- 相关推荐
五年级数学教案《解决问题的策略》
作为一名教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。来参考自己需要的教案吧!下面是小编精心整理的五年级数学教案《解决问题的策略》,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级数学教案《解决问题的策略》1
教材解读
本单元主要教学的是用“倒过来推想”的策略解决相关实际问题。“倒过来推想”是一种应用于特定问题情境下的解题策略。通常情况下,已知某种数量或事物按照明确的方法和步骤发展、变化后的结果,又要追溯它的起始状态,便适合用“倒过来推想”的策略加以解决。
教材首先通过两道例题让学生解决具体的问题,体会适合用“倒过来推想”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;再在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒过来推想”的策略意义及其适用性,提高解决实际问题的能力。
教学目标
1、使学生在解决实际问题的过程中学会用“倒过来推想”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对自己解决实际问题过程的`不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点
通过富有变化的问题素材和表述方式,引导学生感受“倒过来推想”的策略意义。
[要领指导]教材中所呈现的问题,虽然都可以运用“倒过来推想”的策略来解决,但所解决的问题却涉及不同的知识领域。不仅如此,问题的表述方式也同样富有变化。当学生面对这些问题时,首先感受到的是面临一个新的挑战,从而能产生理解问题、分析问题和解决问题的愿望,进而能在解决问题以及相应的反思过程中逐渐领悟“倒过来推想”的策略意义及其应用特点。
教学难点
适当控制难度,引导学生综合应用学过的各种策略整理实际问题中的信息,体会不同策略在解决问题过程中的不同价值。
[要领指导]要求学生解决的实际问题不能太复杂,一般以2至3步为宜,可少量安排需要4步推想的习题,数量关系一般较简单,便于学生在操作中进行直观思考。当学生掌握用“倒过来推想”的策略解决实际问题时,可安排综合性应用训练。使学生体会灵活应用策略的必要性,感受“倒过来推想”策略的价值。
学生已有知识基础
本单元是在学生已经学习了用画图和列表的策略解决问题的基础上,教学用“倒过来推想”的策略解决相关实际问题。
对后继学习的作用
逆推的方法思考问题是一种常见的策略,有助于发展学生的逆向思维。教材在先后教学列表和画图的策略解决问题的基础上,教学逆推的解题策略。
课时设计:2课时
五年级数学教案《解决问题的策略》2
教学内容:苏教版义务教育课程标准实验教科书小学数学第九册第88~89页的例1、例2和“练一练”,练习十六的第1、3、7题
教学目标:
1、通过具体的情境使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,增强解决问题的策略意识,积累解决问题的经验。
教学重点:学会运用倒推的策略解决问题。
教学难点:通过具体的情境让学生体会倒过来推想的思考过程。
教学过程:
一、提出问题、揭示课题。
1、结合情境,出示条件
(多媒体出示甲、乙两个水杯)
师:我们先来看大屏幕,请同学们仔细观察,(停顿片刻)你发现了什么?
生:甲杯比乙杯果汁多一些
师:还有呢?
生:它们两个杯子一共有果汁400毫升(配合大屏幕)
师:现在老师将甲杯中的果汁倒40毫升给乙杯,(大屏幕出示箭头图)
师:这时你又发现了什么?(大屏幕闪烁40毫升果汁,然后平移至乙杯)
生:现在两杯果汁同样多。(大屏幕出示“现在两杯果汁同样多”文字)
2、根据条件,提出问题
师:根据刚才的操作,你能提出什么问题呢?
生1:现在两个杯子里各有多少果汁?(板书:现在)
师:这个问题提得真好!谁能说说现在甲、乙两个杯子里各有多少果汁?
生:甲、乙两个杯子现在都有200毫升果汁。
师:为什么?
师:你还能提出什么问题吗?
生2:原来两个杯子分别有多少果汁?
(板书:原来)(大屏幕出示问题“原来两杯果汁各有多少毫升?”)
3、根据问题,揭示课题
师:怎样从现在杯子里果汁倒推到原来杯子里果汁的情况呢?今天老师就和大家一起来研究解决这类问题的策略。(板书课题:“解决问题的策略”)
二、操作演示、寻找策略
1、直观演示,感受倒推
师:刚才我们已经算出现在每个杯子里有果汁多少毫升?(200毫升)
(大屏幕显示由“实物”一个一个移动变成“平面图形”:两个杯子都是200毫升,并标明数据)
师:那原来每个杯子里各有多少呢?(启发)我们不防再倒回去看一看。
(多媒体演示)
师:我们将倒给乙杯的40毫升还倒回甲杯,说明乙杯原来比200毫升多还是少呢?
生:少了。
师:只有多少毫升呢?
生:160毫升。
师:而把乙杯中的40毫升果汁还倒回甲杯后,这说明甲杯原来是什么情况呢?
生:比200毫升多。
师:甲杯原来有多少毫升呢?
生:240毫升。
师:谁再来完整地说说原来两个杯子分别有多少果汁?
2、整理表格,抽象概括
师:下面我们把整个解决问题的过程来整理一下。
启发:甲杯是倒给了乙杯40毫升后还剩200毫升,所以甲杯原来有240毫升。乙杯是甲杯倒入40毫升后变成200毫升,所以乙杯原来有160毫升。(教师将表格填写完成)
3、完善课题
师:在解决刚才这个问题的过程中,我们运用了哪些策略呢?(列表、画图等等)
师:根据现在的去求原来的.我们又是采用了什么样的策略呢?能取个名字吗?
生:我们是倒回去再想一想的。
师:我们将类似与这样的倒回去再想一想的解决问题的策略称为:倒过来推想。(板书:--“倒过来推想”)
三、教学例2,应用策略
1、出示例二,提取信息
例2:小明原来有一些邮票,今年又收集了24张。送给小军30张后,还剩52张。小明原来有多少张邮票?
师:问题的信息比较多,谁能将这些信息依次说一说呢?
2、整理条件,箭头图表示
师:小明原来有多少邮票?后来他的邮票数发生了怎样的变化?
(根据学生回答依次板书箭头图:
原来?张又收集了24张送给小军30张还剩52张)
3、分析题目特点,明确策略
师:大家觉得这道题目的特点是什么呢?我们已经知道了什么?要求什么?
生:知道了现在的,要求原来的。
师:知道了现在邮票的张数,要求原来的应该怎么想呢?
生:倒过来推想。
4、同桌讨论,提倡算法多样化
师:好!现在就请同学们按照同桌两人一组讨论讨论,相互说说这个问题可以怎么思考,再用算式表示出来。(同桌讨论、教师了解讨论情况,适当指导,喊两名算法不一样的同学板书算式,)
第一种方法:52+30-24第二种方法:52+(30-24)
=82-24=52+6
=58(张)=58(张)
师:请你们分别说说你这样列式计算的理由吗?
生1:用52加30表示小明送给小军30张前的邮票数,再减去24表示小明在收集了24张前的邮票数,也就是他原来邮票的张数。
(教师板书倒过来想的过程:
原来有58张去掉收集的24张拿回送出的30张现在有52张)
生2:根据题目小明今年收集了24张。然后送给小军30张,可以知道实际上小明现在比原来少了6张,所以用52+6=58。
5、验证反思
师:刚才两名同学分别说出了自己的想法,老师觉得都很有道理,他们的答案是否正确呢?我们也可以顺着题目的意思来验证一下。(师生共同推算从原来到现在的邮票数)
师引导反思:现在我们再来看一看,在解决这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?(让学生自己说说感受)
四、分层练习
1、基础练习并比较(多媒体出示)
(1)一辆公共汽车从起点站出发时,车上坐了26名乘客,中途停车时,下了16位乘客,同时又有24名乘客上车,请问现在车上有多少名乘客?
(2)一辆公共汽车从起点站出发,有乘客若干名,中途停车时,下了16位乘客,同时又有24名乘客上车,现在车上有34名乘客,这辆公共汽车从起点站出发时,有多少名乘客?
师:能解决这个问题吗?请学生们独立思考,同桌相互说一说?
师:现在请同学们再回过头来看看,你觉得两个问题有什么区别?
生:一个是知道原来坐车的人数,要求现在坐车的人数,一个是知道现在坐车的人数,要求原来的。
师:那么我们在思考时又有什么不同的地方呢?
生:知道原来要求现在的,我们就顺着想,如果知道现在要求原来的,我们就倒过来推想。
2、分组练习巩固
(1)小军收集了一些画片,他拿出画片的一半还多1张送小明,自己还剩25张。小军原来有多少张画片?
(2)东东和芳芳原来共有60张画片,冬冬给了芳芳5张画片后,两人的画片同样多。原来两人各有多少张画片?
(学生分组完成,指名板书,集体交流)
师总结:像这样的知道现在要求原来的,我们倒过来推想比较方便。
3、拓展提高
小华去参观动物园,先从大门向北走2格道熊猫馆,再向西北走1格到百鸟园,再向东走4格到猴山,最后向南走2格到蛇馆。你能在图中标出其他几个景点和大门的位置吗?
五年级数学教案《解决问题的策略》3
教学内容:教科书第90-92页练习十六3-10
教学目标:1、使学生进一步熟练运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、进一步培养学生“逆推”的'思维意识和推理能力。
教学流程:
一、复习导入上一节课你们学会了什么本领?“倒过来想”解决问题的关健在哪里?
二、练习
1、练习十六第3题:(1)读题理解题意:你从题中知道什么?
(2)整理信息:你能把这些信息整理出来吗?{大门--(向北走2格)熊猫馆--(向西北走1格)百鸟园--(向东走4格)猴山)--(向南走2格)蛇馆}
(3)寻找策略:你准备用什么方法解决这个问题?
(4)学生独立完成
2、练习十六第4题:小组交流:从你家到学校要经过哪些地方?那么从学校回到呢?
3、练习十六第5题:确定方法:你认为应该从左往右考虑呢?还是从右往左考虑?
4、练习十六第6题:(1)观察图片理清题意。(2)题目中告诉我们哪些信息?
5、练习十六第7题:从第3幅图开始倒过来说一说题意吗?编一道应用题。
6、练习十六第8题
7、练习十六第9题。交流,你是用什么方法解决这个问题的。有没有别的方法?
8、练习十六第10题。
9、思考题:读一读,整理题意,再想一想。
三、总结:
“倒过来想”也是解决数学问题的一决策略,其实也是解决生活问题的一种策略,遇到问题时,如果你也能倒过来想想或站在他人立场上想想,也许就有了解决问题的方法了。
五年级数学教案《解决问题的策略》4
教学内容:
课本第94-95页。
教学目标:
1.经历用列举法解决简单实际问题的过程,并做到不重不漏,找出所有符合要求的答案。
2.通过列举法解决问题的学习、交流、反思,体会有序思考在日常生活中的应用及其价值,进一步发展学生思维的条理性、严密性。
3.进一步积累解决问题的经验,增强解决问题的策略意识,提高解决问题的能力。
教学重点:
培养学生思考数学问题的条理性、有序性,体会解决问题的方法的多样性、灵活性。
教学难点:
能运用列举得策略找到符合要求的所有答案。
教学准备:
课件
教学过程:
一、谈话导入(1分钟)
学生自主认定学习内容
今天我们一起来学习“解决问题的策略”
二、自学例1(15分钟左右)
1、明确例1中的数学信息及所需要解决的问题。
出示:教材例1情境图。
导入:图中有哪些数学信息?围绕导学单进行自主学习。
2、自学。
导学单(时间:5分钟)
1.根据题中的条件和问题,你能想到什么?
2.你打算怎样解决这个问题?
3.你能列举出长方形的'长和宽,再找出面积最大的长方形吗
4.回顾解决问题的过程,你有什么体会?
学生自学时,教师巡视,收集多种方法,准备实物投影。
3、小组交流。
交流内容
(1)你是怎样解决这个问题的?
(2)在解决问题的过程中有什么体会?
导学要点:
从宽是1米开始考虑,按这样的顺序既不会多也不会漏。
(有序思考,不遗漏、不重复)
在周长相同的情况下,长方形的长、宽差距越大,面积越小;长、宽差距越小面积越大。
4.全班交流
分析学生在自学中出现的各种情况,给予适当点评。
预设:
(1)写数的分成
(2)有序写出用3个数字组成的所有三位数。
(3)用12个边长1厘米的正方形,拼成不同的长方形。
……
让学生比较有序和无序的两种结果,思考:同样都给出了四种围法,你更喜欢哪个? 为什么?
这就是今天我们要研究的解决问题的一个重要策略--列举。
在以前的学习中,我们曾用列举的策略解决过哪些问题?
三、巩固练习。(15分钟左右)
【基本练习】
1.第95页练一练
(1)还有哪些时刻会发出铃声?
(2)除了用列举的方法还可以怎么解答?
2.练习十七第1题
【综合练习】
练习十七第2、3两题。
四、课堂总结:
通过今天的学习,你学到了什么知识呢?快和大家分享一下吧。
五年级数学教案《解决问题的策略》5
教学内容:
课本第96页。
教学目标:
1.让学生会用列举的策略解决球队比赛的不同安排,感受列举法是解决问题的一种常用的方法。
2.使学生在解决问题的过程中,进一步体会列举法在解决问题中的重要性,从而能更自觉、主动地运用列举的策略解决生活中的实际问题。
3.进一步积累解决问题的经验,增强解决问题的`策略意识。
教学重点:
引导学生运用列举的策略解决问题。
教学难点:
让学生主动、自觉地运用选择策略解决问题。
教学准备:
课件
教学过程:
一、谈话导入,明确目标。(预设1分钟)
明确目标。
这节课我们进一步体会列举法在解决问题中的重要性,自觉、主动地运用列举的策略解决生活中的实际问题。
二、目标驱动,自主学习。(预设17分钟)
1.学习例题2:
南山中心小学举行小学生足球赛,有4支球队参加,分别是红队、黄队、绿队和蓝队。如果每两支球队比赛一场,一共要比赛多少场?
导入:题中有哪些数学信息?围绕导学单进行自主学习。
2.自学
导学单:
(1)理解题意,“每两支球队比赛一场”是什么意思?
(2)你能写出所有的比赛吗?先试一试。再与同桌交流。
(3)解决这各问题时选择怎样的方法,解决问题时要注意什么?
3.小组交流
交流内容
(1)你用什么方法解决这个问题的?
(2)列举出各场比赛时,要注意些什么?
(3)回顾解决问题的过程,你有什么体会?
师:列举时可以列表,也可以画图,根据问题的特点选择合适的列举方法。
在解决问题时,列举法是一种很好的解决问题的策略。在列举时有哪些注意点?
三、全班交流,提炼建模。(预设2分钟)
说说可以从哪儿想起,有序的表达自己的思考过程,尽可能说清楚,说全面。
四、分层练习,巩固内化。(预设10分钟)
【基本练习】
1.完成“练一练”
(1)学生读题,理解题意
(2)独立完成。
(3)交流方法。
教师提问:你能列举出答案吗?集体交流时引导学生说说是怎么想的。
2.练习十七第4题
(1)独立完成
(2)集体交流,纠错
提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?
交流时引导学生思考问题需全面有序。
3.练习十一第5题
(1)学生读题,理解题意
(2)独立想一想,有序列举,小组说一说。
(3)集体交流。
4.练习十一第6题
(1)学生独立完成
(2)集体交流,投中2次的可能几种,怎样计算才能不遗漏,不重复?
5练习十一第7题
展示各种涂法,表达想法,进行校对和订正。
五、课堂总结:
通过这节课的学习,你学到了什么知识?
五年级数学教案《解决问题的策略》6
教材分析:
转化是解决问题时经常采用的一种策略,能把较复杂的问题变成较简单熟悉的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。教学不应仅仅停留在能够解决某一类问题、获得某一类问题的结论和答案,而应超越具体问题的解法和结论,指向策略的形成和应用意识。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。
学情分析:
本课是在学生已经学习了用画图和列表,以及列举等策略解决问题的基础上,教学用转化的策略解决相关的实际问题。在此之前,学生已经初步积累了一定的用转化策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。
教学目标:
知识与能力:使学生初步学会运用转化的策略分析问题、灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
过程与方法:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
情感、态度、价值观:使学生积极主动参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题中遇到的困难,获得成功的体验。
教学重点:
会运用转化的策略分析问题、解决问题 。初步掌握转化的方法和技巧
教学难点:
能根据问题的特点确定具体的转化方法,初步形成策略意识。
教学准备:
课件、方格纸、彩笔、卡片(长方形、平行四边形、三角形、梯形、圆形)、题纸。
教学过程:
一、感知转化
师:同学们喜欢听故事吗?
(多媒体出示《曹冲称象》的画面)
提出问题:曹冲是用什么方法称出大象重量的呢?
(曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,再做上相同的记号,称出石头的重量,就称出了大象的重量。)
也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。 转化是我们平时常用的一种解决问题的策略。(板书:转化)
二、自主探索,初步感受转化策略
1.任意出示两个图形,学生观察,哪个图形面积大?
学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。
2.再出示例1图,仔细比比,哪个图形面积大?
由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。
3.用课件演示用平移和旋转转化成长方形比较大小的过程。
教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——转化)
4.提问:
(1)这是把什么转化成了什么?
学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。
(2)转化过程中什么变了?什么没变?(形状变了,大小没变)
三、回顾旧知,体会转化策略的运用
1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。
2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。
四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。
3.举个例子说说你的发现。
学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数
②计算小数乘法时把小数乘法转化成整数乘法
提问:这里都用了转化策略,有什么共同地方?
引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。
小结:这么多地方用到转化的策略,说说你有什么体会?
学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。
四、解决问题,深化转化策略
1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?
学生会想到把右边图形中的直条边通过平移,转化成和左边相同的.图案,肯定学生不仅善于观察,还善于想象。
2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?
师:指名学生用手指出右边图形的周长是由哪些线段围成的
生:(边指边说)是这些线段围成的总长度
师:对,那如何来计算它的周长呢?谁来说说你的想法?
生:我想把这条边移到这儿,这条边移到这儿?这样就成了一个长方形。
师:听明白了吗?谁再来说一说?
生:这两条横着的边移到这儿,这两条竖着的边移到这儿。
师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?
生:没有。
师:现在你能快速计算它的周长了吗?
生:(3+5)×2=16(厘米)
师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了
3.用分数表示各图中的涂色部分。
先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。 ①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。
②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。
③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8 。
4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?
师:要求学生先独立思考,看如何计算比较简便?
生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。
师:对于一些复杂的图形都能被大家轻松攻破了,真不错。
五、总结延伸,渗透思想
提问:通过今天的学习,你有什么收获?
师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。
今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。
六、作业布置,用转化策略解决实际问题
谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。
相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。
板书设计:
解决问题的策略
五年级数学教案《解决问题的策略》7
教学目标:
1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
学会用倒推的解题策略解决实际问题
教学难点:
根据具体问题确定合理的解题步骤
教学准备:
多媒体课件,练习纸。
教学过程:
一、激趣导入,初步建立倒推法的一般解题流程
1、路线倒推
师:前不久,学校组织大家去春游,还记得吗?
生:记得
师:游玩后一位同学写了这样的一篇数学日记。来,听一听。
(录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)
师:谁能回答?
生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。
(出示:学校←长江大桥←老山风景区←雏鹰军校)
师:原来你是倒过来想的。
2、翻牌倒推
师:下面老师玩一个小魔术,想不想看?
生:想
师:看好了。
(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)
师:要想知道原来这三张牌是怎样摆放的,怎么办?
生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。
师:你为什么这样操作?
生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。
师:原来你也是倒过来想的。
3、运算倒推
师:我们再来玩一个小游戏,比比谁的反应快!
(出示:)
师:你能立刻报出表示多少吗?
生:18
师:你是怎么想的?
生:6×5=3030-20=1010+8=18
师:你也是倒过来想的
4、小结
师:刚才这3个问题,大家都是怎么想的?
生:倒过来想的
:师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)
今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。
二、教学例题,探究倒推法
1、(出示例题:小明原来有一些邮票,今年又收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?)
师:你了解到哪些信息?
生:我知道了小明原有一些邮票,收集了24张,送给小军30张,剩52张。求小明原来有多少张邮票?
师:你能将这些信息进行整理吗?
同座位讨论,其中一人记录。
生:(同座位讨论整理过程)
师:谁来介绍一下你们是怎么整理的?
生:原有?张→又收集24张→送给小军30张→还剩52张
师:我们已经整理了信息,你准备怎样解决这个问题?试一试。
生:(尝试解题)
师:谁来介绍你的计算方法?
生1:52+30-24=58(张)
师:你能具体说说算式的意思吗?
生:从结果开始想,送出的要收回,而收集的要去掉。
师:你听懂了吗?
这个结果正确吗?你有办法验证吗?
生:58+24-30=52(张)
师:你是用顺推的方法,看剩下的是不是52张。
这一题你还有不同的计算方法吗?
生2:52+(30-24)=58(张)
师:你能解释算式意思吗?
生:在变化过程中,小明的邮票总共减少了6张,所以要用剩下的52张加上6张。
师:听懂了吗?
通过计算我们知道了小明原来有52张邮票。
2、小结:
师:第一种解法,是从结果出发,按顺序倒推出原来的情况。第二种解法,先比较小明的邮票是增加了还是减少了,再从结果出发倒推退出原来的`情况。
师:这两种解法列式不同,但在思考过程中有什么相同点?
生:都采用了倒推的方法。
师:为什么你们都选择倒推解决这个问题呢?
生:比较简单,容易理解。
师:原来用倒推解决这种问题,是一种既简洁又方便的解题策略。(板书:解决问题的策略)
3、试一试
出示图:
师:你从图中你知道了什么?
生:甲乙两杯果汁原来共重400毫升,从甲杯倒入乙杯40毫升,两杯果汁就同样多了,求原来两杯果汁各有多少毫升?
师:你会解决这个问题吗?试一试。
师:谁来说说你是怎么解决的?
生1:400÷2=200(毫升)
甲:200+40=240(毫升)
乙:200-40=160(毫升)
师:你能具体说说这三步的意思吗?
生1:400÷2=200(毫升)求的是现在甲、乙两杯有多少毫升,再把到入乙杯的40毫升倒回去,200+40=240(毫升),求出甲原来有多少毫升,200-40=160(毫升),求出乙原来有多少毫升。
师:他是用倒推的方法解决的,还有不同的方法吗?
生2:40×2=80(毫升)
400-80=320(毫升)
原乙:320÷2=160(毫升)
原甲:160+80=240(毫升)
师:原来你是用另一种方法来解决的。
师:倒推是解决这个问题的策略,当然也可以用其他方法来解决。
三、巩固应用,提高运用策略的能力
师:既然大家已经学会了倒推的解题策略,你会解决下面的问题吗?
1、(出示:练习十六3)
师:认真读题。
你会解决吗?在练习纸上画一画。
师:谁愿意说说你的方法?
生:(边展示边讲解)从蛇馆向北走2格到猴山,再向西走4格到百鸟园,再向
东南走一格到熊猫馆,最后向南走2格到大门。
师:大家同意他的做法吗?
2、(出示:练习十六2)
师:你会解答吗?独立完成。
师:谁来说说你是怎么算的?
生1:5+25+10=40(分)10时-40分=9时20分
生2:10时-10分-25分-5分=9时20分
3、(出示:练一练)
师:独立完成
师:我们一起来看看几种不同的解题方法。
(25+1)×2=52(张)
25×2+1=51(张)
师:哪种方法是正确的呢?
你有办法验证自己的方法是正确的吗?小组讨论。
师:我们一起来交流一下。
生1:把52代入原题,进行顺推,看剩下的是不是25张。
生2:51除以2就得到25.5张,这是不可能的。
生3:用画线段图的方法。
......
师:通过验证,我们知道了小军原来有52张画片。
接着往下看。
(出示:小军收集了一些画片,他拿出画片的一半还少一张送给小明,自己还剩25张,小军原来有多少张画片?)
师:你能解决吗?
生:(25-1)×2=52(张)
四、总结全课,指导解题策略
师:今天这节课,我们学会了什么解题策略?
生:倒推。
师:用倒推解决问题应从哪想起?
生:从结果想起。
师:倒推就是从结果出发,按顺序倒推出原来的情况。
【五年级数学教案《解决问题的策略》】相关文章:
《解决问题策略》教学设计05-12
解决问题的策略教学反思09-29
解决问题的策略——转化教学反思05-15
《解决问题的策略——假设》教学反思03-10
解决问题的策略教学反思(精选15篇)04-01
解决问题的策略教学反思15篇01-03
解决问题的策略教学反思(15篇)03-18
解决问题数学教案04-04
解决问题的策略教学反思合集15篇04-04
解决问题的策略教学反思(汇编15篇)03-20