二次根式教案【精】
作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。那么优秀的教案是什么样的呢?以下是小编精心整理的二次根式教案,欢迎大家分享。
二次根式教案1
一、案例背景:
本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。
二、案例描述:
1、学习任务分析:
通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。
2、学生的认知起点分析:
学生已掌握数的平方根和算术平方根。这为经历二次根式概念的发生过程做好准备。另外,学生对数的算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的`理解。
案例反思:
1.下列代数式若能作为二次根式的被开方数,则求出字母的取值范围?若不能,则说明理由。1-2a-2a2-1(2+a)2-(a-5)2
以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。
2.合作活动:
第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;
第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;
第三位同学——批改者:请你用蓝笔批改,若有错误,请与解题者商议并请其订正,完成交给你信任的同学用红笔复;
第四位同学——复查者:请你一定要把好关哦!
出题者姓名:
解题者姓名:
第一个二次根式:
1. 要使式子的值为实数,求x的取值范围.
2. 写出x的一个值,使式子的值为有理数,并求出这个有理数。
3. 写出x的一个值,使式子的值为无理数,并求出这个无理数。
第二个二次根式:
1. 要使式子的值为实数,求x的取值范围。
2. 写出x的一个值,使式子的值为有理数,并求出这个有理数。
3. 写出x的一个值,使式子的值为无理数,并求出这个无理数。
批改者姓名:
复查者姓名:
《课程标准》突出了学生在学习中的地位 -- 学生是学习的主人,同时,教师的地位、角色发生了变化,从 “ 主导 ” 变成了 “学生学习活动的组织者、引导者和合作者 ”。合作活动的安排就是对这一课程标准的体现。
二次根式教案2
1.教学目标
(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;
(2)会用公式化简二次根式.
2.目标解析
(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;
(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.
教学问题诊断分析
本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.
在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.
本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.
教学过程设计
1.复习引入,探究新知
我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.
问题1 什么叫二次根式?二次根式有哪些性质?
师生活动 学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.
问题2 教材第6页“探究”栏目,计算结果如何?有何规律?
师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.
【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.
2.观察比较,理解法则
问题3 简单的根式运算.
师生活动 学生动手操作,教师检验.
问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?
师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质.
【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.
3.例题示范,学会应用
例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.
师生活动 提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?
师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.
再提问:你能仿照第(1)题的解答,能自己解决(2)吗?
【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.
例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
师生活动 学生计算,教师检验.
(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;
(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;
(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的.性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.
【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.
教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.
4.巩固概念,学以致用
练习:教科书第7页练习第1题. 第10页习题16.2第1题.
【设计意图】巩固性练习,同时检验乘法法则的掌握情况.
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能说明二次根式的乘法法则是如何得出的吗?
(2)你能说明乘法法则逆用的意义吗?
(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?
6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.
五、目标检测设计
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.
2.化简二次根式的乘除 ______________________________。
【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.
3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.
二次根式教案3
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.
整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.
例1.计算:
(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的'运算规律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算
(1)(+6)(3-)(2)(+)(-)
分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、巩固练习
课本P20练习1、2.
四、应用拓展
例3.已知=2-,其中a、b是实数,且a+b≠0,
化简+,并求值.
分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?
二次根式教案4
一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的.意义;(2)二次根式中字母的取值范围.
难点:确定二次根式中字母的取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念.
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
表示的是算术平方根.
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义: 式子 叫做二次根式.
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略.
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.
(2)-3x0,x0,即x0时, 是二次根式.
(3) ,且x0,x0,当x0时, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所满足的条件:
(1) ; (2) ; (3) ; (4)
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)
1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.
2.式子中,被开方数(式)必须大于等于零.
(四)练习和作业
练习:
1.判断下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.
2.a是怎样的实数时,下列各式在实数范围内有意义?
五、作业
教材P.172习题11.1;A组1;B组1.
六、板书设计
二次根式教案5
教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的.分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二次根式的式子,先把它化简;
(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3 已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。
例4 已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结
1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
四、作业
P206 / 7 P206 / 8---②③
二次根式教案6
【 学习目标 】
1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
2、过程与方法:进一步体会分类讨论的数学思想。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
【 学习重难点 】
1、重点:准确理解二次根式的概念,并能进行简单的计算。
2、难点:准确理解二次根式的双重非负性。
【 学习内容 】课本第2— 3页
【 学习流程 】
一、 课前准备(预习学案见附件1)
学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。
二、 课堂教学
(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
(二)集体讲授阶段。(15分钟左右)
1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的普遍的不能解决的'问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
(三)当堂检测阶段
为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、 课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念 例题 例题
二次根式性质
反思:
二次根式教案7
一、素质教育目标
(一)知识教学点
1.使学生了解最简二次根式的概念和同类二次根式的概念.
2.能判断二次根式中的同类二次根式.
3.会用同类二次根式进行二次根式的加减.
(二)能力训练点
通过本节的学习,培养学生的思维能力并提高学生的运算能力.
(三)德育渗透点
从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.
(四)美育渗透点
通过二次根式的加减,渗透二次根式化简合并后的形式简单美.
二、学法引导
1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.
2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.
三、重点·难点·疑点及解决办法
1.教学重点二次根式的加减法运算.
2.教学难点二次根式的化简.
3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的.教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.
四、课时安排
2课时
五、教具学具准备
投影片
六、师生互动活动设计
1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.
2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.
3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.
4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.
七、教学步骤
(一)明确目标
学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.
(二)整体感知
同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.
二次根式教案8
一、内容和内容解析
1、内容
二次根式的概念。
2、内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1、教学目标
(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计
1、创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系h=5t?,如果用含有h的式子表示t,则t=_____。
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。
问题2上面得到的式子,,分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的`非负数)的算术平方根。
【设计意图】为概括二次根式的概念作铺垫。
2、抽象概括,形成概念
问题3你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力。
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解。
3、辨析概念,应用巩固
例1当时怎样的实数时,在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。
例2当是怎样的实数时,在实数范围内有意义?呢?
师生活动:先让学生独立思考,再追问。
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解。
问题4你能比较与0的大小吗?
师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。
4、综合运用,巩固提高
练习1完成教科书第3页的练习。
练习2当x是什么实数时,下列各式有意义。
(1);(2);(3);(4)。
【设计意图】辨析二次根式的概念,确定二次根式有意义的条件。
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。
5、总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。
(1)本节课你学到了哪一类新的式子?
(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?
(3)二次根式与算术平方根有什么关系?
师生活动:教师引导,学生小结。
【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。
6。布置作业:
教科书习题16。1第1,3,5,7,10题。
五、目标检测设计
1、下列各式中,一定是二次根式的是()
A。B。C。D。
【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数。
2、当时,二次根式无意义。
【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题。
3、当时,二次根式有最小值,其最小值是。
【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用。
4、对于,小红根据被开方数是非负数,得出的取值范围是≥。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出的取值范围。
【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。
二次根式教案9
教学内容
二次根式的加减
教学目标
知识与技能目标:理解和掌握二次根式加减的方法.
过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.
重难点关键
1.重点:二次根式化简为最简根式.
2.难点关键:会判定是否是最简二次根式.
教法:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的.作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:
1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
知识点
自主检测、同伴互查
1、师生共同解决“学法”问题与13页“练习1”;
2、学生演板13页“练习2、3”。
四、知识梳理、师生共议
1、谈收获:
(1)二次根式的加减法则是什么?有哪些运算步骤?
(2)怎样合并被开方数相同的二次根式呢?
(3)二次根式进行加减运算时应注意什么问题?
2、说不足:。
五、作业训练、巩固提高
1、必做题:课本15页的“习题2、3”;
课时练习
1.揭示学法、自主学习
认真阅读课本14页内容,完成下列任务:
1、完成14页“例3、4”,先做再对照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的运算依据是什么?应注意什么问题?
(时间7分钟若有困难,与同伴讨论)
三、自主检测、同伴互查
1、师生共同解决“学法”问题;
2、学生演板14页“练习1、2”。
四、知识梳理、师生共议
1、谈收获:
(1)二次根式进行混合运算时运用了哪些知识?
(2)二次根式进行混合运算时应注意哪些问题?
二次根式教案10
1、下列图像中可能是反比例函数y=的图像的共有()
2、在同一直角坐标系下,直线y=x+1与双曲线y=的交点的个数为()
A.0个B.1个C.2个D.不能确定
3、反比例函数y=-的图像是_______,该函数图像在第_______象限。
4、已知反比例函数y=的图像经过点(1,-2),则这个函数的表达式是_______.
5、已知双曲线y=经过点(-1,2),那么k的值等于_______.
6、在平面直角坐标系中,分别画出下列函数的图像:
(1)y=(2)y=-
7、反比例函数y=的图像经过点(-2,3),则k的值为()
A.6B.-6C.D.-
8、反比例函数y=的图像大致是()
9、如图,点P(-3,2)是反比例函数y=(k≠0)的图像上
一点,则反比例函数的解析式为()
A.y=-B.y=-
C.y=-D.y=-
10、函数y=-的图像上所有点的横坐标与纵坐标的乘积是_______.
11、已知点P为函数y=图像上一点,且P到原点的`距离为2,则符合条件的点P有__个
12、分别在坐标系中画出下列函数的图像:
(1)y=(2)y=-
13、反比例函数y=的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?
14、设某一直角三角形的面积为18cm2,两条直角边的长分别为x(cm),y(cm)。
(1)写出y(cm)与x(cm)的函数关系式;
(2)画出该函数的图像;
(3)根据图像,求解:①当x=4cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?
参考答案
1.B 2.C3.双曲线二、四 4.y=- 5.-3 6.略
7.C 8.C 9.D 10.-511.4 12.略 13.y=- 图像略 分布在二、四象限 14.(1)y= (2)略(3)①y=9 ②x=6
二次根式教案11
教学目标
1、根据了解二次根式的概念:
2、知道被开方数必须是非负数的理由;
3、能运用二次根式的性质解决实际问题
4新设计:我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
5、新设计:问题1平方根的概念,算术平方根的概念,平方根的性质。
6、学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。
7、重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:运用二次根式的性质解决实际问题。
8、教学过程6.1第一学时教学活动
活动1【讲授】二次根式
教学过程设计
创设情境,提出问题
引言
我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
问题1平方根的概念,算术平方根的概念,平方根的性质。
师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的有关知识,才能在此基础上再进一步研究二次根式概念。
设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。
问题2请思考下列问题
面积为3的正方形的边长为,面积为S的正方形边长为。
一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为m。
一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t为。
师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。
设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。
抽象概括,形成概念
问题3上面得到的式子有什么共同特征?
师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。
追问1中a的取值有要求吗?为什么?
师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。
追问2二次根式有什么样的特点?
师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。
设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。
辨析概念,应用巩固
例1下列各式是二次根式吗?
师生活动:教师引导学生从二次根式的特征出发思考问题。
例2求下列二次根式中字母的取值范围:
师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。
追问:求二次根式中字母的取值范围的基本依据:
师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。
问题4 x取何值时,下列二次根式有意义?
师生活动:学生抢答加分,调动学大亨的积极性。
设计意图:让学生独立思考,再追问。
问题5计算
师生活动:通过简单计算让学生总结规律。
例3计算
师生活动:学生直接回答。
设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。
问题7计算
师生活动:通过简单计算让学生总结规律。
追问:
师生活动:学生讨论回答,教师归纳总结。
设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。
综合应用,深化提高
练习1学生完成教科书第3页的练习。
练习2若1<x<4,则化简
设计意图:辨别二次根式的概念,确定二次根式有意的条件。利用二次根式的性质解题。
小结
教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:
什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?
二次根式与算术平方根有什么联系与区别?
我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?
设计意图:共同回顾本节课学习的'概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。
布置作业
教科书习题16.1第1、2题。
教学反思:
1、在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:
(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;
(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;
(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
2.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
3.让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
4.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。
5.在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。
二次根式教案12
教学设计
1、知识技能:
(1)会进行简单的二次根式的除法运算。
(2)使学生能利用商的算术平方根的性质进行二次根式的化简与运算。
2、数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则。
3、 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题。
4、情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的`
同步练习含答案解析
【考点】最简二次根式。
【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是。
【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;
B、符合最简二次根式的条件;故本选项正确;
B、,被开方数里含有能开得尽方的因式x2;故本选项错误;
C、被开方数里含有分母;故本选项错误。
D、被开方数里含有能开得尽方的因式a2;故本选项错误;
故选;B。
【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式。
课时练习含答案
解答:选项A是二次根式乘法的运算,选项C不符合二次根式的运算条件,选项D中被开方数不能为负,故A、C、D都是错误的,唯有B符合二次根式除法运算法则,故选B。
分析:正确运用二次根式除法运算法则进行计算,并能辨析运算的正误,是本节的教学难点,学生可以通过比较分析或正确计算加以判断。
二次根式教案13
教学设计思想
新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的`重要作用,发展学生的应用意识。
教学目标
知识与技能
1.知道什么是二次根式,并会用二次根式的意义解题;
2.熟记二次根式的性质,并能灵活应用;
过程与方法
通过二次根式的概念和性质的学习,培养逻辑思维能力;
情感态度价值观
1.经历将现实问题符号化的过程,发展应用的意识;
2.通过二次根式性质的介绍渗透对称性、规律性的数学美。
教学重点和难点
重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;
难点:确定二次根式中字母的取值范围。
教学方法
启发式、讲练结合
教学媒体
多媒体
课时安排
1课时
二次根式教案14
【教学目标】
1.运用法则
进行二次根式的乘除运算;
2.会用公式
化简二次根式。
【教学重点】
运用
进行化简或计算
【教学难点】
经历二次根式的乘除法则的`探究过程
【教学过程】
一、情境创设:
1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?
2.计算:
二、探索活动:
1.学生计算;
2.观察上式及其运算结果,看看其中有什么规律?
3.概括:
得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:
积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:
1.计算:
2.化简:
小结:如何化简二次根式?
1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;
2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:
(一).P62 练习1、2
其中2中(5)
注意:
不是积的形式,要因数分解为36×16=242.
(二).P67 3 计算 (2)(4)
补充练习:
1.(x>0,y>0)
2.拓展与提高:
化简:1).(a>0,b>0)
2).(y
2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:
小结:二次根式的乘法法则
作业:
1).课课练P9-10
2).补充习题
二次根式教案15
教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
二、讲解新课
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1 把下列各式化成最简二次根式:
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的.分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
四、小结
本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。
五、布置作业
下列各式化成最简二次根式:
【二次根式教案】相关文章:
二次根式教案02-15
二次根式教案05-15
二次根式教案[精选]05-15
二次根式教案优秀10-17
精选二次根式教案四篇07-31
【精选】二次根式教案四篇08-06
二次根式教案【汇编15篇】10-31
二次根式教案十篇04-11
【实用】二次根式教案四篇04-06