数学五年级下册教案
作为一位杰出的教职工,时常会需要准备好教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?以下是小编为大家整理的数学五年级下册教案,希望能够帮助到大家。
数学五年级下册教案1
【学习内容】
方格纸上的图形旋转变换(教材第84页例2、3,第85~86页练习二十一第4~6题)。
【教学目标】
1、进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90°。
2、让学生初步学会运用对称、平移和旋转的方法在方格纸上设计图案。
3、让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
【教学重点、难点】
理解、掌握在方格纸上旋转90°的特征和性质。
【教学过程】
二次备课
【复习导入】
1、要想把旋转现象描述清楚,应该怎么说?
2、钟表上分针从12转到6,转了多少度?这时时针转了多少度?
【新课讲授】
1、探索旋转图形的特征和性质。
(1)教师用课件出示教材第84页例2三角形绕点O顺时针旋转90°的图形。
教师:刚才观察三角形的旋转过程你发现了什么?你怎样判断三角形是绕点O顺时针旋转了90°?
组织学生观察,并在小组中交流讨论。
(2)三角形旋转后,三角形有什么变化?
教师再次演示风车旋转的过程,让学生观察。然后组织学生在小组中交流讨论并汇报。(教师注意引导)
小结:通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O顺时针旋转了90°,而且,每条线段,每个顶点,都绕点O顺时针旋转了90°。
(3)揭示旋转的特征和性质。
教师:从画面中,我们能清楚地看到三角形旋转后,位置都发生了变化,那什么是没有变化的呢?
(①三角形的形状没有变;②点O的位置没有变;③对应线段的长度没有变;④对应线段的夹角没有变。)
如果我们将三角形在旋转后的'基础上,继续绕点O顺时针旋转180°,那么三角形应该转到什么位置?
2、学习画出旋转后的图形。
(1)教师出示教材第84页例3。
教师:怎样画出三角形绕O点顺时针旋转90°后的图形呢?
组织学生先在小组中讨论交流:是怎样旋转的?应该怎样画出旋转后的图形?
学生汇报时可能会说出:
①先画出点A′,OA′垂直于OA,点A′与O的距离是6格;
②再用同样的方法画出点B′;③然后把点OA′,OB′,A′B′连接起来。
(2)组织学生在课本上画一画,然后相互交流检查。
3、完成第83页“做一做”。
4、完成课本第84页下面的“做一做”。
先放手让学生独立画。再全班汇报交流,最后教师小结。结合生活中的数学介绍旋转在生活中的应用。
【课堂作业】
1、完成课本第84页“做一做”。
2、完成第85~86页练习二十一第4~6题。
(1)第3题让学生综合运用所学的有关对称、平移和旋转变换的知识进行判断,注意让学生感受数学的美,体会图形变换在现实生活中的应用。
(2)第4题练习时,可以放手让学生设计,再进行交流,要让学生在动手实践中,进一步理解旋转的特点和性质,体会旋转所创造的美。
3、完成练习二十二第1~3题。
【课堂小结】
同学们,通过这节课的学习活动,你有什么收获?
【课后作业】
完成练习册中本课时练习。
板书设计第2课时欣赏与设计
变换旋转90°时,中心点的位置不变,其他部分都以相同的方向旋转90°旋转后的图形与旋转前的图形只是位置发生了变化,大小不变,对应线段长度不变。
数学五年级下册教案2
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的.边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
学生独立思考,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的长方形?
学生各自独立思考,想像后举手回答。
3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
学生几乎是异口同声地说:会越多。
师:确定吗?(引导学生展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。
先让学生小组讨论,然后全班交流,师根据学生的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
学生独立思考后,在小组内进行交流,然后再全班交流。
引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)
6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们认为“1”是什么数?
让学生独立思考,后展开讨论。
二、动手操作,制质数表。
1、师出示:73。让学生思考着它是不是质数。
师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)
师:这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)
2、让学生动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
数学五年级下册教案3
教材分析:
《体积和体积单位》一课是五年级下册第三单元第三节的第一课时,属于“空间与图形”领域,从知识体系上分析是在学生已经初步认识了长方体和正方体的特点和表面积的基础上进行的,为进一步认识其它立体图形和学习有关体积计算及应用打好基础。
《体积和体积单位》的内容是学生认识了“长方体和正方体”以及“长方体和正方体的表面积”之后学习的,体积对学生来说是一个新概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对什么是物体的体积,怎样计量物体的体积,以及体积单位之间的进率为什么是千进位等问题,都不易理解。为此,这部分教材加强了对体积概念的认识。体积单位教材是通过迁移类推引出来的。教材呈现两个不易看出大小的长方体,让学生想怎样比较它们的体积大小。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位。教材由此指出:计量体积要用体积单位,常用的`体积单位有立方厘米、立方分米和立方米。并介绍了这些体积单位的字母表示法。
学情分析:
体积单位教材是通过迁移类推引出来的。教材呈现两个不易看出大小的长方体,让学生想怎样比较它们的体积大小。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位。教材由此指出:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米。并介绍了这些体积单位的字母表示法。
教学目标:
1.通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米。
2.使学生知道计量物体的体积,就要看它所含体积单位的个数。
3.使学生初步了解体积单位与长度单位、面积单位的区别和联系。
4.通过学生对体积意义的探索,发展学生的空间观念,培养学生的推理能力。
教学重点:使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的大小。
教学难点:学生对体积和体积单位概念的理解。
教具准备:盛有清水的玻璃杯一只,鸡蛋一个,1立方分米、1立方厘米的实物各一个,1立方米的框架一个。
教学过程:
一、目标导入
1.回忆《乌鸦喝水》的故事。
师:还记得乌鸦喝水的故事吗?谁来说一说?
学生说完后,师问:“水面真的会升高吗?”
师:看了这个故事,你发现了什么?
生1:我发现乌鸦非常善于动脑。
生2:我发现乌鸦往瓶子里填小石子,水面上升了。
师:为什么往瓶子里填小石子,水面就上升了呢?
生3:因为石头占了瓶子的一部分空间,把水挤上去了。
师:体积和空间之间到底有怎样的关系?让我们一起来做个实验研究研究。
2.实验演示,揭示概念。
老师做实验:拿一个盛水的玻璃杯,再把一个鸡蛋投入杯中,请同学观察水面的情况,为什么会出现这种情况?水与原来相比有没有增减?为什么水面会升高?
从上述情况说明:水面上升是因为鸡蛋占一定的空间。
像我们每个人都占一定的空间,教室里每一件物品都占据一定的空间。
让学生举生活中占空间的例子。……
师:今天我们就一起来学习与之相关的知识(板题:体积和体积单位),首先请看学习目标:理解体积的含义,认识常用的体积单位:立方米,立方分米,立方厘米,建立1立方米、1立方分米、1立方厘米的表象。
过渡:要达到本节课的学习目标,还要靠大家认真自学,怎样自学呢?请看学习指导。
二、学习指导
认真看课本27至28边看边画出重点。思考:
1、什么叫体积?
2、常用的体积单位有哪些?
3、1立方厘米、1立方分米、1立方米有多大?(5分钟后比谁能做对检测题)
三、自主学习
过渡:现在自学竞赛开始,比谁看书最认真,坐姿最端正!
生看书自学,过渡:看完的请举手,指一名后进生说答案。(错了让其他同学更正)下面,老师来检测一下同学们的自学效果怎么样?
四、检测反馈
(1)什么叫体积?
学生回答后,教师课件出示
物体所占空间的大小就叫做物体的体积。
课件出示电视机、影碟机、手机的图片
师:谁的体积大、谁的体积小呢?
师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?(生:不好比较。)
师:所以要比较物体的体积大小,需要有一个统一的体积单位。
(2)常用的体积单位有哪些?
板书:立方厘米、立方分米、立方米
(3)1立方厘米、1立方分米、1立方米有多大?
师:1立方厘米有多大?怎样记住它?请具体说说,生活中有哪些物体的体积大约是1立方厘米?出示1立方厘米的小方块让学生观察,你知道了什么?哪些物体的体积比较适合用立方厘米用单位?
1立方分米有多大?怎样的正方体的体积是1立方分米?(出示1立方分米的正方体让学生感受其大小)你还见过哪些物体的体积大约是1立方分米?
1立方米有多大?怎样的正方体的体积是1立方米?出示1立方米的正方体框架让学生感受其大小,举例说说生活中1立方米的物体。
(4)练一练(课件出示)
a.数一数,下面物体的体积是多少。
b.下面的图形是用棱长1cm的小正方体拼成的,说出它们的体积各是多少。
c.说一说1cm、1cm2、1cm3分别是用来计量什么量的单位,它们有什么不同?
(先由后进生来回答,其他学生补充更正)
五、讨论总结。
通过今天这节课,你学到了哪些知识?
六、完成作业
课本第44页1-3题
板书设计:
体积和体积单位
立方厘米(cm3):棱长1cm的正方体的体积是1cm3
立方分米(dm3):棱长1dm的正方体的体积是1dm3
立方米(m3):棱长1m的正方体的体积是1m3
物体含有多少个1立方厘米,体积就是多少立方厘米。
数学五年级下册教案4
教学内容:
北师大版五年级下册第88、89页。
教学目标:
1、知识与技能
(1)使学生在实际情境中认识、理解中位数在统计学上的意义;
(2)会求数据的中位数,了解中位数与平均数的联系和区别。
2、过程与方法
能根据具体的问题,选择恰当的统计量(平均数或中位数),在与平均数的对比中体现中位数的特点。
3、情感、态度与价值观
感受数学与现实生活的密切联系,体会数学的运用价值,激励学生热爱数学的情感。
教学重点:
理解中位数在统计学上的意义,学会求中位数。
教学难点:
恰当选择统计量来反映一组数据的一般水平。
教学过程:
一、认识中位数
1、故事引入。
李叔叔要去找工作,同学们,你们知道一个人找工作时,一般最关注什么?
找工作时,工资的多少往往是人们最关心的,李叔叔看到一份超市的广告上写着:本超市员工月平均工资1000元,现招员工若干。李叔叔一看,待遇不错,就去应聘了。可到了发工资,李叔叔不高兴了。超市老板拿出了员工的工资表。
xx超市员工月工资表单位:元
职员月工资
经理3000
副经理20xx
员工A 900
员工B 800
员工C 750
员工D 650
员工E 600
员工F 600
员工G 600
员工H 600
员工I 600
2、思考与讨论
(1)广告上说员工的月平均工资1000元,正确吗?
(2)但大部分的员工工资在1000元以下,广告是否符合实际?
(3)你认为应该用怎样的数反映这个超市的员工的月工资水平比较合理?
3、交流与沟通
(1)通过计算,月平均工资是1000元,没有错。
(2)部分学生认为此广告存在欺骗性。因为两位经理的工资很高,而员工的工资都不到1000元。
(3)这组数据中,由于出现了两个很大的数据3000和20xx,所以平均数1000不能真实地反映超市员工的月工资水平。
生一:600元比较合适,因为得600元的人是最多的,有5人。
生二:650元比较合理,因为它正好是中间那个数。
生三:把两个经理的工资去掉,再求其它数的平均数。
4、提出中位数和众数
同学们分析得不错,很有自己的想法,除了平均数外,数学上还有两种统计量可以表示一组数据的水平,那就是中位数和众数。(板书课题)
(1)按照你们的理解,能说说什么是中位数吗?
(将一组数据按大小顺序排列,中间的那个数叫做这组数据的中位数。强调:先按大小顺序排列。)
工资表这组数据的中位数是多少?
(共11个数,第6个数是中位数,是650。)
想一想:平均数1000和中位数650哪个数表示员工的工资水平更合适呢?你是怎样理解的'?
(教师点明:平均数会因为一些极端数据的影响,不能很准确地反映一组数据的平均水平,而极端数据对中位数没有影响,650处于中间,反映的是中等水平的工资,能表示这组数据的中等水平,李叔叔应当关心中位数。)
(2)同学们也可以用自己的话说一说,什么是众数呢?这组数据的众数是多少?
(众是多的意思,在一组数据中,出现次数最多的数
据叫做这组数据的众数。这组数据的众数是600,体现的是多数人的工资水平,李叔叔还应当关心众数。)
二、找中位数和众数
1、求下面每组数据的中位数。
(1)请一列同学(人数是奇数)报体重,记录下数据,数据的大小未排列。
(2)请一列同学(人数是偶数)报最近一次的测试成绩,记录下数据,数据的大小也未排列。
指导学生自学课本,明确:当数据的个数是偶数时,中间两个数的平均数就是这组数据的中位数。
以上两题都要强调先要将数据按大小顺序排列。而且比较用平均数和中位数哪个更能反映这组数据的真实水平。
2、请一小组的同学报年龄,记录下数据,找众数。并比较众数和中位数哪个能更好地反映同学们的年龄状况。
三、知识应用
1、课本89页第一题。
明确:当一组数据中没有出现偏大数或偏小数时,中位数、平均数和众数就会非常接近,甚至相等。这种情况下,这三种数都能用来代表这组数据的一般水平。
2、课本89页第3题。
明白众数是40,不是34。
3、在一次射击比赛中,战士甲和战士乙分别代表两个连队比赛,获得胜利者将代表连队参加全团射击比赛,每人打5发子弹,成绩如下:战士甲的平均分7、8环,战士乙的平均分8环。你想推荐谁?
(1)说明推荐理由。
(2)回放射击过程,战士甲10、9、10、10、0;战士乙7、7、8、10、8。
(3)再次作出选择,说明理由。
四、课堂小结
1、说说什么是中位数和众数。
2、怎样恰当选择平均数、中位数或众数来反映一组数据的一般水平?
五、小调查
同学们看过电视上很多比赛活动,评委是怎样计算选手的得分的?你认为去掉最高分和最低分后再求的平均数与平均数、中位数和众数哪个能更好地反映选手的成绩?
六、教学反思
市教科所的领导听课的点评:
1、重难点把握得好,一针见血;
2、基础打得好,明确内涵,理论运用入木三分;
3、学生紧密配合,参与学习,引人入胜;
4、把学习与生活巧妙结合起来,标新立异。
个人遗憾:
1、在同学们报出的实时数据中,众数和中位数的比较还不够突出;
2、练习量较少。
数学五年级下册教案5
教学目标和要求
1、在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。
2、丰富对现实空间的认识,发展初步的空间观念。
3、结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
教学重点
在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。
教学难点
探索并理解长方体、正方体的表面积及其计算方法。
教学准备
教学时数2课时
教学过程
一、探索长方体、正方体的表面积及其计算方法。
1、长方体的表面积及其计算方法。
师:请同学们仔细观察18页的长方体纸盒和它的展开图,完成下面两项活动。
(1)长方体的6个面分别对应于展开图的哪个部分?分别将它们涂上相应的颜色。
(2)展开图的各条边与长方体的长、宽、高有什么关系?在展开图的方框中填上适当的数。
(3)估一估,做这样的一个纸盒至少需要用多少纸板?再算一算。
学生交流,小结长方体的表面积的计算方法。
(对于学生出现的不同的方法,教师都给予肯定,关键是让学生说清解题的基本思路,然后引导学生比较各种方法之间的联系。)
提示:在计算实物的`表面积时,要根据实际选用不同的方法灵活计算。(要弄清物体的表面积是指哪些面的面积之和。)
2、正方体的表面积及其计算方法。
学生尝试探讨:教科书第18页“试一试”。
学生交流,小结正方体的表面积的计算方法。
二、课堂练习
1、教科书第19页“练一练”第1题。
学生独立完成,指名板演。
2、教科书第19页“练一练”第2题。
让学生先说商标纸的面积纸哪些面的面积之和,再计算。
3、教科书第19页“练一练”第3题。
先让学生结合实际想一想,一个电视机布罩要做几个面,哪个面是不需要做的,再让学生尝试计算。
4、教科书第19页“练一练”第4题。
先让学生独立尝试计算再交流。
5、教科书第19页“练一练”第5题。
如果学生列综合算式有困难,允许分步计算。
6、教科书第19页“练一练”第6题。
让学生综合运用知识解决实际问题。
数学五年级下册教案6
教学目标:
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点:
体积单位进率和单位之间的互化。
教学难点:
复名数和单名数之间的转化。
教学过程:
一、复习准备
1、教师提问
(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?
板书:长度单位
1米=10分米 l分米=10厘米 l厘米=10毫米
(2)常用的面积单位有哪些?相邻的两个单位间的'进率是多少?
板书:面积单位
1平方米=100平方分米 l平方分米=100平方厘米
2、口答填空,并说明算法和算理。
(1)4米=( )分米=( )厘米
算法:进率×高级单位的数
(2)500厘米=( )分米=( )米
算法:低级单位的数÷进率
3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。(板书课题:体积单位间的进率)
二、学习新课
(一)认识体积单位间的进率
1、认识立方分米和立方厘米的关系
(1)指导学生自学,出示自学提纲
A、棱长是l分米的正方体的体积是多少?
B、棱长是l0厘米的正方体的体积是多少?
C、1立方分米与1000立方厘米哪个大?为什么?
(2)学生分组汇报.教师演示动画“体积单位间的进率l”
因为l分米=10厘米,所以棱长是l分米的正方体也可看作棱长是10厘米的正方体.
1分米× l分米× l分米=1(立方分米)
10厘米× l0厘米×l0厘米=1000(立方厘米)
(3)板书:1立方分米=1000立方厘米
2、推导立方米与立方分米的关系.
(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?用什么方法可以验证你的想法是否正确呢?
(学生分组讨论,汇报)
(2)(演示动画“体积单位间的进率2”)
棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是l米的正方体可以划分成1000个棱长是l分米的小正方体,即1000个体积为l立方分米的正方体。
板书:l立方米=1000立方分米
(3)思考:1立方米等于多少立方厘米呢?
3、小结:相邻的两个体积单位间的进率是l000.
4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?(名称、进率两方面)
(二)体积单位的互化(演示课件“体积单位间的进率”)
1、出示例3:8立方米、0.54立方米各是多少立方分米?
8立方米=( )立方分米
0.54立方米=( )立方分米
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?
想:因为l立方米=1000立方分米,8立方米有8个1000立方分米
列式:1000×8=8000,填8000
(第2题同上理)1000×0.54=540,填540
2、出示例4:3400立方厘米、96立方厘米各是多少立方分米?
3400立方厘米=( )立方分米
96立方厘米=( )立方分米
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。
想:因为l000立方厘米为1立方分米,3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:3400÷1000=3.4,填3.4
(第2题同上理)96÷1000=0.096填0.096
3、教师:请对比说一说这两道题有什么不同?
板书
高级单位→低级单位,用进率×高级单位的数。
低级单位→高级单位,用低级单位的数÷进率。
4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同)
(三)练习
1、2立方米80立方分米=( )立方米
提示:哪部分需要转化?没转化的部分如何办?
板书:2+80÷1000=2+0.08=2.08,填2.08
2、5.34立方分米=( )立方分米( )立方厘米
提示:哪部分可以直接填?哪部分需要转化?
板书:1000×0.34=340,填5和340
3、3.09立方米=( )立方米( )立方分米
老师:从上面三道题的解答中,你们有什么体会?(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化)
(四)练习解决实际问题.
出示 一块长方体钢板长2.2米,宽1.5米,厚0.01米.它的体积是多少立方分米?
方法一:2.2×1.5×0.Ol=0.033(立方米)
0.033立方米=33立方分米
方法二:2.2米=22分米 l.5米=15分米 0.01米=0.1分米
22× 15×0.1=33(立方分米)
答:这块钢板的体积是33立方分米
三、巩固反馈.
1、口答填空,说出计算过程
0.9立方米=( )立方分米
540立方厘米=( )立方分米
38立方分米=( )立方米
4立方分米50立方厘米=( )立方分米
10.35立方米=( )立方米( )立方分米
2、判断正误,并说明理由.
0.5立方米=500立方厘米( )
2.6立方分米=2立方米60立方厘米( )
四、课堂总结.
1、体积单位的进率。
2、体积单位的转化方法。
五、课后作业.
1、4平方米=( )平方分米 4立方米=( )立方分米
2、5平方米=( )平方分米 2.5立方米=( )立方分米
3、0.3立方分米=( )立方厘米 l.08立方米=( )立方分米
4600立方分米=( )立方米 3450立方厘米=( )立方分米
板书设计:
进率×高级单位的数
低约单位的数÷进率
数学五年级下册教案7
教学内容:
义务教育教科书《数学》人教版五年级下册教材第2页例1、例2的内容。及练习一2、3题
教学目标:
1.能根据给出的从一个方向看到的图形,用给定数量的小正方体摆出相应的几何组合体,让学生体会可能有不同的摆法。
2.能根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何组合体,体会有些摆法的确定性。
3.通过用小正方体拼搭几何组合体的活动,经历观察、操作、想象、猜测、分析和推理等过程,积累活动经验,提高学生的空间想象和推理能力,进一步发展空间观念。
学情分析:
学生在日常生活中已经积累了丰富的观察物体的感性经验,并通过第一学段的学习,已经能辨认从不同位置观察到的简单物体的形状。而本单元在此基础上,还要求学生学会辨认从不同方位看到的物体的形状和相对位置。因此,教师在教学中要设计观察和拼搭等活动,为自己和学生准备好教具与学具。同时在进行观察和拼搭的活动中,要注意让学生真正地、充分地进行活动和交流。因为只有在活动的过程中,学生才能真正经历观察、想象、猜测、分析和推理等过程,学生的空间想象力和思维能力才能得以锻炼,空间观念才能得到发展。切不可让教师的演示或少数学生的活动和回答来代替每一位学生的亲自动手、亲自体验和亲自思考。要鼓励学生敢于发表自己的意见,与同伴交流自己的想法,在交流中理清思路,互相启发
教学重点:根据看到的平面图形按要求摆出相应的几何组合体。
教学难点:借助空间想象还原几何组合体。
教学准备:课件,正方体教具,小正方体学具。
教学过程:
(一)情景激趣,导入新课
师:同学们都玩过积木吗?现在和老师一起来搭一搭积木(用积木摆了一个几何组合体,)观察这个几何组合体,你知道下面的三个图形分别是从什么方向看到的吗?(出示课件找生回答)
这一节课我们来继续探索《观察物体》中的奥秘。(板书课题)
(设计意图:把练习一的第一题在这里以动态形式出现,激发学习兴趣,唤起学生已有的知识经验,为后续学习做准备。)
(二)自主活动,探究新知
1.根据一个面摆放,体会摆法的多样性。
(1)出示探究内容,明确探究要求。
师:同学们,刚才我们用眼观察了一组几何组合体,想不想亲自动手摆一摆呀?别着急,让我们来看一看大屏幕,看题中给提出了什么要求。(出示课件例1)
(2)学生动手拼摆,验证交流方法。
师:请同学们拿出4个小正方体,根据你的理解,用手中的4个小正方体先摆一摆。摆好后认真观察正面,验证自己的'摆法是否正确,最后和同桌交流你是怎么摆的。
(3)全班交流反馈,形成认识。
①、呈现摆法。
师:谁来说说你的摆法?(指定学生上台展示,反馈全班同类型的摆法有多少)
②、观察验证。(出示课件)
③、揭示方法。
(4)应用体验。
师:如果再增加一个同样的小正方体,保证从正面看到的还是3个正方形,你会摆吗?快动手试试吧!摆完后小组交流你的摆法。
预设:放在后面被遮挡住或放在前面遮挡都行。
师:刚才我们根据正面图形用小正方体摆几何组合体,同学们有什么发现?
小结:根据从一个方向观察到的图形摆几何组合体,摆法是多样的。摆法虽然很多,但是有规律可循。都是先根据从正面看到的图形摆正方体,然后只能在它的前面和后面添加小正方体,不能添加在上、下、左、右面。
同学们的发现可真不少,下面用我们的发现来解决问题吧!
课件出示练习一第2题(学生进行操作交流后汇报)
(设计意图:通过操作和交流,让学生发现只根据从一个面看到的图形摆小正方体的方法是多样的,同时体会不同方法的内在联系。最后增加体验练习,让学生由依赖几何直观逐步过渡到空间想象。在活动中,培养学生观察发现、联系比较、分析推理、归纳概括的能力,获得基本的数学活动经验。)
2 、根据三个面摆放,体会有些摆法的确定性。
(1)出示探究内容,明确探究要求。
教师:下面给出了从正面、左面、上面看到的图形,你能用小正方体摆出原来的形状吗?(出示课件教材例2)
(2)学生动手拼摆,验证交流方法。
教师:现在给出了从正面、左面、上面看到的图形,可以怎样摆呢?同学们可以思考一下,和同桌交流后再动手。
(设计意图:有了前面的根据一个方向看到的图形还原几何组合体的经验,这里这里可以放手让学生在独立思考、同桌交流、和动手操作的过程中完成从平面图形到立体图形还原的逆向思维。)
(3)全班交流反馈,形成认识。
教师:谁来介绍你的摆法?(教师指定学生上台展示。)
教师:同学们,看看他们摆出来的图形一样吗?
教师:通过拼摆,大家了有什么发现?
小结:还原原来的物体时,我们可以按一定的顺序进行拼摆,在这个过程中不断进行调整,最后通过验证加以确认。通常有三个方向看到的图形可以确定原来物体的形状。
(设计意图:在交流过程中,让学生明确,这里根据看到的三个面摆小正方体方法的确定性,体会还原过程的多样性,以及最后结果的确定性,注意引导学生由几何直观过渡到空间想像与分析推理。当然,有时候有三个面摆放也会出现不同的结果,还需要结合进一步的信息去确认,这里不作要求。)
(三)实践应用,巩固新知
教师:同学们很善于思考,下面你能用自己的发现来完成挑战吗?我们来动手试试吧!
1.完成第2页“做一做”
教师:可以先想一想,如果想不出再动手摆一摆。
2.完成练习一第3题。
(设计意图:通过“做一做”让学生进一步明确“三视图通常可以确定一个物体的具体形状”,帮助学生建立空间观念。加深学生对知识与方法的应用,培养学生的应用意识。)
(四)总结提升,分享收获
教师:同学们,今天的数学课你们有哪些收获呢?
(五)布置作业
课件出示作业内容
教学反思
例1和例2的教学,是从把一个或一组立体图形从固定摆放让学生观察,让学生发挥想象,从而决定观察到的平面图形的样子及形状。而通过例3的拼搭活动、实践操作,学生对原来的想想变成了现实,是从感性认识到理性认识上的提升。学生也明白了从不同方向看立体图形得到的平面图形都不一样。就学生来讲,本单元的内容更贴近学生生活,贴近学生实际,学生的学习积极性很高。积极参与教师的教学互动,教师的教学更觉轻松,教学效果也好,教师在教学中通过具体实物的展示,作为学生来讲,无论是单个立体物体还是简单的组合立体物体,从不同位置、不同角度都能准确辨认。
数学五年级下册教案8
学习内容:
课本第97页例1及“做一做”,第99页练习十九第1、2、3题。
学习目标:
1.我会用分数与小数的关系,把小数化成分数。
2.我能应用所学数学知识解决问题的能力。
学习重难点:
小数化分数的方法。
学习过程:
一、导入新课
请大家回忆一下,说说小数的.意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?
二、合作探究、检查独学
1.自学例1,小组合作交流
用分数表示:
用小数表示:
这两个结果有什么关系:
2.用自己的话说一说怎样把小数化成分数?应注意什么问题?
①我的想法:
②完成课本97页“自己试一试”三个填空题。
3.小组代表展示、汇报
4.总结升华
5.我能行:“做一做”把下列小数化成分数。
0.4= 0.05= 0.37=
0.45= 0.013=
数学五年级下册教案9
【设计理念】
《数学课程标准》中指出:“教师教学应该以学生的认知发展水平和已有的生活经验为基础”,“学生的数学学习是必须要建立在原有的知识经验基础之上的”,“要重视数学知识的形成过程”。
在这些理念的指导下,本课从学生已有的生活经验---人与人之间的关系出发,遵循学生的认知规律,引导学生借助各种表征来形成对因数和倍数的理解,同时也激发了学生学习兴趣,培养学生的数感。学生要掌握因数与倍数这个知识,就如理解生活中凡是满足什么条件的人就是师生关系一样,数学上,凡是满足什么条件的数就是因数与倍数,然后就来研究这满足什么条件了。
【教学内容】
《义务教育教科书﹒数学》(人教版)五年级下册第5页。
【学情与教材分析】
本课是五年级下册第二单元“因数和倍数”中第一课时内容。学习本课内容之前,学生已经学习过乘法和除法,在三年级对倍也有了初步的认识,经历从乘法和除法式子转化到“因数和倍数”的概念的过程。在此基础上教师利用“人与人之间的关系”过渡到“数与数之间的关系即因数和倍数”,进一步从乘法和除法的角度加深对因数和倍数的理解,体会“因数和倍数就是数与数之间的关系”的本质。
【教学目标】
1.认识因数和倍数,理解因数和倍数的意义。
2.经历自主探索的过程,体会因数与倍数相互依存的关系。
3.感受将抽象概念转化成具体实例的过程,体验数学的奇妙,发展学生的数感。
【教学重点、难点】
重点:认识因数和倍数,理解因数和倍数的意义。
难点:利用语言描述表征数量关系,感悟因数和倍数的意义。
【教学准备】
课件、学习单
【教学过程】
一、根据经验,建立联系
教师:在我们的生活中,有些人和人之间会有某些特殊关系的,比如:
在一家人里面,如果你是她生的,她就是你的什么人?(妈妈),同时,你就是她的孩子。当然,人和人之间的关系会有很多的,再如,我是教你的',我就是你的老师,你就是我的学生。好了,那数和数之间的关系呢?今天我们就来研究数与数之间的关系。(板书课题:因数和倍数)
【设计意图:搭好生活与数学的桥梁,激发学生学习兴趣,为更好地理解因数和倍数做好铺垫。】
二、在整数乘法中,认识因数和倍数
1.教师:在整数乘法( )×( )=( )中,如2×3=6,我们就说2和3是6的因数,同时6就是2和3的倍数, 总结出:在整数乘法中,因数就是积的因数,积就是因数的倍数。
2.请两学生举例说明哪些数之间是因数与倍数的关系,完成学习单。
学生自由写出整数乘法的式子,互相说谁是谁的因数,谁是谁的倍数,再找个别学生汇报,最后全班订正与评价。
3.强调因数与倍数是互相依存的。提醒学生注意,不能说某个数是因数,某个数是倍数,就如同不能说某个人是儿子,某个人是妈妈一样。
4、强调在研究因数和倍数的时候,为什么一般不包括0,因为0乘什么数都得0。
5、完成做一做,学生汇报,再次强调因数与倍数相互依存的关系。
【设计意图:①学生要掌握因数与倍数这个知识,就如理解生活中凡是满足什么条件的人就是父子关系一样,数学上,凡是满足什么条件的数就是因数与倍数。这里从整数乘法的角度来理解因数和倍数。通过整数乘法2×3=6,知道“2和3满足2×3=6”这样的条件,就说明2、3和6有因数和倍数的关系。②让学生充分地用语言来表达、交流,语言描述表征数量关系,在相互交流、相互借鉴的过程中丰富对倍数和因数的认识,从而促进数感的形成。③用母子关系表征数与数之间的相互关系,更符合学生的认知规律。】
三、在整数除法中,认识因数和倍数
1、在认知冲突中发现可以用整数除法来确定两个数之间是否存在因数和倍数的关系。
教师:当遇到比较大的整数时,如13与221、27与516,你根据整数乘法13×(?)=221还容易判断13是221的因数或221是13的倍数吗?
2、用整数除法来确定两个数之间是否存在因数与倍数的关系。
教师:你有什么办法可以确定13和221是因数与倍数的关系?
学生思考:发现可以用221÷13=( )看能否得到整数的商,进而发现对于比较大的整数,如果根据整数乘法难以确定两个数之间是否存在因数与倍数的关系时,可以用整数除法来确定两个数之间是否存在因数与倍数的关系。
学生动手:计算除法,发现221÷13=17,能达到整数的商,断定13是221的因数或221是13的倍数;516÷27=19……1,得不到整数的商,可以断定27与516不是因数与倍数的关系。
3、在整数除法中,除数与被除数的关系是因数与倍数的关系。
教师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,被除数也是商的倍数,除数和商都是被除数的因数,指导学生阅读课本第5页的内容,并质疑。
4、学生举例说明因数与倍数的关系。
学生自由写出整数除法式子,互相说谁是谁的因数,谁是谁的倍数,再请两个学生汇报,订正与评价。
【设计意图:用较大的数据让学生判断,从而引起认知冲突,激发学生寻求更适合的方法,用具体的实例将抽象的概念具体化,有利于学生理解因数和倍数的关系。】
四、总结判断因数与倍数关系的一般方法。
判断两个数是否是因数与倍数关系,一般有两种方法:
第一种,用乘法,如果小的数的几倍(乘几)是不是得另一个大的数,小的数就是大的数的因数,大的数就是小的数的倍数;
第二种,用除法,如果大数除以小的数能得到整数而没有余数,小的数就是大数的因数,大数就是小的数的倍数。
【设计意图:总结阶段引导学生反思,提炼出解决问题的方法和策略,将知识系统化,提升学生的思维能力和解决问题的能力。】
五、实践应用
用你喜欢的方法判断下面每组数是不是因数与倍数的关系。
6和48 8和76 23和598
【设计意图:通过练习巩固,加深学生在语言表征、算式表征等形式来表征数与数之间的关系。】
【板书设计】
因数和倍数
在整数乘法中,因数就是积的因数,积就是因数的倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,被除数也是商的倍数,除数和商都是被除数的因数。
【设计思路】
“因数和倍数”是一个比较抽象的概念,为了帮助学生建立和理解“因数和倍数”的概念,我们应该让学生充分经历用语言描述、算式表征数与数之间的关系的过程。
一、重视已有经验
学生在日常生活中对“人与人之间的关系”已有自己的经验,因此教学时教师要引导学生通过“人与人之间的关系”来理解“数与数之间”,让学生“学会学习”(中国学生的核心素养之一)。
二、关注多元化表征
研究表明对于一个数学概念或者数学问题,往往可以用多元的形式来表征它,通过从不同的角度对其本质进行阐述,可以使学生获得更深刻的经验,从而达到对数学本质的感悟。因此在本课教学中教师要注重让学生充分经历让学生充分地用语言来表达、交流,语言描述表征数量关系,在相互交流、相互借鉴的过程中丰富对倍数和因数的认识,从而促进数感的形成。
数学五年级下册教案10
教学内容:
人教版小学数学五年级下册,因数与倍数的整理复习。
教学目标:
1、知识目标:归纳整理“因数和倍数”的有关概念,理解并掌握概念间的内在联系,形成认知结构。
2、技能目标:亲历数学知识的整理过程,培养学生的观察分析、比较、概括、判断等逻辑思维能力。
3、情感目标:在整理和复习的过程中,培养学生合作,交流的意识,渗透事物间互相联系,互相依存的辩证思想
教学重点:
概念间的联系和发展,运用所学的知识解决实际问题。
教学难点:
归纳和整理知识点,形成知识网络
课前活动:
1、要求学生对每个知识点的意义理解并熟练掌握。
2、把自己的整理情况写在作业本上。
本章知识点:
1、因数与倍数的意义
2、求一个数的因数和倍数的方法
3、2的倍数特征
4、奇数、偶数的概念
5、5的倍数特征
6、3的倍数特征
7、质数和合数的概念、区别
复习提纲:
教学程序:
第一步:创设情境,激趣导入
师:同学们,我们学习完因数和倍数这章知识,老师这有两个问题想考考你们,看谁的反应快,你们愿不愿意?
师:你能用因数和倍数的知识描述一下4这个数吗?
(4是自然数,合数、偶数,是8的因数,4是2的倍数)
师:你又能描述一下5吗?
(5是奇数,是10的质因数)
小结:同学们很聪明!不过,这些知识并不是孤立存在的,它们之间还有很多联系,这节课,我们就一起进一步整理复习这些内容,理顺它们之间的联系。
(板书:因数与倍数的整理复习)
第二步:发放复习提纲,布置复习任务
1、发放提纲
2、作要求
第三步:自主复习,回顾旧知识
先自己想一想,要怎么做这些题,如何回答?怎样举例?考虑之后就可以在组内交流。
第四步:合作学习、质疑问难
1、合作交流学习
2、师巡视指导
第五步:展示交流,师适时补充点拔
1、展示汇报
2、师适时点拔,补充(老师也做了相应的整理,我们一起看看板书)
第六步:知识巩固、拓展训练
技能训练题:
1、按要求填数,在1—10的自然数中,选择合适的数填入圈内。
质数合数偶数奇数
既是质数又是偶数既是合数又是奇数
2、判断
(1)12是倍数,2是因数。()
(2)1是奇数也是质数。()
(3)奇数都是质数,偶数都是合数。()
(4)质数没有因数,合数有无数个因数。()
(5)所有的偶数都是合数。()
3、我的手机号码是:A B C D E F G H I J K,注意每个字母代表一个数字,愿不愿意知道老师的手机号码:
A——既不是质数也不是合数()
B——最小的奇数的3倍()
C——5的最小倍数()
D——比最小的质数大5()
E——8的`最大因数()
F——3的最小倍数()
G——最小的偶数()
H——最小的偶数()
I——2和5之间的奇数()
J——既是5的倍数又是5的因数()
K——比最小的合数小1()
老师的手机号码是:_________
第七步:小结
今天这节课我们复习了因数与倍数;2、5、3的倍数特征:质数和合数这几个方面的知识,如果说有哪些地方弄不清楚,那么你们刚才破译出了老师的手机号码,下来可以拨打我的号码,老师随叫随到,可以帮助你,谢谢同学们的合作。
板书:
因数与倍数
a×b=c(a≠0,b≠0),数的意义a和b就是c的因数,c就是a和b的倍数
因数与倍数
1、一个数的因数的个数是有限的,求一个数的因一个数的倍数的个数是无限的。
数和倍数的方法
2、求一个数的因数,要一对一对地找,看哪两个自然数的积等于这个数,那两个数就是这个数的因数。
1、2的倍数特征:个位上是0、2、 4、6、8的数都是2的倍数。
2的倍数特征
2、奇、偶数:自然数中,是2的倍数的数叫偶数,不是2的倍数的数叫做奇数。
5的倍数特征:个位上是0或5的数都是5的倍数
3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数
2、5、3的倍数特征:个位上是0,各个数位上的数的和是3倍数,这样的数就是2、5、3的倍数
1、质数:一个数只有1和它本身的个因数,这个数叫质数。
质数和合数
2、合数:一个数除了1和它本身以外,还有别的因数,这个数叫合数。
3、1既不是质数,也不是合数
数学五年级下册教案11
一、教学目标
1、经历观察、操作、比较合发现的过程,掌握长方体和正方体的特征。
2、认识长方体的长、宽、高,并会根据需要进行简单计算。
3、在观察、比较、测量等学习活动中,培养操作能力,逐步形成空间观念。
二、学情分析
根据本班学生情况,学生都很熟悉类似长方体正方体形状的物体,面对这一节知识点,学生们更倾向于从实际物体中,通过自己的观察、探索找出书本上的答案,从而达到教学目标,也提高自己的学习兴趣和动手操作能力。
三、重点难点
重点:掌握长方体和正方体的特征。
难点:理解长方体和正方体的联系与区别
三、教学准备:多媒体课件
四、课时安排:2课时
五、教学过程
第一课时
一)、导入新课
问同学们所在的教室是什么形状,装书包用的抽屉是什么形状,出示自己制作的课件上的图画,问学生是什么形状。学生回答:长方体。这节课就让我们学习长方体有哪些特征。
二)、初步认识长方体
让学生拿出事先准备好的长方体,自己先观察,摸一摸长方体感受它的面、棱、顶点是什么感觉,从而给出其概念。
棱:面和面的线段。
顶点:棱和棱的'交点。
三)、小组活动
将学生相交分为6组,讨论并回答以下问题
1、长方体有6个面。
2、每个面是什么形状?
长方形或正方形
3、那些面完全相同的?
前和后、左和右、上和下
4、长方体有12条棱。
5、哪些棱长度相等?
相对的4条棱
6、长方体有8个顶点。
四)、小组制作并讨论
用细木条和橡皮泥做一个长方体框架。让学生先思考并拿出橡皮泥和细木条。制作好以后回答以下问题
(1)长方体的12条棱可以分为3组。
(2)相交于同一顶点的三条棱长度不相等。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
五)课堂练习
剪下本书附页中的图样做一个长方体。
第二课时
一)、复习旧课,导入新课。
复习之前的长方体的面、棱、顶点,及其长、宽、高。引入正方体。
二)、小组讨论并回答问题
让学生拿出已准备好的正方体观察并填下表。
1、正方体的6个面都相同。
2、正方体的12条棱都相等。
三)、动手操作题
1、照书上后面附页的图样做一个正方体,
2、讨论长方体于正方体的联系于区别。
3、讨论长方体于正方体的关系。
正方体是长、宽、高都相等的长方体,我们可以用下图来表示长方体和正方体的关系:
做一做
用棱长1cm的小正方体搭一搭。
(1)用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长、宽、高。
(2)搭一个四个面都是正方形的长方体,你发现了什么?
数学五年级下册教案12
教学目标和要求
1.理解百分数的意义,正确地读写百分数能运用百分数表示事物。
2.会解决有关百分数的简单实问题
教学重点
解决有关百分数的简单实问题
教学难点
体会百分数与现实生活的密切联系
教学准备
组织学生收集生活中的分数、百分数
教学时数
1课时
教学过程
备注栏
一、复习旧知
让学生说说百分数的含义
二、指导练习
1.教科书第73页第3题
要求学生自己独立完成,最后全班讲评
2.教科书第75页第8题
先让学生理解题意,明白“成活率”指的`是成活的棵数与所有植树总棵树的百分几。
独立完成后,全班讲评
3.教科书第75页第10题
先让学生明白“优秀率”的含义,鼓励学生找出等量关系,列方程解答。
4.教科书第75页第11题
先看表,弄清题意,然后独立完成。
学生汇报全班讲评
5.教学“实践活动”
先组织学生在课堂上交流,体会百分数、分数之间的联系。
然后鼓励学生分别总结生活中使用百分数和分数的例子,结合具体事例谈谈自己的体会。
数学五年级下册教案13
一、说教材
《体积与容积》是北师大版五年级下册第41—42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。
二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。
三、说学法:
学生自主探索、发现,小组交流
四、说教学目标:
1、知识与技能
通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
2过程与方法。
在操作、交流中,感受物体体积的大小、发展空间观念。
3、情感、态度与价值观
增强学生的合作精神和喜爱数学的情感。
五、说教学重点、难点
重点:初步理解体积和容积的概念,以及它们的联系和区别。
难点:建立体积和容积的表象。
突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。
六、说教具
两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。
七、说教学过程
(一)质疑导入
出示课件乌鸦喝水动画视频。
师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?
根据学生的回答引导学生概括出:小石子占了一定的空间。
(二)探究新知
1、初步感知,物体所占空间有大小。
师:我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)
(设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)
2、提出问题,讨论解决方法。
出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。
(2)指名说说看法。
师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?
(设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)
3、观察实验,感知体积的意义。
演示:将两块石头放入两个装有同样多水的杯子里。
师:说说你有什么发现?
生口答后,师追问:
师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?
学生自由发表意见
引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。
从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)
现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小、、、、、、
(设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)
4、认识容积。
师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)
出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?
引导学生认识:两个杯子所能容纳物体的大小是不同的。
揭示:容器所容纳物体的体积,叫作这个容器的容积。
师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。
5、区别体积和容积。
出示:用来装小正方体的塑料盒和正方体教具。
师:谁能指出这两个物体的体积和容积呢?
交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的`容积比体积小。
出示课件:体积与容积的区别
(设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)
(三)解决问题,巩固应用
1、试一试(P42)
出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。
师:通过观察,你们发现什么规律?
引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)
2、课件出示:(第42页“练一练”的第4题)
(1)搭出两个物体,使它们的体积相同。
(2)搭出两个物体,使其中一个物体的体积是另一个的2倍。
(学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)
3、说一说。(第42页“练一练”的第1、2题)
(课件出示插图,让学生独立思考,再指名回答,说出理由。)
4、想一想。(第42页“练一练”的第3题)
(设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)
(四)评价体验
今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?
数学五年级下册教案14
教学要求
1、根据正方体特征,推导出正方体表面积的计算方法。
2、学会解决实际生活中有关长方体和正方体表面积的计算问题。
3、培养学生思维的灵活性。
教学重点
正方体表面积的计算方法。
教学用具
教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。
教学过程
一、创设情境
1.看图并回答。(投影显示)
(1)什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)
二、实践探索
1.小组合作学习了正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
3×3×6或者32×6
=9×6=9×6
=54(平方厘米)=54(平方厘米)
说明:上面两种做法都对,32表示2个3相乘。
2.教学计算长方体和正方体x几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中x几个面的.面积,如:投影显示例3,拿出实物模型。
(1)帮助学生分析题意。
①售米的木箱是什么体?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践
做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。
四、课堂小结。
学生小结今天学习的内容。
五、课堂实践
做练习六的第5、6、7题。
数学五年级下册教案15
教学目标:
1.使学生在理解的基础上掌握长方体和正方体统一的体积公式。
2.提高学生综合运用知识的能力。
3.发展学生的逻辑思维能力。
重点难点:
1.能正确运用长方体和正方体统一的体积公式。
2.能正确理解长方体和正方体统一的体积公式的推导过程。
教具准备:
投影,长方体模型,正方体模型。
教学方法:
提问法探究法
教学过程:
(一)复习导入
1.口答。
长方体的体积=()用字母表示:( )
正方体的体积=()用字母表示:( )
2.计算下面各图形的体积。
(二)教学实施
1.提问。
老师:长方体的体积是由哪几个条件决定的?(是由长、宽、高决定的)正方体的体积是由哪几个条件决定的?(是由棱长决定的`)
2.探究。
( l)老师出示长方体、正方体模型。
( 2)老师指着复习时学生说的长方体、正方体体积公式提问:长方的体积=长×宽×高,你们看一看“长×宽”实际上又是什么?(是长体底面的面积)正方体的体积=棱长×棱长×棱长,公式中“棱长×棱长”实际又是什么?(是正方体底面的面积)
老师分别指出长方体、正方体底面的位置。
( 3)讲述。
长方体和正方体底面的面积叫做底面积,而正方体另一条棱长也可以看作是正方体的高。
( 4)说一说。
长方体的底面积= ×正方体的底面积= ×
( 5)想一想。
长方体和正方体的体积公式又可以写成什么样呢?
老师根据学生的总结,板书:
长方体(或正方体)的体积=底面积x高
老师:如果用字母S来表示底面积,上面的公式可以写成:
V = Sh
3.应用。
( 1)板书习题。
一根长方体木料,长5m,横截面的面积是0 . 06m2 。这根木料的体积是多少?
( 2)读题,理解题意。
( 3)质疑。
长5m,实际是给出了什么条件?(是给出了木料的高是5米)
木料的横截面的面积实际是什么?(是木料的底面积)
( 4)学生独立完成,老师巡视指导。
( 5)集体订正。
V = Sh
= 0 . 06 × 5
= 0 . 3 ( m3 )
答:这根木料的体积是0 . 3立方米。
四)思维训练
一个运输工人在搬运冰块,已知每块冰块长4分米,宽3分米,厚2 .5分米。搬运工在这堆冰块的表面盖上了一层厚棉被,棉被的面积至少是多少平方分米?这堆冰块的体积是多少立方分米?
(五)课堂小结
学生畅谈本节课学习的收获和体会,谈谈自己还有什么疑问。
作业布置:
板书设计:
课后反思:
【数学五年级下册教案】相关文章:
数学下册教案02-02
五年级数学下册教案07-07
苏教版数学五年级下册教案04-03
苏教版小学数学五年级下册教案11-08
五年级数学下册教案优秀03-12
五年级下册数学教案03-28
青岛版五年级数学下册教案01-06
(优选)五年级下册数学教案01-27
青岛版五年级数学下册教案07-28