分》教案2

  教学目标:

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

  教学重点:约成最简分数

  教学过程:

  一、回顾一下对约分的理解情况

  突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

  师:什么是最简分数?

  说一说。

  二、巩固练习。

  师出示分数卡片判断

  1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。

  师:你能写出不同的`除法算式吗?

  =()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、快乐学习超市

  超市画面快乐套餐1快乐套餐2

  快乐套餐1:比一比○○0.4

  计算并化简+=-=

  在()填上最简分数20分=()时

  快乐套餐2、3同上。

  (分组练习小组代表汇报整合了练习十一10至14题)

  4、集中练习

  把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

  分母是10的最简分数有几个?

  请你提出一个类似的问题。

  练习十一第9题,12、13、14题各自选2个

  5、课后练习:完成练习册上的相应练习。

  教学后记

《约分》教案3

  一、教材简析

  此课是九年义务教育北师大版五年级小学数学上册第47---48页的约分。约分是在学习了分数与除法、分数的基本性质、公因数、最大公因数、互质数基础上进行教学的,学好本节课内容为学生学习分数的计算条下良好的基础.

  二、学情分析

  在学习约分之前,学生已经学习了了分数的基本性质,大多学生能较快的找出两个数的公因数、最大公因数,同时理解了互质数的概念。这些知识点的掌握为约分方法的学习提供了认知基础,学习本课应该较为容易。但快速并准确地判断约分的结果是不是最简分数对少部分学生应该有一定的难度。

  三、教学目标

  知识与技能:

  1.理解约分的意义。

  2.掌握约分的方法.

  教学过程与方法:

  设置情景与激趣,让学生通过小组合作学习,利用旧知自主探究新知识.

  情感态度与价值观:

  培养学生迁移能力,归纳概括的能力及遇到问题积极思考,主动学习的学习习惯.

  四、教学重点:

  理解最简分数及约分的意义和方法,

  五、教学难点:

  能很快看出分子、分母的公约数,并能准确地判断约分的`结果是不是最简分数。

  六、教学过程

  一、复习铺垫、情境导入、激发兴趣。

  第一步,复习铺垫,在这里我设计两道复习题,一道是说出只有公因数1的两个数,另一道是找分数分子和分母的最大公因数。任何新知识都是以学生原有的知识为依托的,所以在课的开始就复习回顾了这个知识点,为下面学习最简分数和约分的方法做好铺垫.

  二、实践探究,理解约分的含义。

  此环节分为五个部分

  1.根据图形找分数。先让学生找到第一个分数,然后再创造其它的分数。学生会根据前所学过的分数的基本性质,很快找到其它的分数。

  2、观察比较。先比较这些分数的相同点和不同点,然后找出这些分数中与众不同的分数,引出最简分数。

  3、归纳概括,巩固练习。让学生自己归纳最简分数的定义,得出定义后,通过练习来巩固最简分数,为下面的约分打基础。(转自数学 吧 )

  4、引导迁移,掌握约分

  根据前面学过的分数的基本性质,说一说,如何把2/3变成12/18吗?

  谁又能把12/18变为2/3吗?

  (1).根据化简的过程找寻约分的方法。四人小组讨论发现约分的方法是什么?(用分子和分母的公约数同时去除分数的分子和分母。)

  (注意观察约分的过程)

  (2).指导学生看书自学,并提示要注意约分方法中关键的地方。

  1除外;通常要除到得出最简分数为止。

  (3).交流汇报约分时一般采用的两种形式。

  A、逐次约分法。

  学生边汇报教师边板书过程。在书写的时候,提醒大家注意各个数位对齐。最后都要约成最简分数。

  B、一次约分法。

  (指出如果能很快看出12和18的最大公约数,也可直接用6去除,一次约分得。)

  (4)、让学生观察师是如何进行约分的。(注意书写的格式)

  5、课内练习,知识延伸

  用课件出示各类题型,先让学生独立完成,然后归纳。

  (整十整百数先消零在化简;分子分母都是偶数时先用2去除;倍数关系时用分子去除等等)。

  三、巩固深化、培养技能。

  此环节中我设计了四个梯度性练习。

  这是第一题,目的是巩固最简分数的概念和约分的方法。

  第二题以“找公因数2、3、5”为载体,培养约分技能。

  通过第三题,使学生感受约分在比较大小中的应用

  最后,我设计了一个与学生生活密切相关的情境,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;感受有价值的数学。

  四、课堂小结、回顾梳理。

  及时对本课的学习进行小结和梳理,加深学习的印象。

  以上是我的说课设计,还会有待完善之处,恳请大家来指正。谢谢大家!

《约分》教案4

  学情分析:

  《约分》是在学生已经掌握了分数的基本性质和最大公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

  教学目标:

  1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

  2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

  3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

  教学重难点:

  重点:最简分数的意义和约分的方法;掌握约分的方法。

  难点:能准确的判断约分的结果是不是最简分数。

  教具、学具准备:

  课件

  教学过程

  一、复习铺垫。

  课件出示一起回答用列举法找出24和30的公因数和最大公因数(为24/30约分做准备)

  1、24的因数有(),30的因数有(),24和30的公因数有(),它们的最大公因数是()。

  2、填空(说说为什么,什么是分数的基本性质)

  (教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

  过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

  二、探究新知。

  (一)、猜测、验证和比较,理解最简分数的意义

  1、出示例3的教学情境图,让学生观察。

  2、师:从情境图中,你得到了什么信息?

  (这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3/4,生3:75/100和3/4是一回事吗?)

  3 、猜一猜:75/100和3/4是一回事吗?

  4、验证:让学生同桌讨论,把验证过程写在练习本上。

  5、学生汇报结果,教师课件演示。

  6、引导学生比较75/100和3/4两个分数的异同,得出最简分数的概念。

  相同点:分数的大小相等

  不同点:75/100分子和分母较大,含有公因数1、5、25;3/4分子和分母较小,只含有公因数1分数的意义,分数单位都不同

  总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

  7、活动:请学生例举最简分数的例子。

  教师说学生判断,学生说大家判断

  学生说同桌判断

  抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

  8、课件出示练习:指出下面哪些分数是最简分数?为什么?

  5/7 6/9 10/12 11/12 8/10  14/16 24/25 21/24 13/17

  名回答,说明为什么。

  还是抓住关键:分子和分母只含有公因数1

  假如都是2或3或5等的倍数,就不只有公因数1。

  (二)、探究约分的意义和方法

  过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

  课件出示例4。判断24/30是不是最简分数(不是,除了1外,还有公因数2、3、6)

  把24/30化简成最简分数

  师提出思考问题:

  (1)、化简指什么?使分子分母的数字变小

  (2)、化简后大小不能变,要运用什么性质?等式的基本性质

  (3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

  (4)、化简到什么时候为止?最简分数,分子分母只有公因数1

  学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

  2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

  完成后小组内交流。

  巡视,指导。

  交流探究结果。

  小组汇报结果。

  (1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

  24/30=24+30/30+2=12/15=12÷3/15÷3=4/5

  (2)方法二:直接用分子和分母的最大公因数去除。直接得到最简分数。

  24/30=24+6/30+6=4/5

  小结:教师用课件演示比较两种约分方法,并总结约分的意义。

  约分的概念:

  师:约分还有一种书写方法,请同学们看第85页例4,并在练习本上写一写约分的这种写法。

  6、教师课件直观演示约分的另一种书写格式。

  三、巩固练习(课件演示)

  过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

  1、判断下面各等式,哪些是约分?为什么?

  2、错题改正。

  3、指出下列分数分子和分母的最大公因数。

  4、分苹果。

  四、课堂小结

  这节课我们学习了什么内容?(板书课题:约分)

  五、板书设计

  约分

  方法一:

  24/30=24÷2/30÷2=12/15

  12/15=12÷3/15÷3=4/5

  方法二:

  24/30=24÷6/30÷6=4/5

  75/100= 3/4

  不同点:分子和分母较大分子和分母较小,含有公因数1、5、25只含有公因数1

  最简分数

  教学反思

  1、为学生的数学思考搭梯子。

  课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

  如:在探究理解最简分数意义这一环节的'教学中,学生验证出75/100和3/4相等以后,我提出了一个问题:75/100和3/4有什么区别?很多学生都能看出75/100分子分母较大,3/4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75/100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

  又如探究“约分的意义和方法”这个环节,如果直接出示例4:24/30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

  2、为学生交流搭台子。

  课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

  3、不动笔墨不读书。

  数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

  4、教学环节过渡亦无痕。

  好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

  5、思想方法渗透亦无形。

  数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

  欠缺火候的地方:

  有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

  名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,最高境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

《约分》教案5

  教学内容:教科书第62页,例1、练一练,练习十一第4~7题。

  教学目标:

  1、使学生进一步理解分数的基本性质,会运用分数的基本性质进行约分,掌握约分的含义和一般方法,认识最简分数。

  2、使学生在探索合作交流过程中,体验成功的愉悦,在知识的运用中体现数字价值。

  教学过程:

  一、复习引入

  1、在下面的括号里填商适当的数。

  8/20=()/515/18=5/()21/27=()/9

  独立完成,说说是怎么想的?每组中的分数一样大,哪个看起来更简单一些?为什么?

  2、今天在学习了分数的基本性质的基础上,学习新的知识,看看应用分数的基本性质可以帮助我们干什么?

  二、教学新课

  1、教学例3。

  (1)出示例3。

  (2)你能写出和12/18相等,两分子、分母都比较小的分数吗?在小组中交流自己的想法。汇报交流。说说怎么得到这个分数的?还有分子比2还小,分母比3还小但是与12/18一样大的分数吗?也就是12/18=2/3。

  (3)结合图说说,12/18与2/3为什么相等?

  (4)你们知道刚才分子、分母同时除以的2、3、6与分子、分母有什么关系吗?(板书:分子、分母的公因数)

  (5)把这个分数化成同它相等,而分子、分母都比较小的分数,叫做约分。板书课题:约分。

  (6)演示一步一步约分的过程。依次除以分子、分母的公因数。强调:每次约分后得到的数写在分子、分母的正上方、正下方。2/3的`分子、分母还有除了1以外的公因数吗?因为2/3的分子和分母只有公因数1,这样的分数叫最简分数。约分时一般要约分到最简分数为止。

  (7)还有什么方法可以更快的约分呢?(直接除以分子、分母的最大公因数)演示直接约分的过程。如果你不能直接找到最大公因数,可以一步一步约分。

  (8)。在小组中互相说说约分的方法。你愿意采用什么方法来约分呢?

  2、完成练一练。

  (1)第1题。独立完成,汇报交流。6/4为什么不是最简分数?分子、分母还有公因数几?10/7为什么是最简分数?你是怎么想的?

  (2)第2题。独立完成,展示作业。60/45怎样约分的?还有什么方法?(分子、分母直接除以15)为什么分子、分母可以直接除以15?说说约分时有什么要注意的?

  三、巩固练习

  1、完成练习十一第4题。读题,理解题意。怎样判断分子和分母有没有公因数2、3、5?汇报交流。

  2、完成第5题。独立完成。你是怎么看出它们不是最简分数的?指出:有的分数的分子、分母的最大公因数较大,判断时要仔细。

  3、完成第6题。怎样连线比较快?独立完成,集体核对。

  4、完成第7题。独立完成,汇报交流。

  四、课堂

  今天学习了什么?你有哪些收获?互相说说什么是约分?什么是最简分数?约分的方法是什么?你愿意使用那种约分的方法?

《约分》教案6

  课题一:约分

  教学要求:①使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分。②培养学生综合运用已有知识解决问题的能力。③渗透恒等变换思想。

  教学重点:约分的意义和方法。

  教学用具:例1的投影片。

  教学过程

  一、创设情境

  1、说出下面哪些数有约数2?哪些数有约数3?哪些数有约数5?

  2、教材第110页复习题第(1)、(2)题。

  二、揭示课题

  前面同学们认识了分数的基本性质,根据分数的基本性质可以把一些分数化简,这节课我们就来学习约分。(板书课题)

  三、探索研究

  1.教学例1。

  (1)用投影片依次显示课本长111页三幅图,让学生用分数表示出图中的涂色部分。

  (2)这三个分数的大小相等吗?待学生回答后,教师将三幅图重合,进一步证实。

  (3)引导学生根据分数的基本性质,先用分子分母的公约数2去除分子、分母,得:xx,再用分子、分母的公约数3去除,得:xx。

  (4)师生共同概括最简分数的.意义。

  板书:分子、分母是互质数的分数,叫做最简分数。

  (5)告诉学生:像这样把分数化成,再化成,这个过程叫做约分。

  什么叫做约分呢?(让一名学生口述)

  板书:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

  (6)想一想:约分的依据是什么?

  2.练习:教材第111页上面的做一做。

  3.教学例2

  (1)指名学生说说把约分是什么意思?

  (2)引导学生掌握逐次约分法。

  先观察分子、分母有什么特征,再用分子、分母的公约数(1除外)去除分子、分母。30和12有公约数2和3,先用2除12和30,再用公约数3去除6和15。通常除到得出最简分数为止。

  以上过程板书如下:xx

  (3)掌握一次约分法。

  用12和30的最大公约数6去除分子、分母,一次就得到最简分数。如:xx

  (4)告诉学生,约分时应尽量用口算。能一下看出分子、分母的最大公约数的,就直接用最大公约数去除比较简便。

  四、课堂作业

  练习二十四第2题。

  五、思考练习

  1.写出分子是18的所有最简假分数。

  2.写出分母是12的所有最简真分数。

  课题二:通分

  教学要求:①使学生理解通分的意义,掌握通分的方法,能正确地把两个分数通分。②培养学生初步的分析、综合和概括能力。③培养学生阅读数学材料的能力。

  教学重点:通分的意义和方法。

  教学过程

  一、创设情境

  1、求下面每组中两个数的最小公倍数。

  6和88和99和27

  2、根据分数的基本性质填空。

  3、比较下列各组分数的大小。

  二、探索研究

  1.教学例3。

  (1)出示例3,比较和的大小。

  提问:这两个分数能直接比较大小吗?上面3道题都能很快看出两个分数的大小,为什么和不容易直接比较大小呢?

  (2)让全体学生自学课本第114页例3,并思考下列问题:

  ①为什么和不容易直接比较大小?

  ②可以用什么方法来比较它们的大小?

  ③能用24、36、45等数来作它们的公分母吗?

  ④课本上为什么选用12作公分母?

  (3)全体学生围绕以上思考题进行讨论。

  (4)通过直观图引导学生比较和的大小。

  ①是怎样变成的?板书:xx

  又是怎样等于?板书:xx

  ②谁会用因为所以来说明?

  板书:因为xx,所以xx

  (5)引导学生通过观察、比较、归纳、概括出通分的意义。教师板书课题通分。

  2.学习通分的方法。

  (1)出示例2并对照通分的意义说明题目要求。

  (2)第(1)题把和通分,应当选用什么数作公分母?

  板书:用3和7的最小公倍数作公分母。

  怎样化成二十一分之几?又怎样化成二十一分之几?

  (3)第(2)题把和通分该怎么做?

  全体学生试算,一人板演,集体订正。

  (4)如果把的分母6改成8,又该怎样通分?

  (5)引导学生归纳、概括出通分的一般方法。

  提问:通分的关键是什么?(准确、快速地求出公分母)

  3.学生阅读课本第115~116页。

  三、课堂实践

  1、练习二十五第1题。

  2、练习二十五第3题。

  3、趣味练习:用1作分子,自己的学号作分母,同桌的两个通分。

  四、课堂小结

  1、什么叫做通分?

  2、通分的一般方法是什么?关键是什么?

  五、课堂作业

  练习二十五第1、2、4题。

  六、思考练习

《约分》教案7

  教学内容:

  教材第85页的内容练习十六的3、4题。

  教学目标:

  1.通过教学,使学生理解最简分数和约分的意义,掌握约分的方法。

  2.培养学生应用所学数学知识解决问题的能力。

  3.培养学生思维的简洁性。

  教学重点:进一步归纳、概括出最简分数的概念及约分的方法。

  教学难点:约分的方法。

  教学具准备:课件

  教学过程:

  一、创设情景,生成问题:

  求两个数的最大公因数时,有两种特殊情况:一种是两个数成倍数关系,较小数就是两个数的最大公因数;另一种是两个数的公因数只有1,它们的最大公因数就是1。

  二、探索交流,解决问题

  1.出示例4:化成最简分数。

  学生先尝试把化成最简分数,引导学生想出多种方法进行约分。

  方法一:用分子、分母的公因数,逐次去除分子和分母,最后得到最简分数。

  方法二:用分子、分母的最大公因数,分别去除分子和分母,得到最简分数。

  2.引导学生概括出方法。

  3.指出:像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  约分时还可以怎样写呢?请同学们看教材第85页的例4,试着自己写一写。

  学生汇报约分的写法,老师板书:

  提问:怎样约分比较简便?

  小结:如果一下能看出分子和分母的最大公因数,直接用它们的最大公因数去除比较简便。

  4.完成教材第85页的“做一做”。

  学生独立完成,先判断哪些是最简分数,再把不是最简分数的化成最简分数。

  三、巩固应用,内化提高

  练习十六的3、4题。

  四、回顾整理、反思提升。

  本节课我们学习了什么叫最简分数和怎样约分。在约分时,可以用分子和分母的公因数分别去除分子和分母,直到约成最简分数为止;也可以直接用分子和分母的最大公因数去除分数的.分子和分母,得到最简分数。用第二种方法比较简便,但是,必须要能看出分子和分母的最大公因数。

  板书设计:约分(四)

  把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  教后反思:

  优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。

  不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。

《约分》教案8

  教学 目标

  1.使学生认识约分和最简分数的意义,理解和掌握约分的方法。

  2.培养学生的观察、比较和归纳等思维能力。

  教学 重点

  掌握约分的方法。

  教学 难点

  很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

  教学 准备

  1.多媒体课件。 2.作业纸。

  3.分数卡片、信封袋。 4.记号笔、白纸。

  板书 设计

  约 分

  例1:把化简。 例2:把约分。 == 板书约分的两种形式 == 板书分母是9的 == 所有最简真分数。

  教学 过程 教师边导边教

  学生边学边练

  评 析

  一、情境导入, 复习巩固, 激发兴趣。

  1.引发学生学习兴趣,和孙悟空比本领。 2.指出下面每组数中的公约数(1除外)。 42和50、15和5、8和21、18和12 3.在括号里填上适当的数。选择第三道题问:你是怎么想的? = = == 利用该知识,把分数化成同它相等的另一个分数。

  快速口答

  突出回答8和21只有公约数1,所以8和21是互质数。

  利用分数的基本性质,达到回顾知识的效果。

  有简洁的导入:孩子们对孙悟空这一神话人物充满好奇,以和悟空比本领谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。用一句简短而富有神秘挑战性的话语“大家都知道孙悟空有72变,特神奇,你们想不想也学一招?好,这节课我们就来创造第73变,变分数!”来激发学生学习新知识的激情。

  二、理解 最简 分数 及约 分的 意义。

  1.尝试“变”分数。 例1:把化简。 活动要求:

  (1)这个分数要和大小相等。

  (2)这个分数的分子、分母要比的分子、分母小。 2.了解约分的概念。

  (1)观察所变出的分数与有什么关系?

  (2)像这样,把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。举例:把化成就是约分。

  要求学生变出一个和大小相等,但分子、分母都比较小的分数。把变出的分数写在自己的作业纸上,能变几个就变几个。

  与四人小组内的同学说一说变的分数是怎样得来的。

  观察后发现分数大小相等,但分子、分母都比原来分数的分子、分母小。

  学生找还有哪些过程也是约分。

  有明确的学生自学内容:在提出了学生变分数的小组合作的要求后,老师参与其中,予以适当的点拨,让学生明确活动的要求,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,相互提点,发现约分的实际概念。

  有精要的重难点讲解:让学生在老师例举中找到约分的概念,尝试着进行概括,并从观察的分子、分母能否再变小,提出了最简分数的概念,通过举例、练习达到巩固的.效果,这样本课的重、难点就迎刃而解了。

  3.认识最简分数。

  (1)观察的分子、分母能否再变小了?为什么?

  (2)像这样分子、分母是互质数的分数,叫做最简分数。 (3)找出最简分数练习。

  分子、分母为互质数。

  举例说出几个最简分数。

  强化最简分数的概念.

  有及时有效的学习反馈:及时对学生已掌握的知识点进行检测,通过不同类型的习题,让学生在比较中进行小结,概括适当的方法。

  三、自主 探索, 合作 交流, 总结 方法。

  1.你能根据我们化简的过程找到约分的方法吗? 打开书p100,看看书上是如何说的?

  2.自主探索约分的形式。把一个分数进行约分? 教师板书约分时一般采用的两种形式。 a、逐次约分法。 b、一次约分法。

  如果能很快看出18和42的最大公约数,也可直接用6去除,一次约分得。

  3.小结:我们既可以用它们分子、分母的公约数去除,一步一步来约分;也可以用最大公约数去除,直接约分。

  四人小组讨论发现约分的方法是什么?(用分子和分母的公约数同时去除分数的分子和分母。) 注意到约分的方法中关键的地方。 尝试练习。例2:把约分。

  学生边汇报教师边板书过程。

  在书写的时候,提醒大家注意各个数位对齐。最后都要约成最简分数。

  选择自己喜欢的方式对下面各分数进行约分。写在作业纸上。(视频展示)

  有恰当的学生自学引导:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。

  四、巩固 练习。

  和悟空打擂台。 1.判断:

  2.说出分母是4的所 有最简真分数。 3.

  4.用最简分数表示出小明每一项内容占一天总时间的几分之几?之后看表提问题。 5.每人从信封袋中挑选一个自己最喜欢的分数卡片。 (1)最简分数上台。

  和最简分数相同的分数起立。

  (2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。

  判断并说明理由。

  写出分母是9的所有最简真分数。

  先判断哪些分数是最简分数,把不是最简分数的分数进行约分。

  上学8小时 睡眠10小时 劳动1小时

  做家庭作业2小时(含课外阅读时间) 餐饮休闲3小时

  按要求参加活动,综合考核学生判断最简分数和对分数进行约分的能力。 (用记号笔现场写)

  有实效的对重、难点的检测和练习:创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。题目充满趣味性。在引导学生积极观察、思考、联想、诱发学生的创新因素时,应注意引导学生克服固定的思维模式,鼓励独创性地发现知识的规律和发表自己的独特见解。

  五、总结 提升

  现在我们来回顾一下,今天这节课你有什么收获?

  了解了什么是约分、最简分数、怎样约分

  有简要的课堂小结:及时对本课的学习进行小结和梳理,加深学习的印象。 课后 延伸

  寻找相关的练习进行训练。

  通过学生的自主学习牢固的掌握知识。 总评:

  新课标指出,提供给学生的学习内容必须是现实的,有意义的,富有挑战性的。教师要全面了解学生的学习状况,创设有利于学生学习的情境,更好地激发学生的学习热情,营造一种能促进学生主动发展的课堂气氛,让学生在正确评价中,得到肯定,增强信心,提高学习兴趣,使自己在各方面都不断进步。本课即选取了孙悟空这一形象贯穿全课,让学生与孙悟空比试、学习72变、打擂台等,很容易把学生吸引到课堂上来。

  让学生多种感官协同参与活动,眼口手脑密切配合,为学生提供观察演示练习的机会,真正把学生推到主体地位。在理解约分的意义后,继续通过用眼观察、动脑思考、动手操作、口头表达自然形成最简分数的概念。概括地总结本课内容是学生参与学习程度的集中体现,也有利于培养学生抓住重点精练概括的能力。

  之后,又提供一定数量针对性强、难易适度、联系生活实际的练习,既帮助学生理解掌握知识,又促进学生发展能力形成技能,还结合练习有机进行学习习惯的教育。

  只要照着新课标进行教学,势必对学生的将来产生积极影响,让学生不管在什么时候,都能很自信地说出:“我能行”!

《约分》教案9

  教学目标

  理解“最简分数”“约数”的意义;理解和掌握约分的依据、方法;能正确进行约分。

  教学重点、难点

  重点、难点:能正确进行约分是重点;理解和掌握约分的依据、方法是难点。

  教具、学具准备

  教 学过程

  备 注

  一、复习铺垫

  1、根据分数的基本性质填空

  12/36=()18/=4/()=()4/=1/()

  3/4=()8/=9/()=()24/=21/()

  2、下列分数的分子和分母各有哪些公约数?最大公约数是几?

  2/310/1512/158/1230/60

  3、怎样判断一个数有约数2、3、5?

  二、教学新知

  1、理解“最简分数”

  (1)观察2/3、8/12、1/4、15/20、5/7哪些分数的分子、分母是互质数?

  2/3、1/4、5/7的分子、分母是互质数。

  出示:分子、分母是互质数的分数,叫做最简分数。

  (2)练一练

  A、指出下面的分数中哪些是最简分数:

  8/97/211/105/1417/5140/6024/241又25/80

  B、说出3个最简分数。

  C、写出分母是10的全部真分数,再指出哪些是最简分数?

  2、教学例1

  把18/30化成最简分数

  根据分数懂得基本性质可以把一些分数化简。

  (1)投影出示表示18/30的'长方形图。

  18/30的分子、分母有公约数去除分子、分母得:

  18/30=18÷2/30÷2/=9/15

  (出示表示9/15的长方形图)

  9/15的分子、分母还可用公约数几去除?

  9/15=9÷3/15÷3=3/5投影出示表示3/5)的长方形图

  3/5能不能再化简了?为什么?

  教学过程

  备 注

  观察图和式的变化过程,得到:

  18/30=9/15=3/5所以18/30=3/5

  (2)归纳:把一个分数化成同它相等,但是分子、分母都比较小的分数,

  叫做约分。

  (出示课题“约分”)

  (3)概括约分的方法。

  用分子和分母的()(1除外)去除分子、分母;通常要除到得出()分数为止。

  (4)练一练

  下面各算式,哪些是约分,为什么?

  10/15=2/36/12=12/2420/24=5/64/5=8/10

  3、教学例2

  把30/45和12/48约分。

  (1)教师示范把30/45约分。

  A、先用公约数3去除,得10/15。

  B、再用公约数5去除,得2/3。

  C、通常要除到最简分数为止。

  教师边板书演边讲,最后指出:每次约分所得的分子、分母要和原来的分子、分母对齐。最后约分所得的最简分数要写在等号右边。

  (2)把12/48约分。

  请两位同学板演,其余学生练习。

  板演后共同分析约分过程和约分方法。

  (3)引导学生重新观察30/45和12/48的约分过程,思考还可怎样约分,更为简便。

  (4)12/48可用什么数进行直接约分?30/45怎样直接约分?

  :用分子、分母的最大公约数去除分子、分母,能一次约简。这样约分比较简单。

  三、练习反馈

  1、把下面各分数约成最简分数。

  4/810/512/274又25/503又40/60

  练习后反馈、讨论。

  4/8、10/15、4又25/50它们的分子、分母有什么关系?你的约分方法简便吗?

  3又40/60、60/150这两个分数的分子、分母都是10的倍数,如何使约分简便?

  2、课本P97试一试。

  四、课堂练习

  课本P97第3题第二行,第4题。

  五、课堂

  六、课后作业《作业本》

  在理解互质数的基础上学生较好理解最简分数的含义。教学约分方法时,结合图形,让学生直观地感知化简的过程,从而归纳出约分的概念和方法。学生能够掌握,但在练习中把带分数的整数部分忘记的较多,还有有些学生没有把分数化到最简。

《约分》教案10

  教学内容:

  练习十一的第8-15题

  教学目标:

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,

  教学重难点:

  约成最简分数

  教学过程:

  一、自主回顾

  回顾一下对约分的理解情况突出三点:用分子分母的公因数同时去除;

  约分的形式;约成最简分数。

  什么是最简分数?说一说。

  出示分数卡片判断哪些是最简分数

  二、巩固练习

  1、找朋友:找出和18/54相等的分数。

  9/271/31/26/183/42/92/63/9

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  我们在刚刚学习分数和除法的关系时,只会用2/8表示2÷8,现在我们还可以用1/4来表示。看,我们的进步啊,这就是学习的'魅力。

  你能写出不同的除法算式吗?

  1/2=()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、比较大小(第十一题)

  4、计算并化简(第十二题)

  5、集中练习把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?分母是10的最简分数有几个?

  三、课堂

  四、课堂作业

《约分》教案11

  课题:人民教育出版社第十册《数学》第四单元第1课《约分》

  教学目标:

  1、使学生理解约分和最简分数的意义,并掌握约分的方法和能正确熟练地进行约分。

  2、培养学生综合运用已有知识解决问题的能力。

  3、渗透恒等变换思想。

  4、培养学生良好的书写习惯。

  教学重点:约分的意义和方法。

  教学难点:训练学生很快看出分子、分母的公约数,并能准确判断约分的结果是否是最简分数。

  教学方法:操作法、合作学习、归纳法

  教学准备:正方形纸、练习题

  教学过程:

  一、创设情境

  1、观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数5?哪些有公约数3?

  4/86/1515/20xx/4540/6084/96105/120

  提问:能被2、3、5整除的数的特征是什么?

  2、写出28和42的公约数

  3、说出下面各组数的最大公约数

  45和1530和1228和42

  13和3936和2729和30

  4、下面哪几组数中的两个数是互质数?

  3和812和1815和16

  13和2625和4021河2

  5、口答

  3/4=9/()=()/208/24=()/6=1/()

  你做这道题的依据是什么?

  今天我们就根据分数的基本性质,把分数改变成一个与原分数大小相等的另一个分数,看谁最会善于开动脑子。

  二、探究新知

  (一)教学例1

  1、老师出示三个分数18/24、9/12、3/4,让学生猜猜他们的大小是否相等?

  2、请学生用涂色的方法进行验证

  (1)、学生进行操作:请按要求涂色。(18/24、9/12、3/4)比一比,看谁涂得又快又漂亮?

  观察这三幅图,什么发生了变化?什么又没有变?(等分的份数发生了变化,涂色部分的面积没有变)

  则说明这三个分数相等。那你知道18/24是怎样变成9/12的,又是怎样变成3/4的呢?请你们相互讨论,说说自己的想法。

  3、学生汇报。

  学生汇报时老师进行板书。

  4、揭示约分的意义

  刚才把18/24化成9/12,又化成3/4,这个过程就叫约分。什么叫约分呢?(引导学生观察这三个分数,分子的大小怎样,它的分子、分母变的比原来怎么样?)

  把一个分数化成同它大小相等,但分子、分母都比较小的分数,叫做约分。

  你读了这句话,认为什么词最重要?

  约分的依据是什么呢?(分数的基本性质)

  3/4还能化简吗?为什么?什么叫最简分数?

  像3/4这样的分数,分子和分母是互质数的分数,叫做最简分数。

  5、即时训练

  112页顶上的做一做

  指出下面哪些分数是最简分数

  4/76/93/108/105/1215/40

  (二)、教学例2化简12/30

  1、你看见这个题目知道了什么?

  2、怎样化简呢?请你们讨论。

  3、汇报(约分时我们尽量用口算)

  (1)、逐次约分法(用12和30的公约数2去除分数的分子、分母,再用6和15的公约数去除分数的分子分母。结果是2/5,它是最简分数)还有其它方法吗?

  (2)、一次约分法(用分数的分子、分母的最大公约数去除分子分母,一次就能得到最简分数)

  这两种方法,你喜欢哪一种?为什么?(做题时,如果能很快看出分子分母的最大公约数,就直接用他们的最大公约数去除分数的分子分母,这样比较简便;如果不能很快看出它们的最大公约数,就用分子分母的.公约数1除外去除分子、分母,一般要得出最简分数为止)

  三、反馈练习

  1、112页下面的做一做(把下面的分数约分)

  4/69/125/1024/3012/1621/28

  2、练习二十四3题

  3、判断正误,并说明理由

  (1)36/48=36/48=3/8

  (2)54/72=54/72=7/9

  (3)把一个分数化成和它相等的最简分数,叫做约分

  (4)把一个分数化成大小和它相等,但分数的分子分母都比较小的分数叫做约分

  四、反思质疑

  今天我们学习了什么内容?你收获最大的是什么?

  值得注意的又是什么呢?还有不懂的吗?

  五、拓展训练

  1、写出分子是18的所有最简分数

  2、写出分母是12的所有最简分数。

  六、作业:练习二十四的2题

《约分》教案12

  课题:约 分

  教学内容:课本第99-100页的例1和例2,完成练习十九第1-3题。

  教学目标:1.使学生理解约分和最简分数的意义;

  2.使学生掌握约分的方法。

  教学重难点:约分的方法。

  课前准备:课件

  教学过程:

  一、 复习

  1. 指出下面哪组数是互质数。

  (1)3和7 (2)4和6 (3)3和6

  2.说出下面各组数的最大公约数。

  (1)3和6 (2)3和5 (3)3和6

  3.在下面的括号里填上适当的数。

  620 =( )10 1518 =5( ) 2127 = ( )9

  提问:你们这样填的依据是什么?分数的基本性质。

  齐读分数的基本性质。

  那么我们根据分数的基本性质将一些分数化简。

  二、 新授

  1. 教学例1

  (1)出示例1中的图,让学生用分数表示,在观察阴影部分的大小,再用课件演示,从而得出结论:1218 = 69 = 23 。

  (2)再分组观察,1218 到69 是如何变化的?分子、分母同时除以2,那么2跟分子、分母是什么关系?公约数。

  (3)69 还能再化简吗?(启发学生用分子、分母的公约数去除分子、分母。)69 = 6÷39÷3 =23

  (4)那23 还能再化简吗?为什么?

  23 的分子、分母是互质数,不能再化简了,象23 这种分子、分母是互质数的分数叫做最简分数。

  (5)象例1这样,把1218 化简的过程就是约分。

  什么是约分呢?看书, 提出关键词。

  (6)将1218 化成69 是不是约分呢?是。69 化成23 呢?也是约分。

  师:通常情况下,约分要约到分子、分母是互质数为止。

  (7)练习。练一练第1题,判断最简分数。

  2.教学例2,把1842 约分。

  (1)教学逐次约分的方法。(教师边讲边写)

  (先用公约数2去除18和42,2除18得9,用“”将原来的分子划去,再将9写在18上面;2除42得21,用“”划去42,将21写在42上面,再用公约数3去除9和21,方法同上,得到37 ,37 的分子和分母是互质数,因而37 是最简分数。)

  (2)谁能总结一下约分的.方法?

  师生共同总结:用分子、分母的公约数(1除外)去除分数的分子和分母,除到得出最简分数为止。

  (3)约分还有一种简便的方法,就是直接用它们的最大公约数同时去除分子、分母。

  (4)1842 的分子、分母的最大公约数是几?6。

  1842 = 37

  (5)巩固练习。练一练第2题。强调格式。

  (6)完成练习十九第2题。

  (7)完成练习十九第3题。

《约分》教案13

  教学内容:

  人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习

  学情分析:

  《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

  教学目标:

  1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

  2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

  3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

  教学重难点:

  重点:最简分数的意义和约分的方法;掌握约分的方法。

  难点:能准确的判断约分的结果是不是最简分数。

  教具、学具准备:

  课件

  教学过程

  复习铺垫。

  课件出示一起回答用列举法找出24和30的公因数和公因数(为24

  /

  30约分做准备)

  1、24的因数有(),30的因数有(),24和30的公因数有(),它们的公因数是()。

  2、填空(说说为什么,什么是分数的基本性质)

  (教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

  过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

  二、探究新知。

  (一)、猜测、验证和比较,理解最简分数的意义

  1、出示例3的教学情境图,让学生观察。

  2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3

  /

  4,生3:75

  /

  100和3

  /

  4是一回事吗?)

  3 、猜一猜:75

  /

  100和3

  /

  4

  /

  是一回事吗?

  4、验证:让学生同桌讨论,把验证过程写在练习本上。

  5、学生汇报结果,教师课件演示。

  6、引导学生比较75

  /

  100和3

  /

  4两个分数的异同,得出最简分数的概念。

  相同点:分数的大小相等

  不同点:75

  /

  100分子和分母较大,含有公因数1、5、25;3

  /

  4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同

  总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

  活动:请学生例举最简分数的例子。

  教师说学生判断,

  学生说大家判断

  学生说同桌判断

  抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

  8、课件出示练习:指出下面哪些分数是最简分数?为什么?

  5

  /

  7 6

  /

  9 10

  /

  12 11

  /

  12 8

  /

  10 14

  /

  169

  /

  1624

  /

  25 21

  /

  24 13

  /

  17

  名回答,说明为什么。

  还是抓住关键:分子和分母只含有公因数1

  假如都是2或3或5等的倍数,就不只有公因数1。

  (二)、探究约分的意义和方法

  过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

  课件出示例4.判断24

  /

  30是不是最简分数(不是,除了1外,还有公因数2、3、6)

  把24/30化简成最简分数

  师提出思考问题:

  (1)、化简指什么?使分子分母的数字变小

  (2)、化简后大小不能变,要运用什么性质?等式的基本性质

  (3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

  (4)、化简到什么时候为止?最简分数,分子分母只有公因数1

  学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

  2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

  完成后小组内交流。

  巡视,指导。

  交流探究结果。

  小组汇报结果。

  (1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

  24

  /

  30=24+30

  /

  30+2=12

  /

  152

  /

  15=12÷3

  /

  15÷3=4

  /

  5

  (2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。

  24

  /

  30=24+6

  /

  30+6=4

  /

  5

  /

  小结:教师用课件演示比较两种约分方法,并总结约分的'意义。

  约分的概念:

  师:约分还有一种书写方法,请同学们看第85页例4,

  并在练习本上写一写约分的这种写法。

  6、教师课件直观演示约分的另一种书写格式。

  三、巩固练习(课件演示)

  过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

  1、判断下面各等式,哪些是约分?为什么?

  2、错题改正。

  3、指出下列分数分子和分母的公因数。

  4、分苹果。

  四、课堂小结

  这节课我们学习了什么内容?(板书课题:约分)

  五、板书设计

  约分

  方法一:

  24

  /

  30=24÷2

  /

  30÷2=12

  /

  15

  12

  /

  15=12÷3

  /

  15÷3=4

  /

  5

  方法二:

  24

  /

  30=24÷6

  /

  30÷6=4

  /

  5

  75

  /

  100= 3

  /

  4

  不同点:分子和分母较大分子和分母较小,

  含有公因数1、5、25只含有公因数1

  最简分数

  教学反思

  1、为学生的数学思考搭梯子。

  课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

  如:在探究理解最简分数意义这一环节的教学中,学生验证出75

  /

  100和3

  /

  4相等以后,我提出了一个问题:75

  /

  100和3

  /

  4有什么区别?很多学生都能看出75

  /

  100分子分母较大,3

  /

  4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75

  /

  100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

  又如探究“约分的意义和方法”这个环节,如果直接出示例4:24

  /

  30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

  2、为学生交流搭台子。

  课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

  3、不动笔墨不读书。

  数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

  4、教学环节过渡亦无痕。

  好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

  5、思想方法渗透亦无形。

  数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

  欠缺火候的地方:

  有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

  名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

《约分》教案14

  约分是分数基本性质的一种应用,是学生已经掌握了分数的基本性质的基础上进行教学的。同时,约分是与分数的比较大小、分数的四则运算紧密联系的,因此,必须使学生切实掌握好。

  教学目标:

  根据本课的教学内容和学生的特点,我确定了以下教学目标:

  1、经历知识的形成过程,理解约分的含义。

  2、探索并掌握约分的方法,能正确地进行约分

  3、培养学生良好的书写习惯和检查习惯。

  教材的重点和难点:

  理解约分的意义,掌握约分的方法。

  教法:

  1、讨论法。通过学生的讨论让他们自己总结归纳出约分的意义和方法。

  2、循循善诱,帮助学生理解约分的算理,启发引导学生,鼓励学生积极发言,引导学生动口、动脑、动手,逐步掌握新知。

  3、运用不同形式的练习,使学生巩固了所学的知识,使教学得到反馈。

  附:

  教学设计

  一、复习准备

  提问:各题的依据是什么?

  2、说出下面各组数的最大公因数。

  45和1530和1228和42

  13和3936和2729和30

  教师:学习了分数基本性质后,我们可以把一个分数的分子和分母同时乘以或除以相同的数(零除外),得到一个与原来分数相等的新分数。今天我们来研究怎样把一个分数化成与它相等,而分子、分母又比较小的分数。

  二、学习新课

  1、最简分数与约分的意义。

  能利用我们学过的旧知识把它变为大小相等,而分子、分母又比较小的分数?(学生试算,小组讨论后汇报。)

  教师:请再说一说第一步,第二步是怎样做的?(用分子、分母的公约数分别去除分子和分母。)像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫约分。

  问:为什么得出后就不再继续算呢?师:像这样不能再约分了,这样的分数是最简分数。

  (2)练习:请指出下面哪些分数是最简分数。

  教师:请两人一组,各举出5个最简分数。

  2、约分的'一般书写格式。

  教师:约分时,一般要连续地做除法口算,如果像上面例题那样写,比较繁,一般采用省略除数,直接写出商的形式来写。

  教师边板书边介绍:

  学生练习:

  板书:

  教师:由上可见,要使约分过程比较简便,应该怎样做?(选用分子和分母的最大公约数去除。)

  (3)练习

  把下面各分数约数:

  (设想:约分是分数基本性质的直接应用,所以约分的方法让学生试算,自己去掌握。最简分数的概念,放在试算化简之后,这样可以使学生对概念的认识有充分的感知基础。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求两个数的最大公约数,另外,也要掌握好约分一般书写格式)

  三、巩固反馈

  1、书本上的“练一练”第1———3题

  2、判断正误,并说明理由。

  3、书本上的“练一练”第4题

  四、课堂总结

  1、最简分数?

  2、什么是约分?怎样约分?

  (设想:在复习准备和巩固反馈中,都安排了较多的,形式多样的练习进行训练,以提高学生约分的能力。)

《约分》教案15

  一、指导思想与理论依据

  《课标》明确指出:“数学教学活动中,教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能。”要将这个理念落实在课堂教学中,就要求教师能根据教学的具体内容,选择恰当的学习方式,并巧妙创设学生主动探索的机会,变“接受学习”为“创造学习”,让学生在观察、操作、讨论、交流、归纳、整理、概括的过程中学习新知,充分以学生为主体,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。根据以上思想,本节课的设计我主要从尊重学生已有的知识经验;在观察与操作中去亲身体验知识的形成过程,掌握约分的方法。

  二、教学背景分析

  1、教学内容、地位及作用。

  约分是分数基本性质的.一种应用,是学生已经掌握了分数的基本性质和求几个数的最大公因数的基础上进行教学的。同时,约分又是分数四则运算的重要基础。要掌握约分的方法,除了要能很快看出分子、分母最大公因数之外,很重要的一点是能判定约分的结果是不是最简分数。

  2、学情分析

  在学习约分之前,学生已经学习了了分数的基本性质,大多学生能较快的找出两个数的公因数、最大公因数,同时理解了互质数的概念。这些知识点的掌握为约分方法的学习提供了认知基础,学习本课应该较为容易。但快速并准确地判断约分的结果是不是最简分数对少部分学生应该有一定的难度。

  三、教学方法与教学手段

  在教法、学法上,我主要采用了问题启发法、操作探究法、验证发现法、归纳概括法,让学生在动手操作中,发现新知;在合作交流中探究新知;在实践验证中,理解新知,在归纳总结中提升新知。

  根据学生原有的认识基础和认知规律,结合“以学生的发展为本”的理念,力求突出以下三点

  第一、将教学内容活动化,让学生在操作中学。

  第二、采用小组合作学习,让学生在互动中学。

  第三、利用原有认知经验,让学生在迁移中学。

  使学生获得了探索的乐趣和成功的体验。

  四、教学目标

  1、理解约分的意义。掌握约分的方法.

  2、设置情景与激趣,让学生通过小组合作学习,利用旧知自主探究新知识.

  3、培养学生迁移能力,归纳概括的能力及遇到问题积极思考,主动学习的学习习惯.

  五、教学重点

  理解最简分数及约分的意义和方法,六、教学难点

  能很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

  七、教学用具

  教师准备:幻灯片,投影

  学生准备:分别涂有红色,和绿色的卡片。

  八、教学过程

  口算复习

  1、说出下面分数分子、分母的最大公因数。

  3/5  2/8  4/6  5/15

【《约分》教案】相关文章:

数学约分教案11-18

《约分》教学反思03-22

约分教学反思04-04

《约分》教学反思04-02

约分教学反思06-13

《约分》教学反思15篇04-03

约分教学反思15篇02-11

约分教学反思(15篇)04-04

《约分》教学反思(15篇)04-02