当前位置:9136范文网>教育范文>教案>六年级数学教案:比的应用

六年级数学教案:比的应用

时间:2024-04-07 18:05:27 教案 我要投稿

六年级数学教案:比的应用

  作为一名老师,通常需要用到教案来辅助教学,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写才好呢?以下是小编精心整理的六年级数学教案:比的应用,仅供参考,希望能够帮助到大家。

六年级数学教案:比的应用

六年级数学教案:比的应用1

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。解:设买来大米X千克。x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的`

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

  教学追记:

  本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

六年级数学教案:比的应用2

  求一个数比另一个数多或少百分之几的应用题是求一个数是另一个数的百分之几问题的发展,是在求一个数比另一个数多(或少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1。帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几。)

  (3)在学生回答的同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的`公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

六年级数学教案:比的应用3

  学材分析

  按比例分配的练习。

  学情分析

  已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

  学习目标

  能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的'意义,提高解决问题的能力。

  导学策略

  练习、反思、总结。

  教学准备

  小黑板

  教师活动

  学生活动

  一、基本练习:

  (一)六1班男生和女生的比是3:2

  1.男生人数是女生人数的()

  2.女生人数是男生人数的(),女生人数和男生人数的比是().

  3.男生人数占全班人数的(),男生人数和全班人数的比是().

  4.全班人数是男生人数的(),全班人数和男生人数的比是().

  5.女生人数占全班人数的(),女生人数和全班人数的比是().

  6.全班人数是女生人数的(),全班人数和女生人数的比是().

  (二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

  ?

  把250按2比3分配,部分数各是多少

  二、变式练习:

  1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

  2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?

  3+5=8

  1203/8=45(个)1205/8=75(个)

  2+3=5

  2502/5=1002503/5=150或250-100=150

  4+5=9

  364/9=16365/9=20或36-16=20

  1+5000=5001

  0.51/5001=0.55001=2500.5(千克)

  教学反思

  提高练习的灵活度,以及练习的形式。

六年级数学教案:比的应用4

  教学目标

  1、认识分数应用题的特点,理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  2、认识求一个数的几分之几是多少的应用题和求一个数的.几倍是多少的应用题之间的联系。

  教学重难点

  理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习引新

  二、教学新课

  三、巩固练习

  1、出示复习题(见幻灯课件)

  问:把哪个量看作单位1?题中每个分数表示的意义是什么?

  2、做15页复习题

  问:为什么要用乘法计算?这里的一个数和分数相乘表示什么意义?

  3、引入新课--学习分数应用题

  1、教学例1

  (1)出示例1,学生读题

  找条件,想问题,画线段图,想方法

  (2)分析两种不同的方法

  找相同点、不同点以及存在的联系

  (3)巩固练习做17页练一练1

  2、教学例2

  (1)出示例1,学生读题

  找条件、想问题、画线段图

  (2)列式并说说想的过程

  重点指出把谁看作单位1

  3、教学想一想

  (1)读题、思考、画线段图

  问把谁看作单位1

  (2)列式

  (3)问:算式中的3/2是什么分数?

  (4)说明:条件里一个数量是另一个数量的几分之几,可以是假分数,也可以是真分数。

  (5)做练一练2

  4、小结

  问:今天学习的分数应用题都告诉我们哪两个条件,要求的是什么问题?分析数量关系时都是要先确定哪个数量?

  1、说一说下面各题里单位1的量

  (见幻灯课件)

  2、做练习三第1题

  3、做练习三第5题

  问:这三题有什么相同的地方?都用什么方法?

  4、作业

  练习三第2~4

  课后感受

  初次接触应用题,学生在说想法上还存在一点问题,常常是明白但不知道该怎么表达。特别是数量关系方面,可加强说想法的练习,形式也可多样些。

六年级数学教案:比的应用5

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  (略)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位1,而且单位1的量者是未知的.,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

  三、巩固练习.

  (一)请你根据算式补充不同的条件.

  学校有苹果树30棵,________________,桃树有多少棵,

  (二)分析下面的数量关系,并列出算式或方程.

  1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

  2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

  3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

  4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

  四、归纳总结.

  今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

六年级数学教案:比的应用6

  学材分析

  教学重点:

  熟记公式。

  教学难点:

  解决实际问题

  学情分析

  学生已有一定的基础

  学习目标

  1.进一步理解掌握圆的周长的概念、圆的半径、直径、周长之间关系,熟记r=、d=2r、C=2πr、C=πd等公式。

  2.能运用圆的周长公式正确解决一些简单的实际生活问题。

  导学策略

  导练法、迁移法、例证法

  教学准备

  小黑板、投影

  导学流程设计:导入--探究新知--巩固练习--总结

  教师预设

  学生活动

  一.引入

  1.启发提问:要画一个指定大小的圆,必须知道什么?

  2.小黑板出示练习

  先问:要求所画圆的半径分别为3.5㎝、2㎝时,圆规两脚之间的距离取几?要求圆直径为5㎝呢?要求圆周长为18.84㎝呢?然后指名板演,其余各自做在草稿纸上。做好后,让板演者说说解答思路。在学生讲思路的同时相应地在黑板上写出r=、r=、d=2r、d=、C=2πr、C=πd、等公式。最后指出“C”表示的是什么长度?

  (书面描、涂,只要选择其中一个圆。)

  3、思考:什么决定圆的大小?什么决定圆的位置?

  3.揭示课题。

  二、展开

  1.圆的半径、直径、周长间的.关系的强化练习

  2.利用圆周长计算公式解决简单的实际问题的练习

  P12练一练1--3

  在练习中必须让学生知道在实际生活中很多时候所得到的数据基本上不是准确的,3、判断题。

  三.总结

  四.作业

  练习

  六年级

  强化练习

  教学反思

  教后记:好的开端是成功的一半,有了前一节课的深刻理解,后面的练习变的简单了,重点应放在提高学生的计算的正确率上。

六年级数学教案:比的应用7

  学习目标

  1、使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  导学策略

  引导学生将比转化成分数、份数,指导学生试算

  教学准备

  学生课前作调查;

  教师活动

  学生活动

  (一)导入:

  1、看题目:“比的应用”,你想知道什么?

  2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。

  3、小结:通过调查,我们已经初步感受到比和我们的日常生活有密切的联系。今天,我们就随一位小朋友:小明一起去看看,比在生活中有什么用处?

  (二)新课:

  1、配置奶茶:

  星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。

  师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。

  (1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?

  (2)小明想要配制220毫升的奶茶,

  (a)先要解决什么问题?(奶和茶各取多少毫升?)

  (b)请你先独立计算一下,奶和茶各取多少毫升?

  (4)评价:

  (a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?

  (b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的`比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)

  2、计算电费:

  (1)刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”

  (a)你觉得小明家应付多少元电费?你是怎么想的?

  (b)你为什么不同意他的想法?(不公平)

  (2)其实小明这个小主人,当得还是挺合格的。他告诉王叔叔,他们三户居民都装了分电表。上个月用电情况是这样的:(显示下表)

  (3)同学们,你们能帮小明算一算吗?

  3、分配奖金:

  我们运动队的队员们每天都进行刻苦训练。辛勤的汗水终于换来了丰收的果实。在前不久举行的全市中小学生运动会上,他们夺得了第三名的优异成绩。下面是运动员的参赛项目个数和得分情况:(显示表格)

  学校决定共给这几位同学1200元的奖金。假如让你来分配,你将怎么分配这些奖金呢?

  (5)小结:到底学校会怎么奖励运动员们,我们下午见分晓。不过,不管以怎样的形式奖励运动员,重要的不在于奖金的多少,而在于对他们平时的刻苦训练以及赛场上的奋力拼搏的一种肯定。

  三、课堂小结:

  今天这堂课我们学习了“按比例分配”,你有什么收获?

  说一说你是怎么获得这些信息的。

  学生回答,依次显示:

  (a)奶和茶共有2+9=11份,奶占2份,茶占9份;

  (b)奶占奶茶的2/11,茶占奶茶的9/11;

  (c)奶是茶的2/9,茶是奶的9/2倍。

  计算好以后,前后4人小组讨论一下,你是用什么方法解决这个问题的?说说你的思路。

  (c)学生独立计算后讨论。

  (3)集体交流:说说你是怎样计算奶和茶各取多少毫升的?每一步表示什么意思?

  生答,师板书,答案可能有:

  (a)2+9=11(b)2+9=11(c)2+9=11

  220÷11=20(毫升)220×2/11=40毫升220×9/11=180(毫升)

  20×2=40(毫升)220×9/11=180毫升180×2/9=40(毫升)

  20×9=180(毫升)

  (d)4.5x+x=220(e)......

  x=40

  4.5x=180

  (a)独立解答,个别板演;

  (b)集体订正;

  (c)这个题目没有给出比例,你是怎么想的?

  (d)小明算得和同学们一样。(逐一显示答案)

  (1)请你设计出分配方案,然后在小组中交流一下你的分配方案。

  (2)学生独立计算,小组讨论。

  (3)集体交流,师板书。(平均分是一种特殊的比例,其实就是1:1:1:1:1:1)

  (4)你比较喜欢哪一种分配方案,为什么?

六年级数学教案:比的应用8

  教学内容:教科书第35页的第45题,练习九的第46题。

  教学目的:使学生进一步掌捏用比例解答应用题的方法,提高解答应用题的能力。

  教具准备:小黑板。

  教学过程:

  一、复习用比例解答应用题

  教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答。现在我们就来复习一下。

  1,用小黑板出示第35页第4题:

  我国发射的`科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时?

  教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的。

  提问:

  这道题有几个相关联的量?它们成什么关系?为什么?(有两个相关联的量,因图为 =速度,而速度是一定的,所以转的周数同时间成正比例关系。)

  指名说说这道题用比例的知识怎样解答。当学生说出后,教师板书出解答过程:

  解:设运行14周要用X小时。

  6:10.6=14:X

  6x=10.614

  X=

  x 24、7

  答:运行14周要用24.7小时。

  2.用小黑板出示第35页第5题:

  一个农业专业组乎整土地,原来打算每天平整0.4公顷,15天可以完成任务。结果12天完成了任务,平均每天平整多少公顷?

  指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。

  3.总结。

  教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。

  二、课堂练习

  完成练习九的第46题。

  1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。

  2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。

  3.第6题,让学生独立完成,集体订正时,说说解答思路。

六年级数学教案:比的应用9

  教学内容:

  用比例知识解答应用题。

  教学目标:

  1.通过复习,使学生进一步掌握用正、反比例关系解答应用题的数量关系和解题方法,提高解答此类题的能力。

  2.培养学生的判断能力、灵活运用知识的能力。

  3.培养学生认真审题、认真思考的良好学习习惯。

  教学过程:

  1.基础知识训练。

  判断下面各题中的两种量成不成比例?成什么比例?(口答。)

  (1)工作总量一定,工作效率和工作时间。

  (2)速度一定,路程和时间。

  (3)绳子的长度不变,剪下的米数和剩下的米数。

  (4)单价一定,总价和数量。

  (5)煤的总量一定,每天烧煤量和能够烧的天数。

  (6)圆的半径和它的面积。

  学生回答后,可让他们说说正、反比例关系的相同点及不同点,正、反比例的判断方法。

  [订正:(1)成反比例(2)成正比例(3)不成比例(4)成正比例(5)成反比例(6)不成比例]

  2.对比练习,加深理解。

  教师谈话:我们已经学习了正、反比例的意义及正、反比例的应用题,这一节课要复习用比例的知识解答应用题。

  (1)教师提问:用正、反比例知识解答应用题的步骤是什么?关键是什么?

  先判断题中的数量关系成不成比例,成什么比例;再根据题中的比例关系,找到等量关系;然后把其中的未知数量用x表示,列出方程解答。关键是正确判断题中的数量关系成不成比例,成什么比例。

  (2)基本练习,区分比较。

  出示复习题。(全班同学动笔完成,指名板演。)

  ①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条路共用几天?

  ②修一条公路,计划每天修0.5千米,24天完成。实际每天修0.6千米。实际多少天修完?

  [订正:

  ①解:设修完这条路共用x天。

  答:修完这条路共用24天。

  ②解:设实际x天修完。

  答:实际20天完成。]

  订正时,可让学生说说解答正、反比例应用题的相同点和不同点是什么?

  [相同点是解题步骤和解题关键相同;不同点是正比例应用题根据商一定列比例式,反比例应用题根据积一定列比例式,所列出的比例式的形式不同。]

  (3)变式练习,加深理解。

  出示复习题。

  ①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?

  ②修一条公路,计划每天修0.5千米,24天完成。实际每天多修0.1千米。实际多少天可以修完?

  指导学生审题,并与前面的基本题进行比较,找出它们的相同点和不同点,然后让学生独立解答,指名板演。学生可能有如下的`解法:

  ①解法一:

  解:设修完这条路还要x天。

  解法二:

  解:设修完这条路一共用x天。

  答:修完这条路一共用21天。

  ②解:设实际x天可以修完。

  (0.5+0.1)x=0.5×24

  0.6x=12

  x=20

  答:实际20天可以完成。

  订正时,重点让学生说说这两题在列式时和前面基本题有什么不同,为什么?(强调列式时要注意对应关系。)

  (4)多种解法,培养能力。

  教师谈话:以上两题你们可以用其它方法解答吗?试一试。

  学生独立解答,指名板演。

  [订正:

  ①(12-1.5)÷(1.5÷3)=21(天)

  或:12÷(1.5÷3)-3=21(天)

  ②24×0.5÷(0.5+0.1)=20(天)]

  订正时,可先让学生说说解题思路,然后比较算术解法和用比例知识解答各自的优点。在此基础上,教师小结:这些应用题用算术方法解,计算时比较方便,但是遇到稍复杂的题目,用比例知识列方程解答容易思考。今后解答这类题时,可以根据具体情况,灵活选用适当的方法解答。

  3.巩固练习,灵活运用。

  (1)用比例知识解答。(全班动笔完成。)

  ①某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时行了50千米。照这样计算,行完全程需要多少小时?

  ②100克蜂蜜里含有34.5克葡萄糖。照这样计算,2千克蜂蜜含有多少克葡萄糖?多少克蜂蜜里含有207克葡萄糖?

  [订正:

  ①解:设行完全程用x小时。

  50x=40×7.5

  x=6

  ②解:设20xx克蜂蜜含有x克葡萄糖。

  解:设x克蜂蜜里含有207克葡萄糖。

  (2)选择合适的方法解答。(全班动笔完成。)

  ①学校买来塑料绳135米,先剪下9米做了5根跳绳。照这样计算,剩下的塑料绳还能做几根跳绳?

  ②生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。任务?

  [订正:①(135-9)÷(9÷5)=70(根)

  或:135÷(9÷5)-5=70(根)

  订正时,可让学生说说解题思路,如用其它的方法,只要列式合理,计算正确,就算对。

  (3)用多种方法解。(全班动笔完成。)

  大齿轮与小齿轮的齿数比是4∶3,大齿轮有36个齿,小齿轮有多少个齿?

  (4)思考题。(供学有余力的学生解答)

  一间长4.8米,宽3.6米的房间,用边长0.15米的正方形瓷砖铺地面,需要768块。在长6米,宽4.8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0.2米的正方形瓷砖,要用多少块?

  [提示:如果瓷砖的大小不变时,房间地面的面积与瓷砖的块数成正比例,所以只要求出两个房间地面的面积,就可以求出第二个房间需要多少块瓷砖。解法是:

  解:设需用x块瓷砖。

  如果都是在第一个房间铺,瓷砖的大小变了,总面积一定,瓷砖的块数与每块瓷砖的面积成反比例。(注意这里是与瓷砖的面积成反比例,而不是与瓷砖的边长成反比例。)解法是:

  解:设要用x块瓷砖。

  0.152×768=0.22×x

  x=432]

  4.布置作业。(略)

六年级数学教案:比的应用10

  教学目标:

  1、知识与能力:在具体情景中理解百分数的意义

  2、过程与方法:能解决有关百分数的实际问题

  3、情感态度价值观:体会百分数与现实生活的密切联系。

  教学重点:

  百分数的意义,作用。

  教学难点:

  百分数应用的正确计算。

  教学过程:

  一、我会填空。

  1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的价钱是这套西服的()%。

  2、五月份销售额比四月份增加15%,五月份销售额相当于四月份的`()%;四月份销售额比五月份减少()%。

  3、“六一”期间游乐场门票八折优惠,现价是原价的()%。儿童文具店所有学习用品一律打九折出售,节省()%。

  4、大豆种子的发芽率是98%,发芽数占种子总数的()%,未发芽数占种子总数的()%。

  5、从学校到文化宫,甲要20分钟,乙要16分钟。乙的速度比甲快()%,乙的时间比甲少()%。

  6、用80粒大豆种子作发芽试验,结果有4粒没有发芽。种子的发芽率是()%,如果需要3800棵大豆苗,需要播种()粒大豆种子。

  二、判断。

  1、甲班男生占全班人数的53%,乙班男生也占全班人数的53%。甲、乙两班男生人数相等。()

  2、100克糖放入400克水中,糖占糖水的20%。()

  3、甲数比乙数多35%,乙数比甲数少35%。()

  三、选择正确答案的序号填在括号里。

  1、如果甲数的60%等于乙数的(甲数和乙数都不为零),那么()。

  A、甲数<乙数B、无法确定

  C、甲数>乙数D、甲数=乙数

  2、下面的三种说法中,正确的是()

  A、一段铁线长80%米

  B、全班的及格率是102%

  C、男生人数比女生多5%

  3、一商品先提价15%,再降价15%。现价()原价。

  A、低于B、等于C、高于

  4、六年级男生有132人,比女生多10%,六年级有女生多少人?设女生有x人,方程不正确的是()

  A、x+10%x=132   B、x—10%x=132   C、(1+10%)x=132

  四、解方程。

  25%x = 75 60%x-35%x = 125

  五、解决问题。

  1、一个电饭煲的原价220元,现价160元。电饭煲的价格降低了百分之几?(百分号前保留一位小数)

  2、修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米。这条公路全长多少千米?

  3、西乡今年荔枝大丰收,产量达到3。6万吨,比去年增产了二成,西乡去年荔枝的产量是多少万吨?

  4、用汽车运一批水果,第一天运的吨数与总重量的比是1:3。如果再运15吨,就可以运完这批水果的一半。这批水果共有多少吨?

六年级数学教案:比的应用11

  【教学内容】

  北师大版小学数学六年级(上册)第四单元第54页“比的应用”。

  【教学目标】

  能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的'能力。

  【教学重点】

  1、理解按一定比例来分配一个数量的意义。

  2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。

  【教具准备】

  CAI课件

  【教学设计】

  教学过程

  教学过程说明

  一、 创设情境:

  1、出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?

  2、请同学们想一想:你认为怎么分合理?说一说你的分法。

  二、探究新知:

  1、出示题目:这筐橘子按3:2应该怎样分?

  (1)小组合作(用小棒代替橘子,实际操作)。

  (2)记录分配的过程。

  (3)各小组汇报:自己的分法。

  大班小班

  3个2个

  6个4个

  30个20个

  ............

  2、出示题目:如果有140个橘子,按照3:2又应该怎样分?

  (1)小组合作。

  (2)交流、展示。

  (3)比较不同的方法,找找他们的共同点。

  方法一:

  大班小班

  30个20个

  30个20个

  ............

  方法二:画图

  140个

  方法三:列式

  3+2=5

  140×=84(个)

  140×=56(个)

  答:大班分84个,小班分56个,比较合理。

  (还会出现用整数方法来列式计算的。)

  3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。

  三、巩固新知。

  完成课本第55页:

  1、独立试做:试一试

  2、独立试做练一练的1题、2题,3题抢答,并说明理由。

  四、知识拓展:数学故事。(共同探讨方法)

  五、总结:1、学生看书总结本节所学内容。

  2、提出自己还有些疑惑的问题。

  六、【板书】

  比的应用

  3+2=5

  140×=84(个)

  140×=56(个)

  答:大班分84个,小班分56个,比较合理

六年级数学教案:比的应用12

  教学内容:期初复习第1012题。

  教学目标:进一步巩固对长度单位和重量单位的认识,学会分析应用题,掌握应用题的.数量关系。

  教学重、难点:掌握并学会分析应用题的数量关系。

  教具准备:小黑板、投影片。

  教学过程

  一、复习角

  1、出示活动角。

  学生说一说这是什么?

  同桌互相介绍角的各部分名称。

  2、提问:哪些物体的表面有角?

  3、出示直角,提问:这是什么角?哪些物体的表面有角?

  4、第5题

  学生用三角尺比一比,图中有几个直角?

  学生说一说比角的方法。

  5、回忆画角的方法,学生任意画一个角。学生评价。

  6、比一比

  学生猜一猜哪个角大?怎样比较?你发现了什么?

  一、复习长度单位、重量单位、时间单位

  1、学生互说学习了哪些长度单位?重量单位呢?时间单位呢?

  2、提问:它们之间有怎样的关系?

  3、出示:

  6米=()厘米=( )分米

  80厘米=( )分米

  3000克=( )千克

  5千克=( )克

  60秒=( )分

  1时=( )分

六年级数学教案:比的应用13

  教学内容:教材第37页例5、试一试和练一练,练习七第4~日题。

  教学要求:

  1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。

  2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。

  教学重点:进一步认识比例尺。

  教学难点:根据比例尺求图上距离或实际距离。

  教学过程:

  一、揭示课题

  1.提问:什么是比例尺,

  2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。

  3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。

  二、教学新课

  1.教学例5。

  出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的`解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的倍数关系来解答,也可以按图上距离 :实际距离=比例尺列出比例,用解比例的方法就可以求出结果。

  2.做练一练第1题。

  指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?

  3.教学试一试。

  出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离 :实际距离=比例尺列出比例,再解比例求出结果.

  4.做练一练第2题。

  指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。

  5.做练习七第4题。

  让学生做在练习本上,然后口答,老师板书。

  6.做练习七第5题。

  学生完成在练习本上。

  三、课堂小结

  这节课学习了什么内容?你学到了些什么?

  四、布置作业

  课堂作业:练习七第6、8题。

  家庭作业:练习七第7题。

六年级数学教案:比的应用14

  一、情景引入

  出示一堆煤的情景图,图中标明煤的重量为1吨,一个炊事员说:这堆煤计划烧40天。

  你们知道这句话是什么意思吗?

  后来在实际烧的过程中,情况发生了变化,你们想知道发生了什么变化吗?

  那么我们今天就一起来学习有关计划与实际比较的'应用题

  (板书课题)

  二、教学新课

  1、教学例2

  在情景图上加上另一个炊事员的对话框:由于改进炉灶,每天节省5千克。

  你们知道发生了什么新情况吗?

  根据上面的情景,你能编出应用题吗?

  根据学生的编的应用题,选出与例2有似的问题

  (1)读题,审题,分析数量关系

  要求改进炉灶后,这批煤可以烧多少天。要知道哪两个条件?我们应该先求什么?

  (2)你用什么方法来理解题目中的数量关系?

  (3)让学生尝试解答。

  2、如果把题目里的第三个已知条件和问题改成改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?该怎样解答?

  (1)让学生自己分析数量关系后列式解答。

  (2)讲评时让学生说出分析过程。

  (3)引导学生看一看例2与改编后的题目的联系和区别

  3、做一做

  (1)让学生独立完成做一做。

  (2)指名板演,其

六年级数学教案:比的应用15

  重点:

  1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

  2.渗透对应思想。

  难点:

  1.理解这类应用题的解题方法。

  2.用线段图表示分数应用题的数量关系。

  教学过程:

  一、复习、质疑、引新

  1.说出、、米的意义。

  2.列式计算:

  20的是多少?6的是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

  二、探索、质疑、悟理

  1.出示例1(也可以结合学生的实际自编)

  学校买来100千克白菜,吃了,吃了多少千克?

  ①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

  ②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。

  ③画图:(课件一演示)补:把100千克当做什么?(单位1)

  画图说明:

  a.量在下,率在上,先画单位1

  b.十份以里分份,十份以上画示意图。

  C.画图用尺子,用铅笔。

  ④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

  学生可能会出现下面解答方法:

  解法一:用自己学过的'整数乘法做

  (千克)

  解法二:(千克)

  在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

  ⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

  2.巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?

  订正时候强调1)把哪个数量看作单位1?

  2)为什么用乘法计算?

  3.学习例2

  例2小林身高米,小强身高是小林的,小强身高多少米?

  在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

  (课件二演示)

  先画单位1

  再画单位1的几分之几

  画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

  在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

  列式:(米)

  答:小强身高米。

  4.改变例2

  改变例2的条件和问题成为下题(可让学生完成)。

  小强身高米,小林身高是小强的倍,小林身高多少米?

  改编后,可让学生独立画图完成。

  (米)

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

  四、训练、深化

  1.先分析数量关系,再列式解答

  ①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

  ②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

  2.提高题

  ①一桶油400千克,用去,用去多少千克?还剩多少千克?

  ②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

  五、课后作业:练习五1、2、3

  六、板书设计:

  分数乘法应用题

  100==80(千克)

  答:吃了80千克。

  (米)

  答:小强身高是米。

【六年级数学教案:比的应用】相关文章:

六年级数学教案《比的应用》04-07

人教版六年级上册《比的应用》数学教案11-17

(精品)人教版六年级上册《比的应用》数学教案01-16

六年级数学教案分数应用题04-04

人教版六年级上册《分数除法应用题》数学教案01-17

人教版六年级上册《百分数的应用一》数学教案01-17

六年级比的应用教学反思12-24

五年级数学教案《应用题一》04-03

《仿编5以内的加法应用题》大班数学教案02-06