五年级数学教案:方程的意义(通用13篇)
作为一名人民教师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。如何把教案做到重点突出呢?下面是小编为大家收集的五年级数学教案:方程的意义,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级数学教案:方程的意义 1
教学内容
P53-54及“做一做”,练习十一1-3题。
教学目标
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
知识重点
会用方程的意义去判断一个式子是否是方程。
教学难点
天平、空水杯、水(可根据实际变换为其它实物)
教学过程
一、导入新课
今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的'质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
2、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
3、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
课堂练习
这节课学习了什么?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
课后追记
本课方程的特征比较容易,从两点(1)含有字母(2)等式来判断。虽然形式比较简单,但是仍然要注意区分式子和方程。
五年级数学教案:方程的意义 2
教学内容:
教材P62~63及练习十四第1、2、3题。
教学目标:
知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。
过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。
情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。
教学重点:
理解和掌握方程的意义。
教学难点:
弄清方程和等式的异同。
教学方法:
观察、分析、分类、抽象、概括和交流
教学准备:
多媒体,天平。
教学过程
一、知识铺垫
认识天平。谈谈你对天平有哪些了解。(天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。)
二、自主探究
1.探究活动一:利用天平探索认识等式和不等式
(1)天平左边放一个空杯子,右边放一个100克的砝码,此时天平 ,说明天平左右两边的重量 ,这个杯子的重量是 。
(2)如果天平的`左边加上一个50克的砝码,要想使天平平衡,天平右边的杯子里需加上 克的水,用式子表示天平两边的质量关系为: 。
(3)如果天平左边的杯子里加满了水,此时天平会 ,表示天平左右两边的重量 ,用式子表示天平两边的质量关系为: 。
温馨提示:
(4)如果继续向天平的右边加上100克的砝码,此时天平 ,说明 边重,天平左右两边的质量关系表示为: 。
(5)如果继续向天平的右边加上100克的砝码,此时天平 ,说明 边重,天平左右两边的质量关系表示为: 。
(6)如果把天平右边一个100克的砝码换成50克的,此时天平 ,说明左右两边的质量 ,它们的关系用式子表示为: 。
2.探究活动二:认识方程
(1)把上面的算式进行分类,并说说分类的想法和依据。
(2)小结:表示左右两边相等的式子,我们称其为 ,表示左右两边不相等的式子,我们称其为 。像100+x=250这样的含有未知数的等式,称为 。
3.讨论:等式和方程之间有什么样的关系?
让学生比较50+50=100与100+x =250两个等式,有什么不同?
学生自主思考,并交流得出:第一个等式没有未知数x ,第二个等式含有未知数x 。
教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)
4.引导学生思考:是不是所有的等式都是方程?(不是。)
那么,方程有哪些特点?
归纳小结:方程的特点:是一个等式,且含有未知数。
三、课堂达标
1.下面的式子哪些是方程?(在方程后面的括号里打√)
X+3.6=12() a×12.8<24() 10-2.5=7.5() χ+8=9×2()
X÷2.4=16() 3÷b () 5y=15 () χ-2.9=0()
32÷4>7() 3χ-2=4.4() 1.2+3.5-4=0.7() 4.5χ-2.6()
2.判断
(1)含有未知数的式子叫方程。()
(2)等式都是方程,但方程不一定是等式。()
3.用方程表示下面的数量关系。
【学习评价】
四、巩固拓展
1.让学生仿照课本情境图,自己试着写一些方程。注意指导学生:方程一定是等式,并含有未知数。
2.完成教材第63页“做一做”第1题。
先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。
3.完成教材第63页“做一做”第2题。先说一说图意,再写方程表示数量关系。
如:第一幅图天平的左边有两个重量是x g的球,右边是一个重50g的砝码,也就是两个x g的球的重量是50g,列方法表示为2x =50。第二幅图是一条线段分成了两部分,一部分是x ,一部分是73,这两部分总数是166,即x +73=166。
4.教材第66页练习十四第1、2、3题。生独立完成,集体反馈。
五、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.像100+x =250这样含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。
3.方程一定是等式,等式不一定全都是方程。
布置作业:
板书设计:
方程的意义
不平衡 平衡
100+x >200 100+x =250
100+x<300
像100+x =250这样的含有未知数的等式叫做方程。
五年级数学教案:方程的意义 3
教学内容:
教科书第1~2页的内容及练习一的1~3题。
教学目标:
1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、培养学生概括、归纳的能力。
教学重点与难点:
通过学习,使学生理解方程的含义。
教学流程:
一、教学例1
出示例1,提出要求:你能用等式表示天平两边物体的质量关系吗?
学生在本子上写。
指名回答,板书:50+50=100
含有等号的式子叫等式,它表示等号两边的结果是相等的'。
二、教学例2
学生自学
1、学生在书上独立填写,用式子表示天平两边的质量关系。
2、小组同学交流四道算式,最后达成统一认识:
X+50>100X+50=100
X+50<100X+X=100
3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。
学生可能会这样分:
第一种:X+50>100X+50=100
X+50<100X+X=100
第二种:X+50>100X+X=100
X+50<100X+50=100
引导学生理解第一种分法:
你为什么这样分,说说你的想法。
小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。
指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。
提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”
那X+50>100、X+50<100为什么不是方程呢?
提问:那等式和方程有什么关系呢,在小组里交流。
方程一定是等式,但等式不一定是方程。
三、完成“试一试”、“练一练”
学生独立完成。
集体订正时围绕“含有未知数的等式”进一步理解方程的含义
四、课堂作业:练习一的1、2、3。
板书:
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式是方程。
五年级数学教案:方程的意义 4
教学要求:
使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。
教学重点:
掌握解方程的依据、步骤和书写格式。
教学难点:
方程的解和解方程两个概念间的联系及区别。
教学用具:
简易天平、砝码、标有“20”、“30‘和”?“的方木块。
画有P97页上图的挂图、小黑板或投影片若干张。
教学过程:
一、激发
根据加法与减法、乘法与除法的关系,说出求下面各数的方法。
1、一个加数=()
2、被减数=()
3、减数=()
4、一个因数=()
5、被除数=()
6、除数=()
二、尝试
1、方程的意义
(1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来用来称物品的重量的。怎样用它来称物品的重量呢?在天平的左边盘内放置所称的物品,右边盘内放置砝码。当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等。砝码上所标的重量就是所称物品的重量。
(2)师演示如何用天平称物品。(称出的物品同P。105页上图。)
(3)问:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等。)天平的指针指在什么地方才能说明天平是平衡的?(指针必须指在刻度线的中央。)
(4)教师强调说明:天平两边放上重量相等的物品时,天平就平衡。反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等。
(5)问:那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!先让学生自由地说一说,根据学生的发言,教师写出算式20+30=50。
问:20+30=50是一个什么式子?(等式。)
(6)什么叫等式呢?(等式表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。)
(7)师改变天平上所放的物品和砝码,使之与P。105页的下图相同。引导学生观察、思考并回答下列问题:
①图中的天平是否平衡?说明了什么?(图中的天平是平衡的,因为指针指在天平刻度线的中央。说明天平左、右两边的重量相等。)
②怎样用式子来表示这种平衡的情况呢?再试试看!
板书;20十?=100。
③”?“是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?(师生共同把等式”20+?=100改写成“20+x=100)
④20+x=100是一个什么式子?(也是一个等式。)
⑤这道等式与20+30=50有什么不同?(这是一个含有未知数的等式。)
⑥左盘中这个标有”?“的.方木块应该是多少克,才能使天平保持平衡呢?这就是这个等式中的x是多少才能使等式左、右两边正好相等呢?可以是一个随便的重量吗?
生自由说,师总结:这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左、右两边正好相等。
⑦同学们观察一下天平,想一想,x应该代表什么数呢?(因为左边未知的方块重80克才能使天平平衡,所以x=80。)
师在20+x=100的右边板书:x=80。
(8)师出示P。106页上图。引导学生观察,启发学生思考下列问题:
①这幅图的图意是什么?(这幅图告诉我们,每个篮球的价钱是x元,3个篮球的总价是234元。)
②每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(还可以表示为3x元。)
③谁能根据图意写出一个等式来?(3x=234。)
④想一想,这个等式有什么特点?(这也是一个含有未知数的等式。)
⑤当x等于多少时,这个等式中的等号左、右两边正好相等?(当x=78时,这个等式中的等号友、右两边正好相等。)
师在3x=234的右边板书:x=78。
(9)引导学生归纳总结出方程的意义及方程与等式之间的关系。师指出:像这样一些等式:20+x=100、3x=234、x-8=5、x÷6=7叫做方程。
师再板书几个一般的等式,形成如下的板书:
方程一般等式
20+x=10020+80=100
3x=2343×78=234
x-8=513-8=5
x÷6=742÷6=7
师引导学生观察上面的等式,思考并回答下面的问题。
①方程是不是一种等式?(是等式。)
②方程与一般的等式相同吗?你发现方程有什么特点?
③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。板书:含有未知数的等式,叫做方程。
方程与等式之间有什么关系呢?我们可以用这样的图来表示。师请学生观察这幅图,并说一说它的含义。
根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;一切方程都是等式,但等式不一定是方程。
(10)练一练:做一做。
2、解简易方程(一)。
(1)理解方程的解和解方程的含义。
①请学生阅读书上的内容,回答什么叫方程的解?什么叫做解方程。
②指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)
(2)出示例1:解方程x-8=16。
①x在这道减法算式中相当于什么数?(被减数)
②根据四则运算各部分之间的关系,被减数应该怎么求?
③解方程的步骤和书写格式是怎样的?
师讲解:首先要写”解“字,然后根据四则运算之间各部分的关系及运算定律进行思考;x-8=16,根据被减数等于减数加差,所以x=16+8,x=24。运算的”根据“可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。
接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。
(3)练一练:做一做。
三、应用
练习二十四第1、2题。
教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。
四、体验
这节课我们学习了什么?
(方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写”解“字,上、下行的等号要对齐,注意不能连等。)
五、作业
练习二十四第3、4、5题。
五年级数学教案:方程的意义 5
一、教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
二、教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
三、教学重点:
理解并掌握方程的意义。
四、教学难点:
会列方程表示数量关系。
五、教学过程:
1、出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
引导
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
2、出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的`式子中哪些是等式,这些等式都有什么共同的特点。
3、讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
4、完成练一练
(1)下面的式子哪些是等式?哪些是方程?
(2)将每个算式中用图形表示的未知数改写成字母。
5、巩固练习
(1)完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
(2)完成练习一第2题
6、小结
今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
7、作业
完成补充习题
六、板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程
五年级数学教案:方程的意义 6
一、教学内容:
人教版五年级上册第62~63页“方程的意义”。
二、教学目标:
1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。
2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
三、教学重、难点:
1.教学重点:理解并掌握方程的意义。
2.教学难点:建立“方程”的概念,并会应用。
四、教学过程:
(一)情境引入
今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)
(二)探究新知
1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)
请同学们仔细观察,在这副图里你获得了哪些信息?
师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。
2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)
3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的'变化呢?
师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)
师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100
4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200
师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300
师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。
5.观察比较:
50+50=100
100+x>100
100+x>200
100+x<300
100+x=250
总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。
像100+x=250这样,含有未知数的等式就是方程。
揭题:今天这节课我们学的就是“方程的意义”。(板书课题)
6.提问:这一个等式是方程吗?为什么?
追问:这两个式子里都含有未知数,它们是方程吗?
思考:你认为一个方程应该符合哪些条件?
(强调:方程既要是等式,又要含有未知数。)
(三)巩固练习
1.判断下面哪些式子是方程,并同桌说一说理由。
35+65=100 8-x=2 y+24
2.4=a×2 x-14>72 15÷b=3
5x+32=47 28<16+14 6(y+2)=42
2.下面哪些天平不能用方程表示?(出示6幅天平图)
用方程表示出剩下天平的数量关系。
(说一说天平两边的数量关系,列方程)
3.用方程表示下面的数量关系。(说数量关系,列方程)
先独立列出方程,再与同桌说一说方程表示的数量关系。
4.猜方程
让学生初步感知:方程一定是等式,等式不一定是方程。
5.写方程,编故事。
6.方程“史话”。
(四)课堂小结
今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?
五年级数学教案:方程的意义 7
教学内容:
教科书第1~2页的内容及练习一的1~3题。
教学目标:
1、通过学习,使学生理解方程的含义,感受方程思想。知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、经历从生活情景到方程模型的建构过程。
3、培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
使学生理解方程的含义,感受方程思想
教学难点:
使学生理解方程的含义,感受方程思想
课前准备:
天平、砝码
教学过程:
一、创设情景,抽象数学模式。
1.出示实物天平。
师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)
2.演示:
出示两个50g砝码和一个100g砝码,(将未标有重量的一边朝向学生)
师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?(演示)
学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)
提出要求:你能用等式表示天平两边物体的质量关系吗?
学生在本子上写。
指名回答,板书:50+50=100
3.出示例1
说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。
(板书:含有等号的式子叫等式)
二、引导分类,概括方程概念。
1、学生自学
要求:
(1)学生在书上独立填写,用式子表示天平两边的质量关系。
(2)小组同学交流四道算式,最后达成统一认识:
X+50>100 X+50=100
X+50<100 X+X=100
根据学生的回答,教师板书这4道算式。
(3)把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。
A、想一想你分类的标准是什么?
B、把自己分类的情况,写在纸上?
学生可能会这样分:
第一种:
X+50>100 X+50=100
X+50<100 X+X=100
第二种:
X+50>100 X+X=100
X+50<100
X+50=100
2、概括概念
过渡:看来同学们都能按自己的标准对式子进行分类。
引导学生理解第一种分法:
你为什么这样分,说说你的想法。
A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+50=150、2X=200这样_____________的等式方程)
B、你能说说什么叫方程吗?
C、学生发言,概括出:“含有未知数的等式叫做方程”(板书)
提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”
那X+50>100 、X+50<100为什么不是方程呢?
提问:那等式和方程有什么关系呢,在小组里交流。
方程一定是等式,但等式不一定是方程。
3、举例方程、理解概念
你能例举出方程吗?谁能举的与刚才不一样吗? (用字母Y表示、有难度的方程)
以前我们见过方程吗?
三、完成“试一试”、“练一练”
1、“试一试”
(1)观察左边的.天平图,说说图中的是数量关系,列出方程。
(2)观察右边的图,弄清题意,列出方程。
2、练一练第1题
(1)观察,找一找哪些是等式,哪些是方程?
(2)交流:
(3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。
(4)判断:方程是含有未知数X的等式。
3、练一练第2题
(1)先写一些方程
(2)组织交流
4、练一练第3题
四、课堂作业:
1、练习一第1题 先独立完成在交流
2、练习一第2题
(1)先说一说每题的数量关系
(2)独立列出方程
(3)交流
3、练习一第3题
(1)说一说天平两边有什么物体,这些物体的质量间有什么关系
(2)独立思考列出方程
(3)观察方程,初步感知等式的性质。
习题超市:
1、讨论判断:下面的式子哪些是方程,哪些不是方程?
8x=0 6x+2 4+2>10 2y÷5=10 n-5m = 15
17-8 = 9 10<3m 6x +3 = 11+2x 4+3z =10 a÷8=60
2、根据下面的信息,你能列处几个不同的方程?
我比莉莉重25 kg,,我重61 kg。
我186 cm。
我身高x cm,我比爸爸矮40cm。
我重y kg。
板书设计
方程的意义
含有等号的式子叫等式
X+50=100
X+X=100 像X+50=150、2X=200这样含有未知数的等式是方程。
五年级数学教案:方程的意义 8
教学内容:
方程的意义和解简易方程(教材第105一107页,练习二十六)。
教学要求:
1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。
2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。
教具:
教学天平、小黑板。
学具:
自制的简易天平、定量方块。
教学步骤:
一、复习
1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。
(1)一个加数=()○()
(2)被减数=()○()
(3)减数=()○()
(4)一个因数=()○()
(5)被除数=()○()
(6)除数=()○()
2.求未知数X(并说说求下面各题X的依据)。
(1)20十X=100 (2)3X=69
(3)17X=0.6 (4)x5=1.5
二、新授
1.理解和掌握方程的意义。
(1)出示天平,介绍使用方法(演示)后,设问:
在天平两边放物体,在什么情况下才能使天平保持平衡?
(两边的物体同样重时,天平才能保持平衡。)
(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?
板书:20十30=50
指出:表示左右两边相等的式子叫等式。
(并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。
(3)教学例2(课本105页)。
①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?
板书:20+?=100
②等式20+?=100中的?是未知数,通常我们用X来表示,那么上面的等式可写成 (板书)20十X=100
③比较:等式20+X=100与等式20+30=50有什么不同?(含有未知数)教师指出,20+X=100是含有未知数的等式。
④想一想:X等于多少,才能使等式20+X=100左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)
(4)教学例3(课本106页)。
出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:
①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)
②依图示表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?
(板书)3X=234
③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)
(5)方程的`意义:
综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:
20+30=50一般的等式
20+X=200 含有未知数的等式
3X=234 称之为方程
(板书)像20+x=100 3X=234 X10=35 X12=5等,含有未知数的等式叫做方程。
①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)
②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。)
(6)练一练(指名学生判断,并说明理由)教材第106页做一做。
2.学习解简易方程。
理解和掌握方程的解和解方程的含义。设问:
①看教材第107页,什么叫做方程的解?什么叫解方程?
(板书)使方程左右两边相等的未知数的值,叫做方程的解。
例如:X=80是方程20+X=100的解;
X=78是方程3X=234的解。
(板书)求方程的解的过程叫做解方程。
②方程的解和解方程有什么联系和区别?
方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。
(2)教学例1:
解方程X一8=16
①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。
②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)
(板书)解方程X一8=16
解:根据被减数等于减数加差;
X=16十8(与原来学过的求X的思路相同)
X=24
检验:把X=24代人原方程
左边=24一8=16,右边=16
左边=右边
所以X=24是原方程的解。
总结有关的格式要求:
①做题时要先写上解字。
②各行的等号要对齐,并且不能连等。
③方框里的运算根据可以不写。
④验算以检验的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。
指导学生看教材第105一107页。
三、巩固
1.教材107页做一做。
2.教材第108页练习二十六第1、2题。
四、练习
教材第108页,练习二十六第3~5题。
五年级数学教案:方程的意义 9
教学目标:
知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。
过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。
情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。
教学方法:
合作探索,小组交流、观察、分析、概括等方法
教学过程:
(一)创设情境,激发兴趣。
师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。
(二)观察现象,抽象概括
1.平衡现象数量关系的抽象概括。
师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?
师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)
师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的`是什么?右边表示的又是什么?
2.不平衡到平衡现象数量关系的抽象概括
师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?
师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻
这边加150克砝码,观察天平平衡了吗?
师:左边盘中物体质量的可以怎样表示?(生:X+150)
师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)
师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?
师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)
3.不确定现象数量关系的抽象概括
师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?
师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)
师:这瓶矿泉水被喝掉了多少克?(生:不知道)
师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)
师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]
师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)
(三)观察分类,抽象概念
1.观察分类。
师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)
2.展示分类。
①交流分类情况,说明分类理由。
②揭示“等式”与“不等式”的概念
师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)
3.抽象概念
师:请同学们仔细观察这些等式,它们有什么不同?
师:这些等式中的字母表示“未知数”,像这些“X+100=
含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)
师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)
(四)应用新知,加深理解
1.判断下列式子是不是方程。
2.创作方程。
3.问题质疑,揭示方程与等式的关系。
①含有未知数的式子是方程?
②“方程一定是等式,等也一定是方程?
(五)巩固练习。
师:说说你这节课有什么收获,你还想学习有关方程的什么内容。
师:我们一起来应用今天所学的知识吧!
五年级数学教案:方程的意义 10
一、教学目标
1.知识与技能目标:使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2.过程与方法目标:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。
3.情感态度价值观目标:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。
二、教学重难点
重点:理解方程的意义。
难点:理解方程与等式的异同。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是方程的意义,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
导入:同学们,你们都喜欢玩跷跷板吗?看熊二和光头强也在玩跷跷板,我们一起来看一看,可以他们的体重悬殊太大了,光头强高高的被挂了起来。看吉吉和图图也来了。光头强和吉吉涂涂坐在一边,熊二坐在另一边,怎么样?对呀,跷跷板正好平衡了,那你们用一个算式来表示就是,对,熊二的体重等于光头强+{吉吉+图图的体重,其实在跷跷板中也蕴含着丰富的数学知识,这节课就让我们一起走进数学王国,去探究方程的意义。
【新授】
活动一:
根据翘翘板的这种现象呀,科学家就设计出了天平。看老师面前就有一个天平,天平已经是我们的老朋友了,之前我们认识克的时候就认识了她,那谁来向大家介绍一下这位老朋友呢?请你来介绍,你介绍的可真全面,请坐,天平有两个托盘,中间有一个刻度盘,天平中间有一个指针,天平左右两边物体重量相等的时候,天平就平衡,我们一般是左物右码。
那我们一起来操作一下天平,同学们仔细看,老师先将右盘上放上100克砝码,再在左盘上放上两个50克的砝码,你们发现了什么?对呀,天平平衡了。谁来用一个式子的来表示呢?请你来说,说的非常准确,请坐,50+50=100。
活动二:
那我们一起观察这个算是它有什么特点呢?请你来说目光非常敏锐等号左边和右边相等,这样的式子就是一个等式。接下来再来认真观察,老师将左边两个50克的砝码拿下来,在重新在天平的左边放上一个杯子,你们发现了什么?对呀,天平平衡了,也就是说杯子的重量是100克,同学们是这样的吗?那老师带往杯子里倒一些水,又出现了什么情况呀?对呀,天平朝向杯子这边倾斜了,也就是说杯子的重量加水的重量大于100克。那我们再向天平右边放个100克的砝码,看一看有什么变化?天平还是朝杯子这边倾斜,那你们能用将这个过程用一个式子来表示一下嘛,请你来说。说的真不错,请坐。杯子加水的重量大于200克,谁还有更好的方法,来做的最端正的同学,请你来说你的小脑袋可真灵活,请坐。对呀,上节课我们已经学过了用字母表示数。我们可以用字母x来表示水的重量,刚刚我们已经称出了杯子的重量是100克,所以用式子来表示就是x+100大于200。同学们,你们都想到这个方法了吗?你们可真棒,那我们继续操作,我们再向右边托盘放100克的砝码,看一看有什么变化呀?来请你来说,说的非常棒,请坐。天平朝向右边托盘倾斜了。那这个过程我没有该用哪个式子来表示呢?对呀,x+100小于300,看来我们刚刚放100克的砝码放过大了,那我们再放一个小一点的试一试。
我们将这100克的砝码换成50克的砝码来试一试。同学们仔细观察,对呀,我们的天平竟然平衡了,那也就是说我没杯子加水的重量等于250克,那我们用算式来表示该如何表示呢?来躲着最端正的同学,请你来说,说的非常棒,请坐x+100=250。同学们可真是太棒了,
活动三:
通过我们的共同探索,和一起操作写出了这么多的方式,我们带来仔细观察这些算式,这些算式之间有哪些共同点和不同点呢?
先独立思考,再小组合作讨论,完成以端正的坐姿来示意老师,看哪个小组的发现又快又好开始。老师看同学们都已经坐端正了,谁来说一说你的`发现,请你来说观察的非常敏锐,请坐。有的算式是等式,洋浦的是不等式,那我们再来看一看这等式的两个算式之间他们有什么不同呢?请你来说,这可真是一个了不起的发现,请坐。第二个算式有一个未知数x,而第一个没有,其实像这种含有未知数x的等式就是我们今天所学习的方程。
那是不是所有的等式都是方程呢?对呀,不是。只有含有未知数的等式才是方程,也就是说要判断一个式子是不是方程,我们需要注意哪几点呢?来请你来说,说的非常棒,我们需要有两个条件,一个是含有未知数,二是等式。
同学们,你们都是这样想的吗?那老师这样说你们看对不对?方程是等式,对这样说是正确的,那等式是方程呢?对呀,这样说不正确,因为还需要一个条件,也就是说这个等式里必须含有未知数。
观察一下黑板上这些内容,以上就是本节课所要学习的方程的意义。
【巩固练习】
那我们看一看这道题,老师买了三本练习本,一共花了2.4元,我都没本练习本价格用x来表示,那又该如何列算式?请你来说好,请多3xx等于2.4,我们上节课已经学习了,用字母表示数的时候数字与字母相乘,其中的称号我们可以省略,数字放在前面,所以是3x等于2.4。是方程吗/对呀,是我们一起来看一看符合不符合这两个条件是不是等是,对是等式,而且还有未知数。
【课堂小结】
不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课认识了什么是方程,什么是等式。看来啊本节课上特听讲非常认真,请坐!
【作业布置】
那接下来老师老师给大家布置一个小任务,课下去搜集一下我国古代如何解决类似的问题呢?下节课一起来交流讨论一下。
本节课就先上到这,下课,同学们再见!
五年级数学教案:方程的意义 11
设计说明
1、引导学生边观察、边思考,提高自主学习能力。
《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。
2、引导学生辨方程、写方程,重视学情反馈。
数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。
课前准备
教师准备:PPT课件、学情检测卡、课堂活动卡
学生准备:小黑板、练习卡片
教学过程
情境引入,体会“等”与“不等”
师:同学们,我们学校一年一度的`足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。
师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)
师:哪个班赢了?你能用一个数学式子来表示吗?
(学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)
师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)
设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。
情境呈现,抽象模型
1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)
自学提示:
(1)理解教材62页每幅图画及对应式子的含义。
(2)标示出你认为重要的内容。
(3)思考:方程应该具备哪几个条件?
(4)结合你对方程概念的理解,完成教材63页“做一做”1题。
2、合作学习。
(1)你能自己写几个方程吗?小组内互相订正。
(2)组内交流收获。在小组内互相说一说:你学到了什么?
由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。
(3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。
(此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)
预设:
①全班同学的答案一致,全对。
②一部分小组全对,一部分小组有错误。
这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。
3、整理分类,加深对方程意义的理解。
(1)组织学生分组活动,根据黑板上的算式特点进行分类。
(2)交流汇报,说出分类依据。教师板书。
4、独立完成教材63页“做一做”2题,汇报,集体订正。
5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。
五年级数学教案:方程的意义 12
教学内容:
教科书第1-2页例1、例2。
教学目标:
1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、培养学生概括、归纳的能力。
教学准备:
天平、砝码。
教学重点及难点:
理解方程的意义,方程与等式的关系。
教学过程:
一、借助天平体会等式的含义。
(1)你会用等式表示天平两边物体的质量关系吗?(50+50=100 50×2=100)
(2)你还能写出这样的等式吗?根据学生举例写下2~3个。
(3)你感觉什么样的式子是等式呢?
用等于号连接的数学表达式;左右两边相等的式子;左边算起来来等于右边的;
二、感知不等式,教学方程的.意义。
1、出示实物天平:
(1)左边放克,右边放克,可以用什么式子来表示?
板书:
(2)现在老师要在左边再放一个物体,左边的质量怎样来表示呢?(+x)
(3)这时候,你觉得天平会发生什么变化呢?你能把这些可能写下来吗?
交流并板书+x< +x= +x>
(4)这些式子与等式相比有什么不同?(有字母,有的不是等式。用大于号或者小于号连接,我们把这些叫不等式。)。
2、例二的内容
(1)学生在作业纸上完成例二的内容。集体交流汇报。板书
x+5>100 x+50=150 x+50<200 2×x=200
(2)概括概念
A、观察黑板上的算式,你能把他们分分类吗?
B、你分类的依据是什么?
第一次分类:按照等式、不等式分
(老师把黑板上不是等式的式子擦掉)剩下的式子是什么?(都是等式)
还能再分下去吗?
第二次分类:按既含有字母且是等式分
(此处也可能先按有字母和没有字母来分,然后再按等式和不等式来分)
C、像x+50=150、2x=200这样含有未知数的等式叫做方程。(板书:方程)
像50+50=100、x+50>100和x+50<200为什么这些不是方程呢?把板书补充完整。
D、完成试一试
三、突出方程概念的内涵与外延
讨论判断
(1)哪些是等式,哪些是方程?
6+x=14 36-7=2960+23>708+x y-28=35
x+4〈14 m+n=100
(2)在判断之后,你对等式和方程有什么新的认识呢?
可能有:未知数可以用x、y等多个字母表示;
一个等式中可以含有多个未知数;
等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。(如果学生说不到或者不明白就出现以下的比较辨析。)
(3)讨论比较,辨析概念。
讨论下面的说法正确吗?
所有的方程都是等式。
所有的等式都是方程。
(4)刚才我们是用语言描述的方式表示出了方程和等式的关系,你还有什么更清楚简明的办法来表示它们之间的关系吗?
(5)你能自己创造一到两个和现实生活有联系的方程的例子吗?能够将自己创造出来的方程与邻座的同学分享讨论,集体分享。(不会,老师先举个例子。)
(6)引导质疑你还有什么疑问?
四、用方程表示直观情境里的相等关系
(1)看图列方程
(2)用方程表示下面的数量关系。
(3)列式:妈妈买米用了50元,买油用了15元,妈妈一共用了多少钱?
(说明:并不是任何时候都要列方程的。)
五、总结提升,介绍方程的数学史
板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式是方程。
五年级数学教案:方程的意义 13
教学内容:
课本第105~107页的内容,完成练习二十六的题目。
教学目的:
使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。
教具准备:
天平、砝码、标有“20”、“30”和“?”的方木块。
教学过程:
一、复习。
提问学生加、减、乘、除和部分间的关系。
二、新授。
1.方程的意义。
(1)教学第(1)个例子。
教师将天平、砝码摆在讲台上,然后,提出问题指名学生回答。
讲台上摆着的上什么仪器?(天平)
它是用来做什么的?(用来称物品的重量的。)
你知道怎样用它称物品的重量吗?(在天平的`左面盘内放置所称的物品,右面放置砝码。当天平两边平衡,即天平两端的重量相等。砝码所标的重量就是所称物品的重量。)
在天平左面放一个50克的砝码,右面放标有20、30的木块。
问:现在天平平衡吗?这说明了什么?(平衡,说明天平左右两边的重量相等)
你能用一个式子表示这种情况吗?试试看!(根据学生发言,板书:20+30=50)
问:这是一个什么式子?(等式)
(2)教学第2个例子。
教师改变天平上所放物品和砝码,使之同教科书第105页下图。
问:现在天平也保持平衡,这说明什么?你能用式子表示这种平衡的情况吗?试试看!
指名让学生试着写出等式。
告诉学生:“?”是要求的未知数,我们学过一般未知数用字母X表示,所以这个等式可以写成:20+x=100。
问:这是一个什么式子?(等式)
比较一个这个等式与20+30=50有什么不同?(这是一个含有未知数的等式)
这个x应该是多少克?(让学生自由说一说,教师总结:这里的x所表示的未知数不是随便确定的,它必须使天平保持平衡的重量,也就是说未知数代表的数值必须使等号左右两边正好相等。在20+x=100的右边板书:x=80)
(3)教学第(3)个例子。
投影出示第106页的上图。
问:看这幅图,这幅图的图意是什么?(这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是234元。)
每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(3x)你能根据图意写出一个等式来吗?(3x=234)
想一想,这个等式有什么特点?(这也是一个含有未数的等式。)
当x等于多少时,这个等式中的等号左右两边正好相等?(x等于78时,在3x=234的右边板书:x=78)
得出:像这样一些等式:20+x=100、3x=234、x-10=35、x÷12=5叫做方程。
练习:下面的式子哪些是等式,哪些是方程。
4+3x=106+2x7-x>317-8=9
8x=018÷x=960÷12=5
得出:
17-8=94+3x=10
60÷12=58x=0
18÷x=9
问:从幅图,你能说一说它的含义吗?
教师引导学生得出:等式包括方程,等式的范围比方程的范围大;方程一定是等式,但等式不一定是方程。
问:有了方程和等式的知识,当遇到一个式子,要判断它是不是方程时,应该怎样想?
2.简易方程(一)。
说明:我们把使方程左右两边相等的未知数的值,叫做方程的解。例如,x=80是方程20+x=100的解,x=78是方程3x=234的解。而求方程的解的过程叫做解方程。想一想:“方程的解”和“解方程”这两个概念之间有什么区别?
(先让学生试着说一说,然后教师总结:方程的解指的是一个数,它表示未知数等于多少时使方程中等号左右两边相等。例如当x=80,20+x=100的等号左右两边相等。而解方程是指求这个未知数的演算过程。我们以前做过的一些求未知数x的题目,实际上说是解方程。)
3.学习解方程的方法。
出示例1:x-8=16
讲解解方程的步骤及书写格式:
先写“解”字;然后根据四则运算各部分间的关系及运算定律进行思考:x-8=16,就想被减数等于减数加差,所以x=16+8,x=24。运算的根据可以不写;每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。
板书:
x-8=16
解:x=16+8
x=24
检验:把x=24代入原方程。
左边=24-8=16,右边=16,左边=右边
所以x=24是原方程的解。
师:以后解方程时,要求检验的,要写出检验过程,没有要求检验的,要进行口头检验,要养成检验的习惯。
4.课堂练习。
做教书第107页“做一做”中的题目。
5.巩固练习。
做练习二十六的第1~3题。
【五年级数学教案:方程的意义】相关文章:
人教版五年级上册《方程的意义》数学教案04-09
方程的意义教案03-30
《方程的意义》教案05-16
《方程意义》教学设计04-05
方程的意义的教学反思12-22
《方程的意义》教学反思[精选]07-07
方程意义教学反思02-21
方程的意义教学设计04-26
方程的意义教学反思01-15