当前位置:9136范文网>教育范文>教案>《绝对值》教案

《绝对值》教案

时间:2024-05-13 18:00:18 教案 我要投稿

(通用)《绝对值》教案15篇

  在教学工作者实际的教学活动中,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的《绝对值》教案,欢迎阅读,希望大家能够喜欢。

(通用)《绝对值》教案15篇

《绝对值》教案1

  一、教学目标:

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  -3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  (三)巩固练习:教科书第15页练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的`法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

《绝对值》教案2

  教学目标

  1.了解的概念,会求有理数的;

  2.会利用比较两个负数的大小;

  3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.

  教学建议

  一、重点、难点分析

  概念,既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非负性,也就是说,任何一个有理数的都是非负数,即无论a取任意有理数,都有。

  教材上的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及,通过数轴,这些知识都联系在一起了。此外,0的是0,从几何定义出发,就十分容易理解了。

  二、知识结构

  的定义,的表示方法用比较有理数的大小

  三、教法建议

  用语言叙述的定义,用解析式的形式给出的定义,或利用数轴定义,从理论上讲都是可以的.初学用语言叙述的'定义,好像更便于学生记忆和运用,以后逐步改用解析式表示的定义,即

  在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为的一种直观解释.

  此外,要反复提醒学生:一个有理数的不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

  四、有关的一些内容

  1.的代数定义

  一个正数的是它本身;一个负数的是它的相反数;零的是零.

  2.的几何定义

  在数轴上表示一个数的点离开原点的距离,叫做这个数的.

  3.的主要性质

  (2)一个实数的是一个非负数,即|a|≥0,因此,在实数范围内,最小的数是零.

  (4)两个相反数的相等.

  五、运用比较有理数的大小

  1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:较大的负数一定在较小的负数左边,所以,两个负数,大的反而小.

  比较两个负数的方法步骤是:

  (1)先分别求出两个负数的;

  (2)比较这两个的大小;

  (3)根据“两个负数,大的反而小”作出正确的判断.

  2.两个正数大小的比较,与小学学习的方法一致,大的较大.

《绝对值》教案3

  一、教学目标

  1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个

  负数的大小。 (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。 2、过程与方法目标:(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学

  生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过

  观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言

  表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程:

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟) 2.在组长的组织下进行讨论、交流。(约5分钟) 3、小组分任务展示。(约25分钟) 4、达标检测。(约5分钟) 5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)、温故知新:

  前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?

  (二)小组合作交流,探究新知

  1、观察下图,回答问题: (五组完成)

  大象距原点多远?两只小狗分别距原点多远?

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.

  4的绝对值记作,它表示在上与的距离,所以| 4|= 。

  2、做一做:

  (1)、求下列各数的绝对值:(四组完成) -1.5,0,-7,2 (2)、求下列各组数的绝对值:(一组完成)

  (1)4,-4; (2) 0.8,-0.8;

  从上面的结果你发现了什么?

  3、议一议:(八组完成)

  (1)|+2|=,

  1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;

  你能从中发现什么规律?

  小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的绝对值等于什么吗?

  (通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、( 1 )在数轴上表示下列各数,并比较它们的大小:

  - 3,- 1

  ( 2 )求出(1)中各数的'绝对值,并比较它们的大小

  ( 3 )你发现了什么?

  2、比较下列每组数的大小。

  (1) -1和– 5;(五组完成) (2) ?

  (3) -8和-3(七组完成)

  5和- 2.7(六组完成) 6五、达标检测:

  1:填空:

  绝对值是10的数有( )

  |+15|=( ) |–4|=( )

  | 0 |=( ) | 4 |=( ) 2:判断(1)、绝对值最小的数是0。( ) (2)、一个数的绝对值一定是正数。( ) (3)、一个数的绝对值不可能是负数。( )

  (4)、互为相反数的两个数,它们的绝对值一定相等。( ) (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )

  六、总结:

  1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

  2.绝对值的性质:正数的绝对值是它本身;

  负数的绝对值是它的相反数; 0的绝对值是0.

  因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0

  3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

  七、布置作业

  P50页,知识技能第1,2题.

《绝对值》教案4

  教学目标:

  通过数轴,使学生理解绝对值的概念及表示方法

  1、 理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算

  2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法

  3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力

  教学重点:

  理解绝对值的概念、意义,会求一个数的绝对值

  教学难点:

  绝对值的概念、意义及应用

  教学方法:

  探索自主发现法,启发引导法

  设计理念:

  绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 .通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.

  教学过程:

  一、 创设情境,复习导入

  1.今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题.(用多媒体出示引例)

  星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  ① +20千米,-30千米; ②(20+30)0.15=7.5升

  2.在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反

  意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的

  路程有关,而与行驶的方向没有关系,所以没有负数.这说明在实际生活中,有些问题

  中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了.你还能举出其他

  类似的例子吗?

  3.小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈.教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果.

  我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?

  4.在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字.我们把这个量叫做有理数的绝对值.

  二、 合作交流、探索新知

  1. 绝对值的概念

  ⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的'点到原点的距离都是3,

  我们把这个距离叫做+3和-3 的绝对值.

  +3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作: =3

  -3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作: =3

  ⑵ 一个数a的绝对值是数轴上表示数a的点到原点的距离, 数a的绝对值,记作:

  2. 探索绝对值意义

  ⑴ 学生探索:求6,-6, ,- ,2.5,-2.5的绝对值

  小组讨论:互为相反数的两个数的绝对值有什么关系?

  规律总结:互为相反数的两个数的绝对值相等

  ⑵ 学生抢答:

  学生小组讨论得出:

  一个正数的绝对值是它的本身. 即:若a0,则 =a

  一个负数的绝对值是它的相反数. 即:若a0,则 =-a

  0的绝对值是0 . 即:若a=0,则 =0

  (3)学生活动:

  在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:

  任何一个数的绝对值都是非负数(正数和0). 0

  = =

  三、 举一反三,灵活应用

  例1.求下列各数的绝对值:-4,-1 ,0,+2,+3

  解: ; ; ;

  ; .

  注:通过此题,复习巩固绝对值的概念,表示法,意义

  例2,计算

  ① ②

  解: 原式=5-3.4-0+1.9 解: 原式=

  =3.5 =0

  注:通过此题,复习巩固绝对值的意义

  例3.求出绝对值是12, ,0的有理数

  解: ① ∵

  绝对值是12的有理数是12

  ② ∵

  绝对值是 的有理数是

  ③∵

  绝对值是0的有理数是0

  小结:绝对值等于一个正数的数有两个,它们互为相反数;

  绝对值等于0的数有一个,是0;

  没有绝对值等于负数的数,绝对值是个非负数. 0

  四、达标反馈

  1. 填空

  (1) 数轴上离开原点2个单位长的点所表示的数是___

  (2) 数轴上到原点的距离等于1.5的点所表示的数是 ______

  (3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______

  (4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________

  (5) 49是______的相反数,它是_______的绝对值

  (6) 如果一个数的绝对值等于 ,那么这个数是________

  (7) 绝对值小于3的整数有___,它们的和为___

  (8) 若 =0,则a_____0

  2.选择题

  ⑴ - 是一个

  A.正数 B.负数 C.正数或零 D.负数或零

  ⑵ 如果一个数的绝对值是5.2 ,那么这个数是

  A.5.2 B.一5.2 C.5.2或-5.2 D.以上都不对

  ⑶ 任何有理数的绝对值都是

  A.正数 B.负数 C.有理数 D.正数或零

  ⑷ 一个数的绝对值是它本身,那么这个数是

  A.正数 B.正数或零 C.零 D.有理数

  五、学习小结:

  1、 绝对值的概念、意义

  ① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值

  ② 正数的绝对值是它的本身

  负数的绝对值是它的相反数

  0的绝对值是0

  ③ = =

  ④ 绝对值是非负数 0

  ⑤ 有理数可理解为由性质符号和绝对值组成

  ⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数

  2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法

  六、设计理念:

  绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.

《绝对值》教案5

  【学习目标】

  1.使学生能说出相反数的意义

  2.使学生能求出已知数的相反数

  3.使学生能根据相反数的意思进行化简

  【学习过程】

  【情景创设】

  回忆上节课的`情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。

  观察A,B两点位置及共到原点的距离,你有什么发现吗?

  《数轴》专题练习

  1.(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:

  A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.

  (1)将5个队按由低分到高分的顺序排序;

  (2)把每个队的得分标在数轴上,并标上代表该队的字母;

  (3)从数轴上看A队与B队相差多少分?C队与E队呢?

  《2.4数轴》同步测试

  1下列说法中错误的是(  )

  A.一个正数的绝对值一定是正数

  B.任何数的绝对值都是正数

  C.一个负数的绝对值一定是正数

  D.任何数的绝对值都不是负数

  22017·海安县期中绝对值大于2且不大于5的整数有________个.

  3某检修小组乘坐一辆汽车沿公路检修供电线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:km):+5,-3,+7,-1,-4,+8,-12.求他们从出发到收工返回时,总共行驶的路程.

《绝对值》教案6

  导学目标

  1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  2、通过应用绝对值解决实际问题绝对值的意义和作用。

  导学重点:

  正确理解绝对值的概念?

  导学难点:

  负数大小比较??

  导学过程

  温故:

  1、下列各数中:

  +7,—2,,—8?3,0,+0?01,—,1,哪些是正数?哪些是负数?哪些是非负数?

  2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

  —3,4,0,3,—1?5,—4,,2?

  链接:

  问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

  知新:

  1、什么叫绝对值?

  在数轴上,一个数所对应的点与的叫做这个数的绝对值.例如+5的绝对值等于5,记作+5=5;—3的绝对值等于3,记作。

  2、绝对值的特点有哪些?

  (1)一个正数的绝对值是;例如,4=,+7。1=。

  (2)一个负数的绝对值是;例如,-2=,-5。2=。

  (3)0的绝对值是.

  容易看出,两个互为相反数的数的绝对值.如—5=+5=5.

  练一练:

  1、已知||=5,求的值。

  2、填空:

  (1)+3的符号是_____,绝对值是______;

  (2)—3的符号是_____,绝对值是______;

  (3)—的符号是____,绝对值是______;

  (4)10—5的符号是_____,绝对值是______?

  3、填空:

  (1)符号是+号,绝对值是7的数是________;

  (2)符号是—号,绝对值是7的数是________;

  (3)符号是—号,绝对值是0?35的数是________;

  (4)符号是+号,绝对值是1的数是________;

  4、

  (1)绝对值是的数有几个?各是什么?

  (2)绝对值是0的数有几个?各是什么?

  (3)有没有绝对值是—2的数?

  3、理解:

  若用a表示一个数,当a是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的`绝对值的特点可用用符号语言可表示为:

  (1)如果a>0,那么a=a;

  (2)如果a<0,那么a=-a;

  (3)如果a=0,那么a=0。

  4、比较两个负数的大小

  由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小

《绝对值》教案7

  1.2.4绝对值

  教学目标1,掌握绝对值的概念,有理数大小比较法则.

  2,学会绝对值的计算,会比较两个或多个有理数的大小.

  3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

  教学难点两个负数大小的比较

  知识重点绝对值的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的`解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.使学生体验数学知识与生活实际的联系.

  因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

  合作交流

  探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对

  有什么规律?、

  -3,5,0,+58,0.6

  要求小组讨论,合作学习.

  教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

  巩固练习:教科书第15页练习.

  其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

  结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  把14个气温从低到高排列;

  把这14个数用数轴上的点表示出来;

  观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

  应怎样比较两个数的大小呢?

  学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:

  在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

  在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

  想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

  要求学生在头脑中有清晰的图形.让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  课堂练习例2,比较下列各数的大小(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式

  练习:第18页练习

  小结与作业

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

  2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

  4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

  附板书:

  1.2.4绝对值

《绝对值》教案8

  学习目标:

  1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。

  2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。

  学习过程:

  任务一、复习旧知:

  1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?

  2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:

  1、自读课本p11-p12,体会绝对值的'意义。

  绝对值的几何意义:____________________________________、

  a的绝对值记作_______,如5的绝对值记作______,结果是_____、

  试一试:(1)|+6|=______,|0、2|=________,|+8、2|=_______

  (2)|0|=_______;

  (3)|-3|=_____,|-0、2|=_____,|-8、2|=________、

  绝对值的代数意义:(1)一个正数的绝对值是__________;

  (2)一个负数的绝对值是___________ (3)0的绝对值是___________。

  上述可以用式子表示为:(1)当a是正数时, |a|=_______,

  ( 2 )当a是负数时, |a|=_______,(2)当a=0时, |a|=________,

  任务三:巩固练习

  1、求下列各数的绝对值:?7

  12,?

  110

  ,?4、75,10、5

  2.计算|-2|+ |+8||34|?|?815

  ||-20|?|?45|

  3、绝对值是3的数是_______,有____个绝对值是1、5的数?4、判断:(1)有理数的绝对值一定是正数;

  (2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。

  (2)两个互为相反数的绝对值____。能力提升:

  (1) |-35、6|=________;|a|=_____(a<0);若|x|=5,则x=______(2)绝对值小于4的整数有________;绝对值大于2小于5的整数有________;

  (3)绝对值等于本身的数是_______,绝对值等于它的相反数的数是_________,绝对值最小的有理数是_______、(

  4)若|a-2|=3,则a=______

  归纳总结:

  略

《绝对值》教案9

  一、知识与技能

  (1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。

  (2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  二、过程与方法

  通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力。

  三、情感态度与价值观

  培养学生积极参与探索活动,体会数形结合的方法。

  教学重、难点与关键

  1.重点:正确理解绝对值的概念,能求一个数的绝对值。

  2.难点:正确理解绝对值的几何意义和代数意义。

  3.关键:借助数轴理解绝对值的几何意义,根据绝对值定义和相反数的概念,理解绝对值的代数意义。

  四、教学过程

  1.复习提问,新课引入

  2.什么叫互为相反数?

  3.在数轴上表示互为相反数的两个点和原点的位置关系怎样?

  五、新授

  在一些量的`计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向。

  1.观察课本第11页图1.2-5,回答:

  (1)两辆汽车行驶的路线相同吗?

  (2)它们行驶路程的远近相同吗?

   这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km.

  课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值。

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│。

  这里的数a可以是正数、负数和0.

《绝对值》教案10

  教学目标

  1、知识与技能

  会利用绝对值比较两个负数的大小

  2、过程与方法

  利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力

  3、情感、态度与价值观

  敢于面对数学活动中的困难,有学好数学的自信心

  教学重点难点

  重点:利用绝对值比较两个负数的大小

  难点:利用绝对值比较两个异分母负分数的大小

  教与学互动设计

  (一)创设情境,导入新课

  投影 你能比较下列各组数的大小吗?

  (1)│-3│与│-8│

  (2)4与-5

  (3)0与3

  (4)-7和0

  (5)0.9和1.2

  (二)合作交流,解读探究

  讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数

  思考 若任取两个负数,该如何比较它的.大小呢?

  点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

  【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大

  注意

  ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小

  ②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值

  ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小,即:利用数轴来比较有理数的大小。

《绝对值》教案11

  【学习目标】

  1、使学生能说出相反数的意义

  2、使学生能求出已知数的相反数

  3、使学生能根据相反数的意思进行化简

  【学习过程】

  【情景创设】

  回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。

  观察a,b两点位置及共到原点的距离,你有什么发现吗?

  观察下列各对数,你有什么发现?

  ‐5与5,‐6、1与6、1,‐34 与+34

  相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)

  规定0的相反数是0

  想一想:你能举出互为相反数的例子吗?

  【例题精讲】

  例1

  例2

  试一试: 化简―[―(+3、2)]

  想一想:

  请同学们仔细观察这五个等式,它们的符号变化有什么规律?

  把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正、

  练一练:填空

  (1)-2的相反数是 ,

  3、75与 互为相反数,

  相反数是其本身的数是 ;

  (2)-(+7)= ,

  -(-7)= ,

  -[+(-7)]= ,

  -[-(-7)]= ;

  (3)判断下列语句,正确的是 、

  ① ―5 是相反数;

  ② ―5 与 +3 互为相反数;

  ③ ―5 是 5 的相反数;

  ④ ―5 和 5 互为相反数;

  ⑤ 0 的相反数还是 0 、

  选择:

  (1)下列说法正确的是 ( )

  a、正数的绝对值是负数;

  b、符号不同的`两个数互为相反数;

  c、π的相反数是 ―3、14;

  d、任何一个有理数都有相反数、

  (2)一个数的相反数是非正数,那么这

  个数一定是 ( )

  a、正数 b、负数 c、零或正数 d、零

  画一画:

  在数轴上画出表示下列各数以及它们的相反数的点:

  动脑筋:

  如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?

  【课后作业】

  1、判断题

  (1) 0没有相反数。 ( )

  (2)任何一个有理数的相反数都与原来的符号相反。 ( )

  (3)如果一个有理数的相反数是正数,则这个数是负数、 ( )

  (4)只有0的相反数是它本身 ( )

  (5) 互为相反数的两个数绝对值相等

  2、填空题

  (1) —(—2、8)= _________; —(+7)= _________;

  (2) —3、4的相反数是 ________、

  (3) —2、6是________的相反数、

  (4)│—3、4│=________;│5、7│=________;

  —│2、65│=_______;—│—12、56│=_______

  (5)绝对值等于5的数是_________

  (6)相反数等于本身的数是__________

  3、化简:

  (1) —(—1966)=______ (2) +│—1978│=______(3)+(—1983)=______

  (4) —(+1997)=_______ (5) +│+XX│=______

  4、选择题:

  (1)在—3、+(—3)、—(—4)、—(+2)中,负数的个数有( )

  a、1个 b、2个 c、3个

  (2)在+(—2)与—2、—(+1)与+1、—(—4)与+(—4)、

  —(+5)与+(—5)、—(—6)与+(+6)、+(+7)与+(—7)

  这几对数中,互为相反数的有( )

  a、6对 b、5对 c、4对 d、3对

  5、在数轴上标出3、—2、5、2、0、 以及它们的相反数。

  6、请在数轴上画出表示3、—2、—3、5及它们相反数的点,并分别用a、b、c、d、e、f来表示

  (1)把这6个数按从小到大的顺序用<连接起来

  (2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?

《绝对值》教案12

  一、素质教育目标

  (一)知识教学点

  1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

  2.给出一个数,能求它的绝对值.

  (二)能力训练点

  在把绝对值的代数定义转化成数学式子的过程当中,培养学生运用数学转化思想指导思维活动的能力.

  (三)德育渗透点

  1.通过解释绝对值的几何意义,渗透数形结合的思想.

  2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

  (四)美育渗透点

  通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

  二、学法引导

  1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

  2.学生学法:研究+6和-6的'不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

  三、重点、难点、疑点及解决办法

  1.重点:给出一个数会求出它的绝对值.

  2.难点:绝对值的几何意义,代数定义的导出.

  3.疑点:负数的绝对值是它的相反数.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪(电脑)、三角板、自制胶片.

  六、师生互动活动设计

  教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6, ,0及它们的相反数的点.

  学生活动:一个学生板演,其他学生在练习本上画.

  绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

  (二)探索新知,导入新课

  师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

  学生活动:思考讨论,很难得出答案.

  师:在数轴上标出到原点距离是6个单位长度的点.

  学生活动:一个学生板演,其他学生在练习本上做.

  师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

  学生活动:产生疑问,讨论.

  师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

  [板书]2。4绝对值(1)

  针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环。

《绝对值》教案13

  教学目标

  1、了解绝对值的概念,会求有理数的绝对值;

  2、会利用绝对值比较两个负数的大小;

  3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

  教学建议

  一、重点、难点分析

  绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

  教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

  二、知识结构

  绝对值的.定义;

  绝对值的表示方法;

  用绝对值比较有理数的大小。

  三、教法建议

  用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。可以把利用数轴给出的定义作为绝对值的一种直观解释。

  此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。“非负数”的概念视学生的情况,逐步渗透,逐步提出。

  四、有关绝对值的一些内容

  1。绝对值的代数定义

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  2。绝对值的几何定义

  在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

  3。绝对值的主要性质

  (2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。

  (4)两个相反数的绝对值相等。

  五、运用绝对值比较有理数的大小

  1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

  比较两个负数的方法步骤是:

  (1)先分别求出两个负数的绝对值;

  (2)比较这两个绝对值的大小;

  (3)根据“两个负数,绝对值大的反而小”作出正确的判断。

  2、两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。

《绝对值》教案14

  1、指名朗读

  2、作者简介

  苏轼,北宋大文学家、书画家。字子瞻,号东坡居士,眉山(今属四川)人。苏洵子,苏辙兄。嘉佑进士。北宋中期的文坛领袖,文学巨匠,唐宋八大家之一。其文纵横恣肆,其诗题材广阔,清新豪健,善用夸张、比喻,独具风格。词开豪放一派,与辛弃疾并称“苏辛”,有《东坡全集》、《东坡乐府》。

  3、《浣溪沙》上阙写景,描绘了哪三幅画面?画面有何特点?山下小溪边,长着矮小娇嫩的兰草,山上松间沙路洁净无尘,黄昏时潇潇细雨中杜鹃在啼叫。画面清新优美,淡雅宁静。

  4、下阙转入抒怀,抒发了怎样的情怀?由西流的溪水,想到青春可以永驻,大可不必为日月变迁、人生衰老而叹息。表现了积极进取的人生态度。

  5、作者写此词时,正是在政治上失意,生活处于逆境之时,能有如此积极的人生观,豁达的胸怀,实在难能可贵。

  6、齐读并背诵这首词。

  学习《赤壁》

  1、教师范读,学生跟读

  2、简介作者并解题

  杜牧(803-852)唐代诗人。字牧之,京兆万年人。太和进士,和李商隐并称“小李杜”。赤壁是东汉末年周瑜大败曹操的地方,但杜牧所咏赤壁并非此处,而是湖北黄冈的赤鼻矶,所以说此诗虽为咏史诗,其实也是借题发挥。

  3、《赤壁》开头为什么从一把不起眼的折戟写起,这样写有何作用?

  与古代战争联系起来,很自然的引起后文对历史的咏叹。但是,这两句的作用主要不在于作为诗的引导,它本身也蕴涵着强烈的意念活动。沙里沉埋着铁戟,点出此地曾有过历史风云。折戟沉沙而仍未销蚀,又暗寓岁月流逝而物存人非之慨。凡是在历史上留下踪迹地人物、事件,常会被无情地时光销蚀掉,也易从人们的'记忆中消逝,就像这铁戟一样沉沦埋没,但又常因偶然的机会被人记起,或引起怀念,或勾起深思。正由于发现了这片折戟,使诗人心绪无法平静,因此他要磨洗并辨认一番,发现原来是“前朝”三国赤壁之战时的遗物。因此,“认前朝”又进一步勃发了作者浮想联翩的思绪,为后二句论史抒怀做了铺垫。

  4、全诗最精彩的是久为人们传诵的末二句,这两句议论感慨抒发了作者怎样的思想感情?

  这两句诗人发表议论,“东风”不仅仅指的是自然界的风,而是含有建功立业各种条件和因素。曲折的反映出诗人的抑郁不平和豪爽胸襟。慨叹历史上英雄成名的机遇,是因为他自己生不逢时,有政治军事才能而不得一展。似乎又有另一层意思:只要有机遇,相信自己总会有所作为,显示出一种逼人的英气。

  5、齐读、背诵

  四、课堂练习

  课后练习:对对子

  出:白对:黑出:来对:去出:美对:丑出:是对:非出:蓝天对:白云

  五、布置作业

  1、背诵并默写五首诗词

  2、完成课后练习四作者邮箱:xxx

《绝对值》教案15

  教学目标

  (1)掌握与()型的绝对值不等式的解法。

  (2)掌握与()型的绝对值不等式的解法。

  (3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;

  (4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;

  教学重点

  型的不等式的解法;

  教学难点

  利用绝对值的意义分析、解决问题。

  教学过程设计

  教师活动

  学生活动

  设计意图

  一、导入新课

  【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?

  【概括】

  口答

  绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫。

  二、新课

  【导入】 2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来。

  【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程。显然,它的'解有二个,一个是2,另一个是-2。

  【提问】如何解绝对值方程。

  【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

  【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的解集就是表示数轴上到原点的距离小于2的点的集合。

  【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

  【质疑】的解集有几部分?为什么也是它的解集?

  【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分。在解时容易出现只求出这部分解集,而丢掉这部解集的错误。

  【练习】解下列不等式:

  【设问】如果在中的,也就是怎样解?

  【点拨】可以把看成一个整体,也就是把看成,按照的解法来解。

  所以,原不等式的解集是

  【设问】如果中的是,也就是怎样解?

  【点拨】可以把看成一个整体,也就是把看成,按照的解法来解。

  ,或,

  由得

  由得

  所以,原不等式的解集是

  口答。画出数轴后在数轴上表示绝对值等于2的数。

  画出数轴,思考答案

  不等式的解集表示为

  画出数轴

  思考答案

  不等式的解集为

  或表示为,或

  笔答

  (2),或

  笔答

  笔答

  根据绝对值的意义自然引出绝对值方程()的解法。

  由浅入深,循序渐进,在()型绝对值方程的基础上引出()型绝对值方程的解法。

  针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑。

  落实会正确解出与()绝对值不等式的教学目标

  在将看成一个整体的关键处点拨、启发,使学生主动地进行练习。

  继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误。

  三、课堂练习

  解下列不等式:

  (1);

  笔答

  (1);

  检查教学目标落实情况。

  四、小结

  的解集是;的解集是

  解绝对值不等式注意不要丢掉这部分解集。

  或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法。

  五、作业

  1、阅读课本含绝对值不等式解法。

  2、习题2 、 3 、 4

  课堂教学设计说明

  1、抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础。

  2、在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的。

  3、针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力。

【《绝对值》教案】相关文章:

《绝对值》教案09-11

绝对值教案02-13

[精]绝对值教案15篇08-04

七年级数学上册《绝对值》教案10-16

七年级数学《绝对值》教学反思03-01

教案中班教案02-23

小班教案健康教案07-08

钻洞洞教案教案12-10

大班教案认识a的教案10-10