当前位置:9136范文网>教育范文>教案>正比例与反比例的教案

正比例与反比例的教案

时间:2024-04-01 10:25:40 教案 我要投稿
  • 相关推荐

正比例与反比例的教案

  作为一名人民教师,通常会被要求编写教案,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的正比例与反比例的教案,欢迎大家分享。

正比例与反比例的教案

正比例与反比例的教案1

  教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

  教学过程:

  一、引入

  教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

  二、课堂练习

  1.分析、研究第3题。

  让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积

  = 长 =宽

  提问:

  当面积一定时,长和宽成什么比例关系?

  当长一定时,面积和宽成什么比例关系?

  当宽一定时,面积和长成什么比例关系?

  教师:通过上面的`分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

  2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

  每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。

  运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系

  3.第5题,让学生独立做,教师巡视,注意个别辅导。

  4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

  5.第7题,学生独立解答后,选一题说说是怎样解的。

  6.学有余力的学生做第8题。

正比例与反比例的教案2

  本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

  1.抽象实际事例中的数量变化规律,形成正比例的概念。

  例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。

  试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。

  学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。

  练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

  2.用图像直观表达正比例关系。

  例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照A点表示1小时行80千米B点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的.点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

  练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。

  3.调动学生的积极性与数学活动经验,教学成反比例的量。

  例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

  学生认识正比例意义时的数学活动经验可以迁移到反比例意义的学习中来,教学时要给学生多提供一些独立思考和合作交流的机会。如让学生观察例3的表格、填写试一试的表格,发现表格里的变量,解释两个变量的相关联;让学生联系已有的数量关系,研究总价与数量、每天运的吨数与需要的天数的变化,通过计算发现总价总是60元,一共运水泥的吨数总是72;让学生写出单价、数量和总价,每天运的吨数、需要的天数和运水泥总数的数量关系式,说说总价一定、运水泥的总吨数一定的理由;让学生阅读教材第65页关于单价和数量成反比例的那段话,交流自己的理解和体会;让学生试着用字母x、y、k表示反比例关系

  练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

正比例与反比例的教案3

  第二单元正比例和反比例

  变化的量

  教学内容:两种相关联量的变化情况。p18上的内容。

  教学目标:

  1.结合具体目标,体会生活中存在着大量互相依存的变量,让学生知道其中一种量变化,另一种量也随着变化。

  2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

  教学重点:两种变化的量。

  教学难点:根据图表说明两种量的变化情况

  教具准备:直尺,三角板、课件等。

  教学方法:自主探究

  教学过程:

  一、揭示课题。

  教师:在现实生活中,存在着很多相关联的量。其中一种量变化,另一种量也随着变化。今天我们就来研究这些量的变化情况。

  二、探索新知

  活动一:观察并回答。

  1.下表是小明的体重变化情况。

  观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。

  2.上表中哪些量在发生变化?

  3.说一说小明10周岁前的体重是如何随年龄增长而变化的?

  小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。

  4.体重一直会随年龄的增长而变化吗?这说明了什么?

  说明:体重和年龄是一组相关联的量。但体重的增长是随着人的生长规律而确定的。

  5.教育学生要合理饮食,适当控制自己的体重。

  教具:课件

  教法:自主探究

  教学过程:

  一、提示课题。

  1.由学生说一说生活中两种相关联的量的变化情况。如年龄与体重.时间与温度.价钱与数量等。

  2.教师:两种相关联的量,一种量变化,另一种量也随着变化,这样的两种量有什么关系呢?这就是我们今天要学习的内容。

  板书:正比例

  二、探索新知

  活动一:在情境中感受两种相关联的`量之间的变化规律。

  (一)情境一:

  1.观察,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2.填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  (二)情境二:

  1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2.从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:

  1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2.从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3.说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  5.正比例关系:

  (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  (2)购买苹果应付的钱数与质量有什么关系?6.观察思考成正比例的量有什么特征?

  一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

  (四)想一想:

  1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  (1)正方形的周长随边长的变化而变化,且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。请生用自己的语言说一说。

  2.小明和爸爸的年龄变化情况如下:

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)与同桌交流,再集体汇报。

  三、深化练习(课本中练一练)。

  四、总结。

  五、作业。选用作业设计习题

正比例与反比例的教案4

  教学内容:

  六年级下册总复习83—85页《正比例、反比例》。

  教学目标:

  (一)知识目标:

  (1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

  (2)通过具体问题的认识进一步认识正比例、反比例的量。

  (二)数学思考与解决问题

  通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

  (三)情感态度

  培养学生认真思考的习惯,学会区分正反比例。教学重、难点:

  (1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

  (2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。

  教法学法

  自主复习、小组交流、全班交流、互帮互学

  教学准备

  表格、课件、小黑板

  教学过程

  一、情境创设,导入复习

  1、判断下面每题中的两种量成什么比例关系?

  ①速度一定,路程和时间()②路程一定,速度和时间()

  ③单价一定,总价和数量()④全校学生做操,每行站的人数和站的行数()

  2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;

  每小时行80千米,要行x小时。

  指名学生口答,老师板书。

  二、回顾整理,构建网络

  (一)比的知识:

  1.谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

  2.说一说用比的知识可以解决哪些实际问题。

  让学生体会比在解决实际问题时的应用。

  3.完成教科书p83“回顾与交流”的3题

  两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。

  (二)比和分数、除法的联系

  1.你会填写这个的等式吗?学生填好后,再问:

  2.你的.根据是什么?(比和分数、除法的联系)

  3.那么比和分数、除法的联系是什么?它们的区别呢?

  4. b为什么不能等于0?小组议一议,再交流。

  5.谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)

  (三)比例尺的知识

  什么是比例尺?

  (四)正比例,反比例的知识:

  (1)小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。

  (2)班内交流,全班分享

  (3)全班同学进行优化,形成知识网络图。

  变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺

  三、重点复习,强化提高:

  1.一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

  (1)学生独立思考

  (2)同桌交流

  3)全班交流

  a自然语言b列表c画图d关系式

  2.举出生活中正、反比例的例子

  3.完成课本84页巩固与应用

  独立完成,班内交流。

  四、自主检测,完善提高:

  判断并说明理由

  (1)出油率一定,香油的质量与芝麻的质量。

  (2)一捆100米长的电线,用去的长度与剩下的长度。

  (3)三角形的面积一定,它的底和高。

  (4)一个数与它的倒数。

  五、完成后班内交流,这节课你有什么收获?板书设计

  正比例和反比例

  比比例、应用

  分数、比、除法之间的关系

  课后反思

  本课时有以下特点:

  1、抓住复习起点,以小组合作的形式自主讨论复习,既增强了学生的主动性和自觉性,也面向全体学生进行查漏补缺。

  2、借助表格的方式来整理复习,更直观地体会比和比例、正比例和反比例的知识点和不同之处。

  3、能整合所有的知识,运用多种方法解决简单的实际问题,巩固知识。

正比例与反比例的教案5

  目标

  1.结合具体的情境,体会生活中存在着大量相关联的变量;明白一个量变化,另一个量也会随着发生变化的特点。

  2.让学生通过观察图表等活动,尝试着用自己的语言描述两个变量之间的关系。

  3.培养学生认真观察的良好习惯,感受生活中处处有数学。重点找出变量并体会量之间存在着的关系。重点突破引导学生通过观察、分析,寻找表格、图象中变量之间的变化情况,掌握变量之间的关系。难点用语言描述两个变量之间的关系。难点突破掌握了变量之间的关系后,引导学生用合适的语言把这种关系表达出来。教法主要有讲解法、谈话法、引导发现法、以教促学法。学法通过动手实践、自主探究和合作交流的学习方式,理解具体情境中的各种变量之间的关系。

  课前准备教师课件。学生调查自己从出生到现在的身高和体重变化情况。过程引入

  1.同学们,你们从出生到现在,身高是如何变化的?先估计一下,再说一说?(引导学生交流与讨论。)

  2.我们不但只有身高在变化,我们的体重也在变化,你们知道自己从出生到现在的体重变化情况吗?请个别学生说说自己出生到现在体重的变化情况。

  3.我们知道从出生到现在,身高和体重都在随着年龄的增长而增长,也就是说身高和体重都是两个变化的量。今天这节课,我们就来认识变化的量。(板书课题:变化的量)

  【设计意图】

  通过让学生课前调查自己身高和体重的变化,引出课题,让学生感受到生活中存在着许多变化的量,引起学生探究这些变化的量的欲望。

  探新(一)探究妙想的`体重变化情况。

  过渡:同学们,刚才我们调查了几名同学从出生到现在的身高和体重变化情况,淘气和笑笑也在调查妙想的体重变化情况。他们还画出了图表,我们一起去看看吧!课件出示教材第39页妙想体重变化情况的表格和图。

  1.请同学们仔细观察表格和图,看看表格和图中都有哪些数学信息?(学生认真观察,寻找数学信息。)

  2.提问:通过观察,你发现哪些量在发生变化?引导学生回答:妙想的年龄和体重在变化。

  3.追问:妙想6周岁前的体重是如何随年龄的增长而变化的?

  学生回答预测:

  生A:妙想的体重随年龄的增长,越来越重。

  生B:我发现妙想从出生到2周岁这段时间体重增长最快。

  4.质疑:人的体重是不是随着年龄的增长而一直增长?

  学生根据生活经验,可能会回答:这是不一定的,因为有的人的体重增长到一定时候,就停止增长了。老年人随年龄的增长,体重还会减少。

  小结:人的年龄和体重是互相关联的两个量,人的体重随年龄的变化而变化。

  (二)探究骆驼的体温变化情况。

  过渡:刚才,我们通过观察图表,分析了妙想从出生到6周岁前的体重变化情况。下面,我们继续来探究骆驼的体温变化情况,大家请看大屏幕。课件出示骆驼体温变化情况统计图,要求学生观察。

  1.提问:表中横轴和纵轴分别表示什么?引导学生回答:纵轴表示温度,横轴表示时间。

  2.追问:图中弯曲的线表示的是什么?引导学生回答:弯曲的线表示的是骆驼的体温在48小时内的变化情况。

  3.再追问:同学们,通过观察,你们发现了哪些量在变化?引导学生观察后回答:温度和时间在变化。

  4.请学生结合图表下面提出的问题,分析每个问题的答案。

  (1)学生观察分析,教师巡视。

  (2)小组交流,引导学生把自己找到的答案与同学进行交流,在小组内形成统一的意见,反馈汇报。

  5.提问:通过刚才的分析,你们发现骆驼体温的变化有什么规律?引导学生回答:骆驼的体温随着时间的变化而变化,而且变化的周期是一天。

  (三)寻找生活中变化的量。

  过渡:同学们通过探究,了解了年龄和体重、温度和时间这些变化的量。其实在生活中,像这样的例子还有很多,你能找出一个量随着另一个量的变化而变化的例子吗?先想一想,再和同学互相交流。

  1.学生思考回忆后,把找到的相关例子和同学交流。

  2.教师指名说一说自己发现的生活中一个量随另一个量变化而变化的例子。汇报时,学生只要说的是两个相关联的变化的量,教师都应予以肯定。

  【设计意图】充分利用教材的情境图,让学生在观察、分析、交流中体会到生活中存在着大量相关联的变量,我们可以利用图表等形式表示变量之间的关系。

  巩固1.完成教材第40页“练一练”第1题。

  (1)学生读题,明确题目要求。

  (2)分析当底面积一定时,圆柱的体积与高之间的关系。

  (3)指名汇报。学生回答预测:当圆柱的底面积等于10c㎡时,圆柱的体积随圆柱高的变化而变化,体积随高的增加而增加。

  2.完成教材第40页“练一练”第2题。

  (1)学生独立思考后,小组交流。

  (2)全班汇报,集体订正。学生汇报预测:

  (1)转动过程中,到达的最高点是18米,最低点是3米。

  (2)转动第一圈的过程中,0至6分时高度在增加,6至12分时,高度在降低。

  (3)到达最高点后,下一次再到达最高点需要经过12分钟。

  3.完成教材第40页“练一练”第3题。

  (1)学生独立思考,分析数量关系。

  (2)引导学生尝试用字母表示出数量关系。

  (3)小组交流后反馈汇报。引导学生回答:t=n÷7+3。

  【设计意图】数学知识的巩固与深化,不仅靠感知,还要辅以灵活、有层次的练习。通过巩固拓展练习,不但使学生所学的知识进一步深化,而且使学生的思维在练习中得到发展,创新素质得到锤炼。小结通过本节课的学习,你有哪些收获?通过本节课的学习,我们了解了很多变化的量,如:年龄和体重是两个变化的量,时间和骆驼的体温是两个变化的量。反思本节课主要是感受变量之间的关系。

  为了遵循“学习不是由教师向学生传递知识,而是学生自己建构知识的过程”这一理念,本节教学主要从以下几个方面来探索:

  (1)以观察分析为主要手段,引导学生通过观察、分析,发现相关联的两种量之间的关系,从而体现学生学习的自主性,提高学生的观察能力;

  (2)充分利用学生原有的知识以验,教学中,把学生原有的知识、经验作为新知的生长点,引导学生从原有知识、经验中“生长”出新的知识、经验;如让学生在理解相关联的两个变量的基础上,从生活中寻找相关联的量,激发学生对原有知识经验的回忆;

  (3)加强学生之间的交流互动,在教学中,让学生在观察分析的基础上,通过小组交流、同伴交流等形式,互相合作,共同获取知识。对于初次接触函数知识的小学生来说,对量的理解还有一定的难度,教学中虽然作了努力,但有些学困生仍不能透彻地理解量的含义,这是本节课教学中的失误,在今后的教学中有待改进。

  板书变化的量两个变量:

  1.年龄和体重的变化;

  2.时间和骆驼体温的变化。

正比例与反比例的教案6

  一、教学目标:

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

  二、教学重、难点:

  1、重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  2、难点:自主探究比例的基本性质。

  三、教学准备:

  CAI课件

  四、教学过程:

  1、复习、导入

  (1) 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  (2) 课件显示:算出下面每组中两个比的比值

  师:3:5 18:30

  师:0.4:0.2 1.8:0.9

  师:5/8:1/4 7.5:3

  师:2:8 9:27

  师评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。

  2、认识比例的意义

  (1)认识意义

  师:指名口答上题每组中两个比的比值,课件依次显示答案。

  师:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  (2)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  师:最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  师:数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  师评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。

  师:今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  生答:想研究比例的意义,学比例有什么用?比例有什么特点……

  师:那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。(课件显示:表示两个比相等的式子叫做比例。)

  师:学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  师评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。

  3、练习

  (1) 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的'比,再判断这两个比能否组成比例。学生独立完成。集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  (2)完成练习纸第一题。一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  师:分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  师:分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  师评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。

  师:刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  (2) 课件出示:3 : 5 = 18 : 30

  (3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  师评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  6、探究比例的基本性质

  (1)课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  (2) 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10、  3:6=5:10、  5:3=10:6、  6:3=10:5

  (3)引导发现规律

  师:还有不同的乘法算式吗?(没有,交换因数的位置还是一样)  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  师:那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  师:学生先独立思考,再小组交流,探究规律。  (板书:两个外项的积等于两个内项的积。)

  师评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。

  (4)验证:是不是任意一个比例都有这样的规律?

  师:课件显示复习题(4组),学生验证。

  师:学生任意写一个比例并验证。

  师:完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  师评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。

  (5)思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  (6)小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  7、 综合练习

  (1)完成练习纸2、3、4

  (2)附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  师评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。

  五、全课总结(略)

正比例与反比例的教案7

  课前准备

  教师准备多媒体课件

  教学过程

  谈话导入

  师:谁能用比的知识说一说我们班男女同学的人数情况?

  (指名汇报)

  师:今天我们就一起来整理和复习比和比例的有关知识。

  回顾与整理

  1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

  预设

  生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

  生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

  生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

  生4:配制农药会应用到比的知识;地图上一般都有比例尺。

  ……

  (2)说一说比与比例有什么区别。

  比

  比例

  各部分名称

  0.9 ∶ 0.6=1.5

  前项后项比值

  基本性质

  比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  在比例里,两个内项的积等于两个外项的积。

  (3)出示教材83页“回顾与交流”2题。

  学生独立完成,思考比、分数、除法之间的关系,并全班交流。

  预设

  生1:除法算式中的被除数相当于分数的.分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

  生2:除法算式的商相当于分数的分数值,相当于比的比值。

  强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

正比例与反比例的教案8

  教学内容:P50第3——8题,正反比例关系练习。

  教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

  教学过程:

  一、揭示课题

  二、基本知识练习

  1、正、反比例意义

  提问:什么叫正比例关系,什么叫反比例关系?用字母式子怎样表示正、反比例的关系?判断成正比例或反比例关系的关键是什么?

  2、练:950第4题。

  先说出数量关系式,再判断成什么比例?

  三、综合练习

  1、练习:P50第5题

  想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

  口答并说说怎样想的。

  2、做练习十二第6题、第7题

  第7题评讲时追问:在一个乘法关系式里,什么情况下某两个数成反比例:什么情况一某两个数或正比例?

  3、做第8题

  提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

  四、延伸练习

  下面题里的'数量成什么关系?你能列出式子表示数量之间的相等关系吗?

  1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

  2、某工厂3小时织布1800米,照这样计算,8小时织布X米。

  五、课堂

  通过这节课的练习,你进一步认识和掌握了哪些知识?

  六、作业

  《练习与测试》P25第五、六题。

正比例与反比例的教案9

  1、成正比例的量

  教学内容:成正比例的量

  教学目标:

  1.使学生理解正比例的意义,会正确判断成正比例的量。

  2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  教学重点:正比例的意义。

  教学难点:正确判断两个量是否成正比例的关系。

  教学过程:

  一揭示课题

  1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

  在教师的此导下,学生会举出一些简单的例子,如:

  (1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

  (2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

  (3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

  (4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

  2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

  二探索新知

  1.教学例1

  (1)出示例题情境图。

  问:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

  (2)出示表格。

  高度/㎝24681012

  体积/㎝350100150200250300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25㎝2。

  板书:

  教师:体积与高度的比值一定。

  (2)说明正比例的意义。

  ①在这一基础上,教师明确说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

  ②学生读一读,说一说你是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一,两种相关联的量;

  第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三,两个量的比值一定。

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

  (4)想一想:

  师:生活中还有哪些成正比例的量?

  学生举例说明。如:

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  2.教学例2。

  (1)出示表格(见书)

  (2)依据下表中的数据描点。(见书)

  (3)从图中你发现了什么?

  这些点都在同一条直线上。

  (4)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的'体积是多少?

  生:175㎝3。

  ②体积是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  生:水的体积是350㎝3,相对应的点一定在这条直线上。

  (5)你还能提出什么问题?有什么体会?

  通过交流使学生了解成正比例量的图像特往。

  3.做一做。

  过程要求:

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  比值表示每小时行驶多少千米。

  (2)表中的路程和时间成正比例吗?为什么?

  成正比例。理由:

  ①路程随着时间的变化而变化;

  ②时间增加,路程也增加,时间减少,路程也随着减少;

  ③种程和时间的比值(速度)一定。

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?

  (5)你还能提出什么问题?

  4.课堂小结

  说一说成正比例关系的量的变化特征。

  三巩固练习

  完成课文练习七第1~5题。

  2、成反比例的量

  教学内容:成反比例的量

  教学目标:

  1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

  2.根据反比例的意义,正确判断两种量是否成反比例。

  教学重点:反比例的意义。

  教学难点:正确判断两种量是否成反比例。

  教学过程:

  一导入新课

  1.让学生说一说成正比例的两种量的变化规律。

  回答要点:

  (1)两种相关联的量;

  (2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

  (3)两个量的比值一定。

  2.举例说明。

  如:每袋大米质量相同,大米的袋数与总质量成正比例。

  理由:

  (1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

  (2)大米的袋数增加,大米的总质量也相应增加,大米的袋数

  减少,大米的总质量也相应减少;

  (3)总质量与袋数的比值一定。

  所以,大米的袋数与总质量成正比例。

  板书:

  3.揭示课题。

  今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

  板书课题:成反比例的量[ 内 容 结 束 ]

正比例与反比例的教案10

  正比例和反比例是在同学学习了比和比例的基础上进行教学的,主要让同学结合实际情境认识成正比例和反比例的量。知识与技能方面的教学目标是:经历从具体实例中认识成正比例和反比例的量的过程,理解正比例、反比例的意义,学会判断两种相关联的量是否成正比例或反比例。正比例、反比例都是表示两个相关联的变量之间关系的一种数学模型,都是在一定的条件下,一种量随着另一种量的变化而变化。本单元的教材分“成正比例的量”和“咸反比例的量”两个局部,先教学正比例的认识,再教学反比例的认识。在同一节课里引导同学探索两种量在变化过程中存在的规律,并用关系式表示出规律,有助于同学掌握正比例、反比例概念的实质,因此我们抓住知识的内联与实质规律,重组正比例、反比例教学:把认识成正比例的量和认识成反比例的量的两个例题整合起来,布置在一节课里进行教学,让同学在同一实例的情境中,感悟、体会并理解正比例、反比例的意义。

  重组教材,创编文本。将教材中的例1(结合生活中的实例认识成正比例的量)和例3(结合生活中的实例认识成反比例的量)整合成同一问题情境下有前后联系的两道例题:保存原教材中的例1,引导同学认识成正比例的量;根据例1的情境,创编新的例2,替代原教材中的例3,引导同学认识成反比例的量。将教材中的例2(认识正比例图像)放到认识正比例、反比例之后进行教学。

  抓住实质,内联教学。成正比例的量的实质规律是“比值一定”,成反比例的量的实质规律是“积一定”,引导同学探究发现这两种实质规律是教学的主要任务,教学时应掌握好这一点。本设计将例1和例2整合到同一情境下,从同学熟悉的时间、速度和路程这三个量之间的关系动身,引导同学对比研究,在观察、讨论交流中发现:①例1和例2中的.两种量都是相关联的量,都是在一定的条件下,一种量随着另一种量的变化而变化。②例1中两种相关联的量的变化方向是相同的,一种量扩大(或缩小),另一种量也随着扩大(或缩小);例2中两种相关联的量的变化方向是相反的,一种量扩大,另一种量反而缩小。③例1中扩大、缩小的规律是“比值一定”,例2扩大、缩小的规律是“积一定”。这样抓住正比例、反比例的实质和联系进行教学,有助于同学加深对正比例、反比例意义的理解,从整体上掌握各种量之间的比例关系。

  对比练习,沟通联系。同学对成正比例的量和成反比例的量有了一定的认识后,还需要一定的练习。为了协助同学逐步提高判断成正比例、反比例的量的能力,本设计中的练习分三个层次:一是判断咸正比例的量的练习;二是判断成反比例的量的练习;三是正比例、反比例对比练习,成比例的量与不成比例的量的对比练习。比较和辨析,有助于同学更好地掌握正比例、反比例概念的实质

正比例与反比例的教案11

  教学目标:

  1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

  2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

  教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

  教学准备 :实物投影

  教学预设:

  一、概念复习:

  1、提问:怎样的两个量成正、反比例?

  根据学生回答板书字母关系式。

  二、书本练习:

  1、第9题。

  (1)观察每个表中的数据,讨论前三个问题。

  要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

  (2)组织学生讨论第四个问题。

  启发学生根据条件直接写出关系式,再根据关系式直接作出判断。

  2、第10题。

  (1)看图填写表格。

  (2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的.计算结果作出判断。

  要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

  (3)启发学生运用有关比例尺的知识进行解答。

  3、第11题。

  填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

  4、第12题。

  引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

  5、第13题。

  让学生小组进行讨论,教师指导有困难的学生。

  三、补充练习

  1、对比练习:判断下列说法是否正确。

  (1)圆的周长和圆的半径成正比例。( )

  (2)圆的面积和圆的半径成正比例。( )

  (3)圆的面积和圆的半径的平方成正比例。( )

  (4)圆的面积和圆的周长的平方成正比例。( )

  (5)正方形的面积和边长成正比例。( )

  (6)正方形的周长和边长成正比例。( )

  (7)长方形的面积一定时,长和宽成反比例。( )

  (8)长方形的周长一定时,长和宽成反比例。( )

  (9)三角形的面积一定时,底和高成反比例。( )

  (10)梯形的面积一定时,上底和下底的和与高成反比例。( )

正比例与反比例的教案12

  学习目标 :加深对正比例意义的理解,能正确判断两个相关联的量是不是成正比例。

  学习重点 :进一步掌握正比例的意义。

  学习难点: 能正确判断两个相关联的量是不是成正比例。

  教学过程:

  一、温故互查:

  1、正比例的意义是什么?

  2、如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一

  定),正比例关系可以怎样表示?

  3、齐读正比例儿歌。

  二、自学感悟:

  “想一想”

  (1)正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  (2)父子的年龄成正比例吗?为什么?

  三、合作交流:

  在组内交流以上问题的解决过程。

  四、展示点评:

  正方形的周长随边长的变化而变化,并且周长与边长的比值都是

  4,所以两个量成正比例;正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以两个量不成正比例。

  虽然乐乐岁数增加,爸爸岁数也增加,但是乐乐岁数与爸爸岁数的比值不是一个确定的值,所以父子的年龄不成正比例。

  五、巩固练习:

  判断:

  (1)减数一定,被减数和差成正比例。

  (2)三角形的底一定,三角形的面积和它的高成正比例。

  (3)成正比例的两个量,一种量扩大,另一种量也随着扩大。

  六、拓展延伸:

  找一找生活中成正比例的例子,并与同伴交流。

  板书设计:

  正比例

  y =k(一定)x

  教学反思:

  我认为本节课最大的特点便是提供了丰富的材料,选择了师生互动,以教师的“引”为主导,学生为主体,呈现给学生丰富的感性材料,让学生在互动交流中去理解成正比例的量这一概念。

  3、画一画

  学习目标:

  1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

  2、会在方格纸上描出成正比例的'量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  3、利用正比例关系,解决生活中的一些简单问题。

  学习重点: 在具体情境中,通过“画一画”的活动,初步认识正比例图象。

  学习难点: 利用正比例关系,解决生活中的一些简单问题。 教学过程:

  一、自主尝试:

  判断下面的量是否成正比例关系?

  1、每行人数一定,总人数和行数。

  2、长方形的长一定,宽和面积。

  3、长方体的底面积一定,体积和高。 4、分子一定,分母和分数值。

  5、长方形的周长一定,长和宽。

  6、一个自然数和它的倒数。

  7、正方形的边长与周长。

  8、正方形的边长与面积。

  9、圆的半径与周长。

  10、圆的面积与半径。

  11、什么样的两个量叫做成正比例的量? 二、合作探究:

  小组合作完成课本44页例题重点找出正比例图像的特征。 三、汇报点评:

  小组汇报,集体点评。

  四、归纳总结:

  1、表示成正比例关系的两个相对应量中的各点在同一直线上,即正比例关系的图像是一条经过原点的直线。

  2、从图像中可以直观看到两种量的变化情况。

  五、巩固练习:

  完成课本45页“练一练”第1、2、题

  六、拓展延伸:

  完成课本45页“练一练”第3题

  板书设计:

  画一画

  正比例关系的图像是: 一条经过原点的直线。

  教学反思:

  在本节课教学设计中我本着以下几个要求:1、正比例是研究两个量之间的一种关系。2、知道正比例是一种怎样的图像。3、我们为什么要认识正比例图像在利用图像解决问题这一环节,我着重让学生利用图像解决一个又一个问题中体会认识正比例图像的好处,从而使学生充分感受到我们所学的知识是与我们的生活密切相关的。

  4、反比例

正比例与反比例的教案13

  教学内容:

  P47~48,例7、正、反比例的比较。

  教学目的:

  进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

  教学过程:

  一、复习

  判断下面两种理成不成比例,成什么比例,为什么?

  (1)单价一定,数量和总价。

  (2)路程一定,速度和时间。

  (3)正方形的边长和它的面积。

  (4)工作时间一定,工作效率和工作总量。

  二、新授。

  1、揭示课题

  2、学习例7

  (1)认识:“千米/时”的读法意义。

  (2)出示书中的问题要求学生逐一回答。

  (3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

  (4)填空:用下面的形式分别表示两个表的内容。

  当()一定时,()和()成()比例关系。

  还有什么样的依存关系?

  (5)教师作评讲并。

  (6)用图表示例7中的两种量的关系。

  指导学生描点、连线

  观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?

  在这条直线上,当时间的值扩大时,路程的'对应值是怎样变化的?时间的值缩小呢?

  用同样的方法观察右表。

  3、正、反比例的特点(异同点)

  由学生比、说

  三、巩固练习

  1、练一练第1、2题

  2、P49第1题。

  四、课堂:

  正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

  五、作业

  P49第2题(1)(4)(5)(6)(9)

  六、课后作业

  1、P49第2题(2)(3)(7)(8)(10)

  2、收集生活中正、反比例关系的量并分析。

正比例与反比例的教案14

  教学内容:教科书94页“练习与实践”的第7~10题。

  教学目标:

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

  2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

  教学重点:

  使学生加深认识比例的意义和基本性质。

  教学难点:

  能判断两个比能能不能组成比例,能比较熟练地解比例。

  教学准备:多媒体

  教学过程:

  一、与反思

  今天我们一起来复习正比例和反比例相关知识。

  怎样判断两种量是否成正比例或反比例关系?

  学生交流

  二、练习与实践

  1.完成“练习与实践”第7题

  让学生先独立完成,再点评。

  2.完成“练习与实践”第8题

  引导学生列举几组对应的数值

  再分析每组中两个数的关系,再判断。

  3.完成“练习与实践”第9题

  第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的`耗油量是6升。)

  第2小题让学生在教材的方格图上描点、连线,

  引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

  体会数形结合在解决问题方面的价值。

  4.完成“练习与实践”第10题

  什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  怎样求图上距离?怎样求实际距离

  学生量出的图上距离。

  利用的线段比例尺,求出相应的实际距离

  三、

  通过学习你有什么收获?

  学生交流

  四、作业

  完成《练习与测试》相关作业。

  板书设计

  关于正比例和反比例的复习

正比例与反比例的教案15

  教学内容:

  教科书69、70页练习十三第9~13题

  教学目标:

  1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

  2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

  教学重难点:

  进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

  教学准备:实物投影

  教学过程:

  一、复习

  1、复习正反比例的意义。

  要求学生说出成正反比例量的关键,根据学生回答板书关系式。

  2、判断下面各题中的两种量是不是成比例,成什么比例

  (1)圆锥的体积和底面积。

  (2)用铜制成的零件的体积和质量。

  (3)一个人的身高和体重。

  (4)互为倒数的两个数。

  (5)三角形的底一定,它的面积和高。

  (6)圆的周长和直径。

  (7)被除数一定,商和除数。

  二、练习

  完成练习十三9~13题

  1、第9题。

  观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

  2、第10题。

  (1)看图填写表格。

  (2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

  (3)启发学生运用有关比例尺的知识进行解答。

  3、第11题。

  填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

  4、第12题。

  引导学生说说每题中的.哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

  5、第13题。

  让学生小组进行讨论,教师指导有困难的学生。

  三、补充练习

  1、a与b成正比例,并且在a =1。。时,b的对应值是0。15

  (1)a与b的关系式是a/b=()

  (2)当a=2。5时,b的对应值是()

  (3)当b=9。2时,a的对应值是()

  2、甲、乙两人步行速度的比为5:6,从A地到B地,甲走12小时,乙要走几小时?

【正比例与反比例的教案】相关文章:

正比例反比例教学反思优选01-31

《正比例的意义》教案12-09

《正比例》优秀教案02-27

反比例函数教案01-15

《正比例的意义》教案9篇02-17

反比例函数教案15篇02-14

关于初中数学反比例函数教案10-21

六年级反比例教案07-06

正比例教学反思03-14