当前位置:9136范文网>教育范文>教案>圆的标准方程数学教案

圆的标准方程数学教案

时间:2023-12-06 07:04:39 教案 我要投稿
  • 相关推荐

圆的标准方程数学教案

  作为一名教学工作者,时常会需要准备好教案,教案是实施教学的主要依据,有着至关重要的作用。那么教案应该怎么写才合适呢?以下是小编精心整理的圆的标准方程数学教案,仅供参考,希望能够帮助到大家。

圆的标准方程数学教案

圆的标准方程数学教案1

  一、教材分析

  本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。

  二、教学目标

  1、知识目标:使学生掌握并依据不同条件求得圆的方程。

  2、能力目标:(1)使学生初步熟悉的用途和用法。

  (2)体会数形结合思想,形成代数方法处理几何问题能力

  (3)培养学生观察、比较、分析、概括的思维能力。

  三、重点、难点、疑点及解决办法

  1、重点:

  推导过程和特点的明确。

  2、难点:

  圆的方程的应用。

  3、解决办法

  充分利用课本提供的`2个例题,通过例题的解决使学生初步熟悉的用途和用法。

  四、学法

  在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法

  五、教法

  先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。

  六、教学步骤

 一、导入新课

  首先让学生回顾上一章的直线的方程是怎么样求出的。

  二、讲授新课

  1、新知识学习

  在学生回顾确定直线的要素——两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素——圆心位置与半径大小,即圆是这样的一个点的集合

  在平面直角坐标系中,圆心可以用坐标表示出来,半径长是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点的坐标满足的关系式。

  经过化简,得到

  2、知识巩固

  学生口答下面问题

  1、求下列各。

  ①圆心坐标为(-4,-3)半径长度为6;

  ②圆心坐标为(2,5)半径长度为3;

  2、求下列各圆的圆心坐标和半径。

  3、知识的延伸

  根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的点不在曲线上,为了使学生体验曲线和方程的思想,加深对的理解,教科书配置了例1。

  例1要求首先根据坐标与半径大小写出,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何。

 三、知识的运用

  例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。

  由于含有三个参数, ,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程

  四、小结

  一、知识概括

  1、 圆心为,半径长度为的为

  2、 判断给出一个点,这个点与圆什么关系。

  3、怎样建立一个坐标系,然后求出。

  二、思想方法

  (1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。

  (2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。

  五、布置作业(第127页2、3、4题)

  七、板书设计

圆的标准方程数学教案2

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的'已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

【圆的标准方程数学教案】相关文章:

圆的标准方程教学反思06-12

《圆的标准方程》教学反思06-12

圆的标准方程教学反思5篇06-24

圆的方程的教案09-03

《双曲线及其标准方程》的说课稿01-17

椭圆及其标准方程教学设计01-22

《双曲线及其标准方程》教学反思04-07

《抛物线及其标准方程》教学反思02-28

高三数学《双曲线及其标准方程》说课稿01-14