- 相关推荐
八年级数学平行四边形教案
作为一名无私奉献的老师,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。优秀的教案都具备一些什么特点呢?以下是小编为大家收集的八年级数学平行四边形教案,欢迎阅读与收藏。
教学课题:§3.4.1平行四边形
教学时间(日期、课时):
教材分析:
本节课的设计思路是以中心对称为主线,展开对平行四边形的性质的探索与研究。使学生理解平行四边形是由三角形绕其一边的中点旋转180°而成的中心对称图形,向学生展示了平行四边形的形成过程,为研究平行四边形性质提供了新的方法。
学情分析:
教学目标:
1以中心对称为主线,研究平行四边形的性质
2经历探索平行四边形的概念性质的过程,在活动中发展学生的探究意识和有条理的表达能力
3在对平行四边形性质的探索过程中,理解特殊与一般的关系,领会特殊事物的本质属性与其特殊性质的关系
教学重点与难点
对中心对称图形的理解;
有条理的说理的表达能力,规范书写的格式
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
以课本的两幅图引入,观察,探索:图片中有你熟悉的图形吗?
这些图形有什么特征?
二.新课讲授
活动一:探索平行四边形的概念(中心对称)
1操作BO是的△ABC边AC上的中线,画出△ABC关于点O的对称的图形。
△CDA可以看成是△ABC绕点O旋转180度得到的,因此四边形ABCD是中心对称图形,点O是它的对称中心。
【设计说明:这一过程应充分发挥学生的主体地位,让学生在实际操作中,加深对中心对称图形的理解。】
2讨论:图中的AB与CD,AD与CB平行吗?为什么?
这一过程先让学生思考,展开讨论,鼓励学生大胆的说出自己的理由。
概念:2组对边分别平行的四边形是平行四边形。
及表示的方法
3平行四边形是中心对称图形,对角线的交点是它的对称中心
【这一概念既是平行四边形的一条性质,又是判别图形的条件。四边形只要具备“2组对边分别平行”的条件,它就是平行四边形;反过来,如果四边形是平行四边形,那么它必定有“2组对边分别平行”。】
活动二:探索平行四边形的性质(中心对称)
因为平行四边形是中心对称图形,对角线的交点是它的对称中心,所以ABC D绕点O旋转180°后,提问:
①AB旋转到什么位置?
②∠BAD旋转到什么位置?
③猜想:对角线AC与BD有什么性质?
得到:AB=CD AD=BC平行四边形的对边相等
∠ABC=∠CDA ∠BCD=∠DAB平行四边形的对角相等
OA=OC OB=OD平行四边形的对角线互相平分
【探索平行四边形的性质从“平行四边形是中心对称图形”出发,另外,2组对边平行也是平行四边形的一个性质。】
㈢例题示范
例1,A'B'∥AB,B'C'∥BC,C'A'∥CA
图中有几个平行四边形?
将它们表示出来,并说明理由。
提问:AB与B'C;∠ABC与∠B'相等吗?
为什么?还有其他类似的结论吗?
例题1具有开放性,共分为2个层次
第一层次,要求学生运用学过的知识,探索图中的哪些四边形是平行四边形,并说明理由。要注重板书的过程,培养学生板书的能力。
第二层次,以问题来引导,探索图形的其他性质。让学生自主探索,丰富学生独立进行数学活动的经验,养成良好的思维习惯。
三.巩固练习
3在ABCD中,如果∠A=60°,那么∠B= °,∠C= °,∠ D= °
4如果ABCD的周长为32cm,且AB=5cm,那么BC= cm,CD= cm,DA= cm
5已知平行四边形相邻两角的度数比为2:3,则较大的角为()
A.72° B.90° C.108° D.126°
6在平行四边形中,对角线ACBD相交于O,则AD长度x的取值范围是()
A.2<x<6 B.3<x<9 C.1<x<9 D.2<x<8
四.小结
1探索了平行四边形的概念,性质。
2以中心对称为主线。
板书设计
作业设计
113页习题1,4
教学反思
页边批注
【八年级数学平行四边形教案】相关文章:
认识平行四边形数学教案11-23
八年级数学教案11-13
八年级数学教案12-30
平行四边形的教案11-28
八年级数学上册教案02-27
八年级上册人教版数学教案02-27
五年级数学《平行四边形面积》教案07-12
五年级上册数学平行四边形教案01-06
数学平行四边形的面积教学反思03-07
数学平行四边形面积教学反思03-08