- 《求平均数》教案 推荐度:
- 相关推荐
平均数教案
作为一名教师,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。教案要怎么写呢?下面是小编为大家整理的平均数教案,欢迎大家分享。
平均数教案1
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。
4、教学目标
在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的.能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
平均数教案2
教学要求:
使学生进一步认识平均数的含义和求平均数的数量关系,能根据已知条件求出相应的平均数。
教学过程:
一、揭示课题
我们在进行统计或分析统计结果时,经常要用到平均数。(板书课题)这节课,重点复习求平均数。
二、复习求平均数
1.平均数的含义。
(1)提问:谁能举例说说什么是几个数量的平均数吗?
(2)下面说法对不对?
①前3天平均每天织布200米,就是实际每天各织200米。
②身高1.5米的'人在平均水深1.2米的池塘里没有危险。
2.提问:那么,求几个数量的平均数需要哪些条件?平均数要怎样求?(板书:总数量÷总份数=平均数)
3.做“练—练”第1题。
让学生读题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一部分求的是什么。
4.做“练一练”第2题。
学生默读题目。指名学生说一说题意。让学生在练习本上列出算式。提问学生怎样列式的,老师板书。让学生说明每一步求的是什么。提问:这两题在解题方法上有什么相同的地方?为什么列式不一样?说明:按照求平均数的数量关系解题时,要注意找准总数量与总份数之间的对应关系,再根据数量关系式正确列式解答。(板书:注意:找准总数量与总份数的对应关系)
三、综合练习
1.做练习二十三第11题。
指名一人板演,其余学生做在练习本上。集体订正,让学生说说是按怎样的数量关系列算式的,(总路程除以时间等于平均速度)每一步求的什么数量。追问:为什么总路程是140×2?为什么时间是4.5加5.5的和?指出:解答时要认真看题,弄清题意,理解条件和问题的意思。
2.做练习二十三第12题。
让学生默读题目。提问:三人的“平均成绩是110分”是什么意思?怎样才能求出另一位同学的成绩是多少分?指名学生口答算式,老师板书。追问:110×3表示什么?为什么三人的总分数要用110乘3?
3.做练习二十三第13题。
指名学生说一说统计图的意思。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的。追问:为什么要用12做除数?说明:要根据问题要求的结果,确定应该用哪个量做被除数,哪个量做除数。
4.做练习二十三第14题。
让学生观察统计图。提问:你从图里了解了哪些情况?想到了哪些问题?请大家在小组里估计一下,平均每月水费、电费大约各要多少元,并且说说怎样想的。指名学生交流估计的结果和想法。再让学生求出平均数。
四、课堂小结
通过这节课的复习,你进一步明确了哪些问题?
五、课堂作业
练习二十三第8~10题。
平均数教案3
1.体悟“平均数”的实际意义。
2.探索求“平均数”的多种方法,并能根据具体情况灵活选用方法进行解答。
3.培养学生估算的能力,能对数据分析结果作出简单的推断和预测。
4.体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索 与合作交流的意识和能力。
教学重点:
灵活选用求平均数的方法解决实际问题。
教学难点:
理解平均数的意义。
教学关键:
通过动手操作的实践活动使学生感悟平均数的含义,从而更好地掌握求平均数的多种方法,并能灵活应用,解决实际问题。
教学过程:
本节课的教学脉络按“平均数”(数学概念)——“求平均数”(计算方法)——“应用题”(实际应用)逐步展开。主要分以下几个层次:
第一层次:谈话引入(让学生初步感知什么是平均数)
①学生交流课前收集到的有关平均数的信息。
②师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?
③师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。(板书:平均数)你想了解平均数的哪些知识呢?
④师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。
说明:理解平均数的意义是教学求平均数的重要基础。引入新课之前,先让学生说说他们自己收集到的有关平均数的信息。调查学生对“平均工资”、“平均年龄”、“人均住房面积”……
这些已经抽象了的平均数的`理解情况,为新课教学做好铺垫。接着创设富有童趣的情境,运用现代教学媒体,激发学生主动探求知识的愿望,从而引出求平均数的课题。
第二层次:构建新知
1.理解含义,探求方法。
① 观察棋子,提出问题。(多媒体显示)
师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?
说明:让学生同桌合作,用军旗作为操作活动的材料。学生通过观察、思考,自己提出问题,然后解决问题,极大地激发了学生探索的热情。
②感悟“平均数”的实际意义。
动手操作:以小组为单位研究怎样才能使三排棋子同样多。
师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?
这个平均数4与原来每排棋子的个数有什么关系呢?
说明:通过任意一种移动方法,使三排棋子同样多。从而揭示平均数的真正含义。让学生深刻理解,平均数并不表示一个实际存在的数量。精心设计学具操作,并配以恰当的媒体显示,突出了平均数那简明、直观的特点。
2、探索求平均数的不同方法。
师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!
①小组活动讨论。
②汇报交流。(生说方法多媒体显示棋子移动过程)
移多补少! 先假设后均分。先求和再均分。
说明:在学生感悟平均数的实际意义后,探索求平均数的不同方法。用数学算式概括操作过程,并且让自己给方法命名。使学生在浓厚的学习兴趣中,积极动手操作,动脑思考。在汇报交流中相互启发,最后共同探讨出2、7、3这三个数的平均数的几种方法。体现了“小组合作交流——大组交流汇总”的自主探究模式。呈现了知识的产生——发展——初步完善的过程。突出了学生的主体地位,符合创新教育要求。
第三层次:初步应用,内化拓展。
师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?
第四层次:实际应用
选择正确的算式:
前几天,学校举行了献爱心活动,我们班52名同学分成4组,第1组捐款192元,第2组捐款212元,第3组捐款205元,第4组捐款 198元,平均每组捐款多少元?
A: (195+212+205+198)÷52=16(元)
B: (195+212+205+198)÷4=208(元)
①说说你选择B的理由。
②小明从结果16元他就肯定A 是错误的,你知道这是为什么吗?
③如果选A该怎样提问?
④比较这2个问题的异同点?
小结:所以求平均数时你要找准对应关系。说明:从实际生活中提取素材,设计两道对比练习题,进一步加深了学生对求平均数方法的理解应用,在应用中渗透对应思想。另外,结合题目的特点有机对学生进行思想教育。
平均数教案4
教学内容 人教版数学四年级下册第91——92页。
教学目标 知识与技能:
1、能对获得的数据进行整理,并用条形统计图表示出来。
2、 认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。
过程与方法:
1、经历收集、整理、描述和分析数据的过程。
2、经历读统计图、交流信息、提问题、解决问题的过程。
情感态度价值观:
从统计图中获取信息、用统计图表示数据的过程中,体验用统计图表达表达交流数据的特点,认识统计图的价值。
教学重点 认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。
教学难点 能用条形统计图表示数据,能根据给出的数据提问题并解决问题。
教学方法 尝试教学法 课型 新授课
教学准备 多媒体 教学时数 1
板书设计
教学过程:
一、炫我两分钟
二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期的对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。
为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是请来了统计学家,统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家信心十足的说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。
从这个故事中你知道的统计有什么作用吗?
【设计意图:炫我两分钟给学生一个自我展示的平台,绽放其生命色彩。能够提高学习数学的情趣,增强学好数学的信心。】
二、尝试小研究
尝试小研究:
研究一:
1.从上面的统计图中,你得到了哪些信息?
2.这个统计图一个格表示几个人?你是怎么知道的?
3.自己提出问题并解答。
研究二:
1.完成课本91页,试一试:根据统计表,完成统计图。
2.交流展示学生完成的统计图。
三、小组合作探究
尝试研究一
出示小组合作交流建议:1、组长组织本组成员有序进行交流,确定好组员的'发言顺序。2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。3、组内分工,为班级展示提升做准备。
【设计意图:给每一个孩子创造一个发言的机会,让学生在思考、交流的过程中对知识进行一个思维的碰撞。】
四、班内展示交流,建构新知
1、全班交流,师生评价。
2、试一试,学生读统计表,谈一谈自己的感受。观察不完整的统计图,找出这幅统计图的特征。(用一个格表示4个人)
3、学生试着补充完整统计图,师巡视指导,交流时,让学生说明不够整格时怎样想的,是怎样处理的。(生表述自己的发现,关注学生能否发现每个格代表4人,如果学生没有发现教师予以提示。)
小结:用条形统计图表示数据,当数据比较大时经常采用一格表示多个单位的方法。
4、鼓励学生根据统计图提问并解答。交流时,学生提出的问题只要合理,就给予肯定。
【设计意图:通过交流,学生利用知识的迁移,认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。这是学生对知识一个内化、提升的过程。】
五、挑战自我
1、数学书92页练一练的第1题
【设计意图:面向全体学生,巩固当堂所学的知识。】
2、数学书92页练一练的2题。自己设计一张调查表,记录自己一学期读课外书的情况。
六、盘点收获
通过这节课的学习你有什么新的收获?
【谈收获环节是数学课堂上必不可少的一个环节,它既可以是对本节课所学知识点的梳理,能让学生更清晰本节课所学的内容,也可以是对数学学习方法的梳理和数学活动经验的建构,培养学生自主反思建构的良好学习习惯。】
课后
反思 引导学生在自主探究的基础上合作交流,并利用现代化的教手段,形象生动地展示了统计图由纵向变为横向条形统计图的过程,学生在合作探究中了理解知识间的联系,不仅充分调动了学生参与学习的积极性,而且使学生对知识的理解逐步升华,应用多种策略解决问题的能力不断提高。
平均数教案5
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的`计算方法。
教学过程:
一、复习
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
二、创设问题情景,引导探究。
1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。
2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。
三、拓展与应用
说说生活中还有哪些事要通过求平均数来解决一些问题。
四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
五、作业练习十一4、5
教学反思:
平均数教案6
一、教学目标:
1、会根据频数分布表求加权平均数,从而解决一些实际问题
2、会用计算器求加权平均数的值
3、会运用样本估计总体的方法来获得对总体的认识
二、重点、难点:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、教学过程:
1、复习
组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.
应给学生介绍为什么可以利用组中值代替一组数据中的'每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量.
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.
2、教材P140探究栏目的意图
①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.
②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义.
3、教材P140的思考的意图.
①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.
②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.
4、利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.
5、运用样本估计总体
要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.
平均数教案7
教学目标:
1.结合具体情境,在动手操作、观察、讨论等活动中理解平均数的意义,会求简单数据的平均数。
2.初步学会简单的数据分析,灵活运用平均数相关的知识解决简单的实际问题,进一步体会统计在现实生活中的作用。
3.在轻松愉快的活动中体会运用知识解决问题成功的愉悦,增强学习数学的兴趣和学好数学的自信心。
教学重点:
理解平均数的意义,理解并掌握求平均数的方法。突破方法:通过学生自主探究,掌握求平均数的方法。教学难点:理解平均数的意义,灵活运用平均数的相关知识解决简单的实际问题。
突破方法:结合生活实际,帮助学生理解平均数的意义。教法与学法:
教法:动手实践与引导探索相结合。
学法:动手实践与自主探究相结合。
教学准备:多媒体课件,有关平均数的数据统计表。教学过程:
一.浏览信息,引出平均数
1.引入信息:
师:同学们,我今天带来了一些我们生活学习中的信息,请看屏幕。(课件出示信息)
(1)四(1)班踢毽子的4位选手平均每人1分钟踢50个。
(2)一年级第一小组的3位男生的平均身高是120厘米。
(3)三年级平均每个班开展了3项课间活动。
(依次出示信息,分别请3名同学读题,其他同学认真的看屏幕并倾听)
2.感知平均数:
师:同学们,在这些信息中都用到了同一个词,你们发现了吗?(都有“平均”这个词,课件再次用红色显示信息中的“平均”)
对,(指着50个,120厘米,3项,课件同时用粉色显示这些数据)这些数据都是“平均数”。(板书课题:平均数)
3.进行质疑:
师:看到这个课题,你想通过今天的学习了解那些知识?生可能会说:
a:平均数是一个什么数?
b:平均数与平均分有什么关系?
c:怎样计算平均数?
d:平时在生活中那些地方常用平均数?(如果学生不能提出这个问题,教师可提出问题,并引导学生,说一说平时生活中见到或听到过哪些类似的“平均数”,学生举完例子后教师可举“这次数学考试平均成绩是80分,说说这里的平均数,你们是怎么理解平均数的,是
不是每个同学的成绩都是80分?)
让我们带着这些问题来研究今天的知识。
[设计意图:选取学生熟悉的数学信息,让学生感知平均数,激发学习兴趣,培养问题意识,感受数学与生活的密切联系。]
二.探究交流,认识平均数
1.出示情境,提出问题:
师:我们每周都要开展“爱心回收站,争做环保小卫士”保护环境活动,这是一年级4位小朋友收集的矿泉水瓶,我们一起来看一看他们收集的情况。(课件出示统计表)
师:你看到什么信息?(学生说看到的信息老师板书统计表中的内容)师:请同学们思考这个问题(课件出示问题)
思考:怎样求这4个学生平均每人收集多少个瓶子?
(生可能会说:先求4个人收集的瓶子总数,再除以4,或者会说把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量,教师都要给予肯定)
师:要求这4个学生平均每人收集多少个瓶子,也就是指假如每个人收集的'瓶子数量是同样多,这个数量是多少?
2.出示条形统计图,探究方法:
师:请看屏幕(课件出示主题图),这是他们4人收集瓶子的统计图,你能发现什么数学信息吗?
(引导学生观察、比较图中的数据,说明横轴分别表示什么,每个人收集的数量是多少,谁最多谁最少,请同学汇报)
师:你们观察的真仔细,他们每个人收集的瓶子数量同样多吗?(不一样多)(教师板书:“不一样多”)
你能想办法,把他们4个人收集的瓶子数量变成同样多吗?(板书“同样多?”)
活动要求:4人小组合作,可以看着统计图说一说,比划比划,页可以动手算一算。(学生以4人小组活动,教师巡视指导)
3.交流算法
(1)移多补少法
师:怎么样才能让每个人收集的瓶子数量同样多呢(或平均每个人收集多少个瓶子)?(给学生充分的时间汇报自己的想法)请你给大家说说你的想法。
(学生可能会说把小红的瓶子给小兰1个,小明的瓶子给小亮2个,如果学生说出先算他们的总数在除以4,老师可以让这位同学把他的想法告诉大家,并把算式写在黑板上
师:大家听明白了吗?那位同学的想法和这位同学的想法一样,请你演示给大家看一看,边演示边说。其他同学仔细看,看他的方法和你的方法是否一样,想一想他为什么这样做。(学生利用课件演示说明自己的方法)
师:谁看明白了?他是怎样移动瓶子的?(学生再次说明移动过程,课件用箭头出示移动的路线和数量)
师:你为什么要把小红的瓶子移给小兰?(小红的多,小兰的少)他是把多的移给少的,这样每个人收集的瓶子数量就怎么样了?(同样多)
师:刚才这几位同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少法”(板书“移多补少法”)
师:现在每个人的矿泉水瓶子同样多吗?(同样多)那同样多是多少个?(13个)(同样多的下面板书13个)13个就是他们收集瓶子数量的平均数。(课件13个后面出线红色虚线)在图中红色虚线就表示平均数是13个(板书“平均数”)
(2)先求和再平均分
师:谁还愿意交流?还有不同的方法吗?请把你的计算过程(算式)写在黑板上。
生:(14+12+11+15)÷4
=52÷4
=13(个)
师:【指着算式14+12+11+15)÷4】我们来看看这位同学的方法?请你说说你是怎么想的。
(生可能会说:我是先把他们4个人收集的瓶子总数加起来,再平均分成4份或我是先算他们一共收集了多少个瓶子,再算平均每个人收集多少个瓶子。)
师:听懂了吗?谁和他的方法一样?再给大家说一说。(学生交流)
平均数教案8
教学内容:
人教版数学三年级下册第42~45页。
教材分析:
平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中突出了让学生在具体情境中体会为什么要学平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。
教学目标:
1.知道平均数的含义和求法。
2.加强学生对平均数在统计学上意义的理解。
3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
教学重点:
理解平均数的实际意义,掌握求平均数的方法。
教学难点:
理解平均数的实际意义。
教学方法:悟学式教学法
教学过程:
一、预习思考:(感动、感觉)
《课前小研究》
1. 整理自己家里的书架,怎么使每层书架上的数一样多?
2.2人1个小组比赛跳绳,并记下每个人跳的次数,和另一个小组比,说说哪个小组赢?
二、问题讨论:课前小研究的交流与汇报(感知)
师:昨天,蒙老师给大家布置了课前小研究,请各小组拿出来,在小组内交流一下。
师:哪个小组来汇报一下这2小题?
【设计意图:“悟学式教学”中强调了学生的课前预习与汇报交流的重要性,让我们充分相信学生的能力,全面依靠学生。因此,我紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设了课前小研究环节,让学生通过自己动手等途径,丰富平均数的相关知识,感知平均数在生活中的重要作用,激发学生的探究欲望。并通过交流汇报,体验成功的喜悦。】
三、教材分析:(感悟)
(一)创设情境、激趣导入
1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。
2.感知
(1)学生思考,想象移的过程。
(2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?
(3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)
【设计意图:从现实生活导入,自然引出平均数概念,并巧妙渗透了平均数的区间范围,让学生初步感知平均数是表示一组数据的一般情况,并不表示一个实际存在的数量,为后面深化对“平均数”意义的理解和把握作好预设。】
(二)探究新知
1.理解含义,探求方法。
提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。
师:看着面前的圆片,你能提出什么问题
生:我想使每排的圆片同样多?
师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。
小组活动讨论。
【设计意图:让学生自己提出问题,然后解决问题,极大地激发了学生探索的热情。
】
汇报交流。
生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。
生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。
师:不管怎样移,我们都是把个数多的移给个数少的
请你想一想:在刚才移动过程中,有什么相同的规律?
根据学生回答板书:从不相等到相等
小结:像这样,在总数不变的前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。
【设计意图:“平均数”与“平均分得的结果”是不同的概念。平均分得的结果是一个实实在在的量,而平均数只是一个表示中间状态的抽象数量,这里又一次让学生真切地感受到“平均数”的实际意义。
】
2.初步应用,内化拓展。
师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)
生1:我是这样想的(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。
生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。
出示幻灯:身高情况
先估计一下平均身高大约是多少?(148,147,149,……)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。
生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。
生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。
【设计意图:创设与学生生活环境、知识背景密切相关的,学生感兴趣的学习情境,让学生主动进行观察、估计、验证、推理与交流等教学活动,及时内化了各种求平均数的方法,鼓励解决问题策略多样化。】
(三)拓展练习
1.应用一。
小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的电话费、电费,上周的气温情况等)
交流反馈。
【设计意图:从生活中搜集,整理数据,并求出平均数,使学生体令“平均数”反映的某段时间内具有代表的数据,在实际的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算器的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。】
2.应用二。
请用计算器帮这位小选手算算最后得分。
生1:最后得分(84+70+88+94+82+86)÷6=84(分)。(大部分学生表示赞同)
生2:我不同意,我认为应该去掉一个最高分、一个最低分。最后得分(84+88+82+86)÷4=85(分),这样才公平、合理。
师:这种求平均数的方法,你有没有在哪里见过?(奥运会、电视比赛等)为了使比赛更公平,通常在比赛中采用这种方法求平均数。
【设计意图:结合实际问题引导学生展开交流、思考。让学生感受到数学就在我们身边,从而深刻认识到数学的价值与魅力。】
3.应用三。
师:星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的`水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?
□会□不会□可能会□可能不会
(1)把自己的想法与同桌交流。
(2)指名说说(3个)
(3)学生评价。
师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,也可能正好是126厘米,我们在对待实际问题时就应该根据实际情况分别对待。
【设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件发生的可能性,提升了他们数学交流的能力。】
(四)课堂总结
师:这节课你有哪些收获?还有问题吗?
(五)课外延伸
推荐作业:1、现在你对教师上课开始的问题“我们班的平均身高是多少?”
能解决吗?这一问题就留给大家课后去解决。
【设计意图:呼应开头,并通过课外实践活动延伸,进一步提高学生运用所学知识解决实际问题的能力。】
教学反思:
悟学理念提出,学习目标应由“关注知识”转向“关注学生的学习过程”,指出“五感”是一个循环的过程。课堂设计应由“给出知识”转向“引起活动”得到“感动、感觉、感知、感悟、感恩”。从本节课的教学可知,学生在生活中已经储备了“平均数”的相关知识,因而我就需要根据学生的实际情况去设计教学的各个环节,注重学生的课前小研究,让学生借助各种资源——同学的互助等,进行自主的探究学习,主动建构关于平均数的知识体系,让学生在学习中获得自信、科学态度和理性精神,实现教学的发展功效和育人的本质功能。
悟学理念认为,要让学生获得知识经验和发展,就必须教他们参与各种实践活动。新课程改革也视学习为“做”的过程、“经验”的过程,凸现学生学习的实践性特点。在本节课的教学中,我不是把教材内容的移植和照搬,而是进行了创造加工,将教材内容变成学生自己去学习、去研究、去感悟的活动内容,并把它纳入到学生的“生活世界”中加以组织,这才是我们在当前设计教学时必须遵循的重要原则。
平均数教案9
教学目标:
1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)
2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。
3.操作、交流的过程中,建立学习数学的信心,发展统计观念。
教学重点:
理解平均数的意义,学会求简单数据的平均数。
学具准备:
移动学具板、作业纸
教具准备:
移动示范板、课件
教学过程:
一、放情景录像,预设认知冲突
1.谈话导入、回顾情景。
2.读懂统计图,获取相关信息
从这两幅图中你能知道哪些信息?
3.提出预设问题
这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?
二、自主探索方法,理解平均数的意义
1.引起争议,探求公正的策略
当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?
2.萌发求平均数的'需求,得出有效途径求平均成绩
3.小组动手操作,探索求平均数的方法
那我们应该怎样求男生、女生各组的平均成绩呢?
4.全班交流,感知方法
(1)移多补少
(2)一般方法
男生:6+9+7+6=28(个)284=7(个)
女生:10+4+7+5+4=30(个)305=6(个)
男生组算式中的9、6、7、6和28各代表什么呢?
为什么女生求出的总数30除以5,而不是除以4呢?
5.理解平均数的意义
我们求出男生组平均每人套中7个,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?
小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。
6.新课小结,揭示课题,体会求平均数是解决这类问题的有效方法之一
三、感受平均数与生活的联系,体会平均数的作用
平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。
1.盐城去年全年平均气温在18摄氏度。
2.盐城市某小学三年级有10个班,平均每班人数为47人。
3.小明的语、数、外,三门考试,平均成绩为92分。
4.盐城市某小学三(5)班同学平均年龄为8岁。
现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!
四、巩固强化,拓展应用
1.移铅笔(93页第1题)
目的:体会移多补少的思想,加深对平均数意义的理解。
2.三条丝带的平均长度(94页第2题)
目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。
3.辨析题(第94页第3题)
目的:加深理解平均数的意义
4.综合性训练:
目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。
平均数教案10
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容。
2.了解平均数的意义,会计算一组数据的平均数。
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数。
(二)能力训练点
培养学生的观察能力、计算能力.
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯。
2.渗透数学来源于实践,反地来又作用于实践的观点。
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美。
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算。
2.教学难点:平均数的简化计算。
3.教学疑点:平均数简化公式的应用,a如何选择。
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a。
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题。请同学们思考下面问题。(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲7 8 6 8 6 5 9 10 7 4
乙9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法。
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣。
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质。在当今的.信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面。本章我们将学习统计学的一些初步知识。
(三)教学过程
这节课我们首先来学习了平均数。
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识。
2.平均数的概念及计算公式
一般地,如果有n个数。
那么①叫做这n个数的平均数,读作“x拨”。
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性。教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义。
3.平均数计算公式①的应用
例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温。
平均数教案11
教学目标
1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.
2.培养学生分析、综合的能力和操作能力.
3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.
教学重点
明确求平均数与平均分的区别,掌握求平均数的方法.
教学难点
理解平均数的概念,明确求平均数与平均分的区别.
教学步骤
一、铺垫孕伏.
1.小华4天读完60页书,平均每天读几页?
2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?
3.小明和小刚的体重和是160斤,平均体重多少斤?
师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.
二、探究新知.
1.引入新课.
以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.
今天我们共同研究一下求平均数问题.(板书课题:求平均数)
2.教学例2.
(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?
(2)组织讨论:你怎样理解水面的平均高度?
(3)学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.
(4)学生操作.
请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.
(5)学生汇报操作结果,一般出现两种方法.
第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用
164=4厘米,得出每杯水水面的平均高度是4厘米.
第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.
(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?
(7)引导学生列式计算.
(6+3+5+2)4
=164
=4(厘米)
答:这4个杯子水面的平均高度是4厘米.
小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.
(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?
明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的.实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.
(9)反馈练习.
小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.
3.教学例3.
(1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)
(2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?
(3)根据讨论结果,明确先求出每组的平均身高,再进行比较.
(4)列式计算.
第一小组的平均身高是多少?
(136+142+140+135+137+144)6
=8346
=139(厘米)
第二小组的平均身高是多少?
(132+141+133+138+145+135+142)7
=9667
=138(厘米)
第一小组的平均身高比第二小组的高多少?
139-138=1(厘米)
答:第一小组平均身高高一些,高1厘米.
(5)反馈练习.
一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?
三、课堂小结.
通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.
四、布置作业.
回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.
平均数教案12
第一步:课堂引入
设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
第二步:应用举例:
例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:
载客量/人组中值频数(班次)
1≤x<21113
21≤x<41315
41≤x<615120
61≤x<817122
81≤x<1019118
101≤x<12111115
这天5路公共汽车平均每班的载客量是多少?
分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的'权是它的频3,由此这天5路公共汽车平均每班的载客量是:
思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?
分析:
由表格可知,81≤x<101的18个班次和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39.8%
活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如键),计算器便会求出平均数的值。
例2:下表是校女子排球队队员的年龄分布:
年龄13141516
频数1452
求校女子排球队队员的平均年龄(可使用计算器)。
答:校女子排球队队员的平均年龄为14.7岁
平均数教案13
大家都听过小猫钓鱼的故事吧?今天老师也要讲一段小猫钓鱼的故事。
一、小猫钓鱼认识平均数
1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)
2、小虎一看自己钓得这么少就哭起来了,原来猫妈妈说,今天谁钓鱼钓得最少就不能去观看森林卡拉OK大赛了,于是小虎就拼命哭,怎么哄也哄不好。这时二虎突然说我有主意了,你知道二虎想出什么主意能让三个人一起去观看卡拉OK比赛呢?
3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。
方法一:把三个人的鱼合到一起再平均分,每个人也可以得到5条鱼,这种方法叫做先合并再平均分。这种方法你能列出算式吗?
方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。
5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。
二、进一步理解平均数
1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”
2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?
3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?
三、歌唱比赛,理解平均数的必要性。
1、森领卡拉OK大赛就要开始了,许多小动物都赶着去观看比赛呢!
2、森林里好多鸟类都参加了比赛,最后的决赛是在黄鹂和百灵鸟之间进行的`,让我们来看看决赛成绩。这是四位评委为黄鹂打出的分数,分别是96、85、90、93,当最后一位选手百灵鸟登台演出的时候,评委之一的猫先生因家中有急事由评委席退出,于是只剩下3位评委为百灵鸟打分,他的得分是93、89、94。 比赛结束了,组委会正在做最后的颁奖准备,
3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。
4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的人数不同,所以算总分是不公平的,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。
四、生活中灵活应用平均数
看完卡拉OK比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)
这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?
五、平均数的应用
看完卡拉OK比赛,虎虎三兄弟回到家里看电视,突然他们被一则招聘启示吸引住了,(读招聘启示)森领国王足球队可是森林里最好的足球队,作为狂热的足球爱好者,大虎、二虎和小虎当然都想加入森林国王足球队啦,这是三兄弟最近5个赛季的进球数,你认为他们当中谁更有可能被森林国王足球队选中?
平均数教案14
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2
二、教学准备
小黑板、姓名笔划数统计表。
三、教学目标:
1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。
2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。
(二)教学重点:理解平均数的意义和求平均数的方法。
(三)教学难点:理解平均数的意义。
四、教学过程:
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的`介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示一个姓名。
师:能完成这表格吗?(学生数一数,完成表格)
姓名王振方
笔画数
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)
师巡视指导,搜集、选择教学信息。学生完成后作简单交流。
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察姓氏的笔画数,你能提出什么数学问题?引导到求笔画总数和平均数上。
2、在对话交流中明晰概念
师:王振方的姓名平均笔画数是6画,这又表示什么?
引导学生认识:
(1)表示三个字笔画数的平均水平。
(2)表示王振方这个姓名笔画数的一般水平。
师:那这6画与王振方这三个字的笔画数之间还有关系吗?
(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)
引导学生注意:
(1)有关系的,是他们的中间数。
(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。
(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。
(4)平均笔画数就在这三个字笔画数的中间位置。
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把6叫做王振方姓名笔画数的——平均数。(板书课题)
师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)
师生交流计算的方法与结果。
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表。(有学生姓名两个字,有学生姓名三个字。)
师:比较他们姓名中每个字的笔画数,你有什么方法?
引导学生认识从:
(1)比笔画数的总数。
(2)比平均笔画数。
(让学生先在小组内讨论,然后组织全班汇报交流。)
引导学生认识:
(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。
(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流。
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与王振方的姓名笔画数相比,那又可以怎么比呢?
预设生:既可以用平均数来比,也可以用总数来比。
师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。
出示:(1)龙滚中心学校五年级平均每班有学生45人。
(2)四(1)班上学期期末考试数学平均分是72分。
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?
(学生小组讨论,然后全班汇报交流。)
引导学生懂得:(1)45是五年级总人数除以班级数得来的,表示五年级每班人数的平均水平,不一定每班就是45人,但可以预测每班的大致人数。(2)72分是四(1)班上学期期末数学总分除以全班人数所得到的。
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。
(学生小组合作,交流看法,教师参与讨论。)
学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。
(四)联系实际,应用新知
1、选择
(1)四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了()棵
A、181 B、165 C、145
(2)自行车商店第一天卖出自行车54辆,第二天上午卖出25辆,下午卖出23辆,平均每天卖出多少辆?正确的列式是()
A、(54+25+23)÷3 B、(54+25+23)÷2
2、李老师家今年1——3月用水吨数如下:
月份1月2月3月
吨数687
(1)从中你能知道什么?
(2)能否预测出今年全年的用水吨数?
(3)你还想对老师说什么?
平均数教案15
教学目标
1.理解平均数的含义,初步学会简单的求平均数的方法,理解平均数的统计意义。进一步积累分析和处理数据的方法,发展统计观念。
2.在具体的问题情境中,感受求平均数是一些实际问题的需要,体会平均数的意义,学习求简单数据的平均数。
3.感悟数学知识的现实性,体会平均数在现实生活中的实际意义及广泛应用。
学情分析
通过对任教的三年级(2)班学生进行课前调研,了解到全班59.1%的学生面对“比总数不公平”的情境,能够想到“先求出平均每人投中的个数再比较”的建议,但没有学生能够清晰地回答“为什么求出平均每人投中的个数再比较就公平了?”。退一步说,就算学生真正理解了其中的意义,那么“平均每人投中的个数”是否就能直接与“每人投中个数的平均数”画上等号?细微的文字表述差异的背后,又表征着学生怎样微妙的思维差异呢?
事实上,“求出平均每人投中的个数”,对于一个三年级学生而言,其心理活动的表征往往是“先求总和,再除以人数”。而这一心理运算对学生而言,其直观背景十分模糊。至于其最终运算后得出的结果又是如何成为这组数据的代表的,其意义的“联结点”对学生而言更是很难直接建立。由此可见,仅仅从“比较的维度”揭示平均数的意义,潜藏着学生难以跨越、且教师也很难察觉的认知障碍与思维断点。
于是,教师将备课的思维焦点再次落到“数据的代表”上来。能不能从“数据的代表”的角度,重新为平均数寻找一条诞生的新途径?于是,便有了本节课的尝试。
重点难点
教学重点理解平均数的含义,掌握平均数的求法。
教学难点理解平均数的统计意义。
教学过程
活动1【活动】一、建立意义
(一)体验平均数的代表性
1.谈话:
(1)上个星期,于老师和体育来老师比赛投篮,1分钟看谁投得多。
(2)想不想知道比赛结果?我给同学们提供一些数据,请你判断一下,我们俩谁投篮的水平更高一些。(课件分别依次出示来老师和于老师三次1分钟投篮的成绩)
2.提问:
(1)我们俩谁投篮的水平更高一些?为什么?
预设:分别计算出两位老师三次投篮的总数,进行比较,得出结论。
小结:在以前的学习过程中,要想比较谁的水平高我们经常先把总数算出来,看总数谁多。
(2)观察观察数据,还有别的办法很快地比较出我们俩谁的水平高吗?
预设:直接将两位老师每次投篮的个数进行比较,得出结论。
提问:为什么直接比5和3?
小结:如果每一次投篮的数量一样,那在这种情况下我们选一次的成绩作为我投篮水平的代表就可以了。
提问:选择哪个数量来代表来老师的投篮水平呀?那于老师呢?方便不方便?
【设计意图:创设“1分钟投篮比赛”的情境,精心设计数据,引发学生对平均数的“代表性”的理解。】
(二)强化对平均数意义的理解
1.谈话:不过,我可不服气,就找了一个理由:你是体育老师,我是数学老师,我要求再多投一次,结果来老师还真同意了,我就又投了一次。
2.提问:
(1)你们说于老师再投一次的话,会不会对我目前投篮的成绩有影响?
(2)想不想知道于老师最后一次投篮的结果?(课件出示于老师第四次1分钟投篮的成绩)
(3)我这次1分钟投了几个?我太高兴了,我为什么高兴呀?你们认为来老师会同意我的观点吗?
(4)你认为在这种情况下应该怎么比?
(5)我平均每次投中了几个?
a.谈话:有很多同学有自己的想法了,请你试着在图上圈一圈、画一画,或者在图下面写一写、算一算把你的想法表示出来。
b.谁愿意跟大家交流一下自己的想法?
方法一:移多补少
预设:从第四次投的7个中拿出3个分别给前3次各1个,就得到平均每次投中4个。
谈话:你这个办法可真好!这样一移实际就是把几次不相等的数匀乎匀乎,看起来每次都一样了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程有个名字就叫“移多补少”。(板书:移多补少)
【设计意图:首先利用直观形象的象形统计图呈现“移多补少”求得平均数的过程,而不是先通过计算求平均数,强化平均数“匀乎匀乎”的产生过程,帮助学生进一步直观理解平均数能反映一组数据的整体水平。】
方法二:先合后分
提问:还有同学用计算的方法算出了于老师平均每次投中的个数。谁愿意给大家介绍一下?
预设:3+3+3+7=14(个)16÷4=4(个)于老师平均每次投中了4个。
谈话:实际上就是把于老师四次投中的个数先全部合在一起再平均分成4份。(板书:先合后分)
小结:无论是移多补少,还是先合后分,目的就是要把原来几个不同的数变得一样多了,数学上我们把同样多的这个数就叫做原来这几个数的平均数。(板书:平均数)3、3、3、7的平均数是4。
提问:再来看看,来老师水平高还是我水平高,这种情况下我干嘛要用到平均数来比较我们俩谁的水平高呀?
【设计意图:帮助学生理解投篮次数不同的情况下,比较总数不公平。这时就需要用平均数作为几次投篮个数的代表来反映投篮的整体水平进行比较。加强学生对平均数在统计学上的意义和作用的理解。】
活动2【讲授】二、深化理解
提问:
1.那你们觉得于老师要是再投一次的话,这个平均数会不会发生变化?为什么?
2.我们举个例子来看看吧,如果我第五次就投了1个,你们觉得于老师投篮的整体水平是上升了还是下降了?为什么?(课件出示于老师第五次1分钟投篮的成绩)
3.你可没算,为什么你一下子就告诉我下降了呢?你是怎么判断出来的?
4.那我要想让我的投篮水平再上涨一点儿,你们觉得我得投几个?算算我投篮的水平上涨了没有?( 根据学生回答课件出示于老师第五次1分钟投篮的成绩)
5.要想让我投篮的整体水平上升点,你觉得我这次得投几个才行?(根据学生回答课件出示于老师第五次1分钟投篮的成绩)
【设计意图:初步认识了统计学的意义后,进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的敏感性,丰富学生对平均数的理解。】
活动3【练习】三、拓展提升
(一)进一步丰富学生对平均数的理解
1.估计平均数(课件出示)
提问:
(1)不能算,直接看,有这样5个数据,估计一下平均数可能会是几呢?
(2)为什么一下就能想到平均数是5呢?平均数可不可能是2,为什么?
(3)真的是5吗?你怎么知道是5?用计算的方法会算吗?怎么算?
【设计意图:在估计的`过程中,学生发现平均数总是介于最小数与最大数之间,强化学生对平均数意义的理解。】
2.判断直条所在位置(课件出示)
提问:
(1)仔细观察、认真思考,第五个数据如果我也要画一个直条,它会在这条红线上面?还是在红线下面?请同学们用投票器进行选择。
(2)来选一个代表,谁愿意告诉大家为什么在红线的下面?
【设计意图:变化思路,由已知平均数逆求部分数,加深学生对平均数意义的理解。】
(二)利用平均数解决问题(课件出示)
1.平均身高
提问:
(1)篮球队队员的平均身高是160厘米。李强是学校篮球队的队员,可是他的身高才155厘米。你觉得可能吗?
(2)那平均身高是160厘米是每个人都是160厘米吗?
(3)既然李强的身高是155厘米,根据这个信息猜想一下,可能有的同学身高是多少厘米呢?有可能超过160厘米吗?为什么?
【设计意图:学生借助平均数的意义进行推理判断,深化对平均数的理解。】
2.平均水深(课件出示)
(1)提问:
a.从图中你了解到了哪些数学信息?(冬冬身高130厘米 池塘平均水深115厘米)
b.冬冬心想,这也太浅了,我的身高130厘米,下水游泳一定没危险。你们觉得,冬冬的想法对吗?
c.冬冬的身高不是已经超过平均水深了吗?
(2)谈话:想看看这个池塘水底下真实的情形吗?(利用课件,呈现池塘水底的剖面图)
(3)小结:虽然平均水深能够很好地反映这条小河水深的总体情况,但并不能反映出小河某一处的深度。看来,平均数也不是万能的,如果使用得不恰当,也会给我们带来麻烦,甚至发生危险,今后我们还会研究中位数、众数……在具体应用的过程中还要联系实际去思考,平均数只有用在恰当的地方才能发挥它的作用。
【设计意图:处理这一题目时,教师适时呈现小河的截面图,并标注出5个距离,将复杂的问题简单化,达到学生仍能借助平均数的意义理解东东下水的危险性。在此过程中学生也会感悟到平均数在反映一组数据总体情况时存在的局限性,适时提出今后还要学习其它反映一组数据总体水平的统计量,做好统计知识由中年级到高年级的衔接。】
【平均数教案】相关文章:
《求平均数》教案03-05
《平均数》教学反思03-13
平均数教学反思09-05
数学《平均数》教学反思03-14
平均数的应用教学反思09-07
《求平均数》教学反思09-07
求平均数教学反思09-05
《平均数》教学反思14篇06-16
《平均数》教学反思15篇06-17