当前位置:9136范文网>教育范文>教案>公因数与最大公因数教案

公因数与最大公因数教案

时间:2024-06-14 15:22:50 教案 我要投稿

公因数与最大公因数教案

  作为一名老师,就不得不需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么大家知道正规的教案是怎么写的吗?下面是小编为大家收集的公因数与最大公因数教案,希望对大家有所帮助。

公因数与最大公因数教案

公因数与最大公因数教案1

  教学目标:

  1、结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。

  2、⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。

  ⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。

  3、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。

  教学重点:理解公因数与最大公因数的意义,用短除法求最大公因数的方法。

  教学难点:找公因数和最大公因数的方法。

  教学过程:

  一、情境导入

  师:我们鲸园小学的校本课程开展的丰富多彩,同学们都报了自己喜欢的课程去学习,这样更有利于我们充分的展示自己的爱好特长。我们四五班就是每次校本课程的剪纸活动班,你喜欢剪纸吗?瞧,这是老师搜集了一些同学们在活动中的好作品。(课件展示剪纸作品)

  师:现在我们来制作奥运福娃。第一步必须先裁好纸张。老师这里有一张长方形的纸长12厘米,宽18厘米。把这张纸剪成边长是整厘米的正方形,猜猜看,要想剪完后没有剩余,正方形的边长可以是几厘米呢?(学生猜)

  师:这只是我们的猜测,你要用具体的事实来说服大家。

  二、解决问题

  1、师:到底哪位同学的猜想是正确的呢?为了验证一下,请每个组拿出准备好的学具,用小正方形纸片(要求学生剪成彩色的)在长方形的纸上摆一摆,把摆的情况记录下来,看有几种不同的摆法。

  用手中的学具摆摆看。(学生分组进行拼摆并记录,在小组内进行交流)。

  2、师:请每个组汇报一下你们摆的结果。

  小组汇报

  师:如何剪才能没有剩余?

  师:那么这张纸能剪几张?

  师:还有其他剪法吗?(2、3、6让学生充分进行交流)

  师:请大家认真观察我们摆的结果,你有什么发现?这些1、2、3、6与12和18有什么关系?我们能不能从12和18的因数上来解释上面的剪法呢?

  独立观察,总结规律,教师根据学生的.发言进行小结。

  师:也就是说,要想正好摆满,正方形纸片的边长数应既是12的因数,也是18的因数。所以,1、2、3、6是12和18的公有的因数,我们可以把这4个数叫做12和18的公因数,公因数中最大的数是几?

  师:我们把这个数称为12和18的最大公因数

  师:为了更形象地表示出1、2、3、6与12和18的关系我们可以用集合圈的形式表示出来。出示相交的集合圈

  (用集合圈的形式分别板书12和18的因数,然后把两个集合圈连起来,用交集的形式板书12和18的公因数。)

  师:中间部分1、2、3、6既是12的因数,也是18的因数。它们是12和18的公因数,其中6最大,是24和18的最大公因数。(出示课件)

  3、怎样找12和18的公因数和最大公因数呢?请同学们根据已有的知识在小组内合作探索一下找公因数的方法

  学生探索并交流。

  4、练一练:用集合圈的形式求出16和28的公因数和最大公因数。

  5、师:求两个数的公因数和最大公因数还可以用列举法。(出示课件)

  6、师:求公因数和最大公因数除了用集合圈和列举法之外,还有一个更简便的方法(出示用短除法求12和18的公因数和最大公因数)

  师引出最大公因数是它们共有质因数的乘积。

  三、练习

  1、用短除法求36和42的最大公因数。

  2、生活中的数学:

  用这两朵花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?

公因数与最大公因数教案2

  教学过程:

  一、 创设生活情境

  1、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?

  学生说出:用边长1分米的正方形地面砖铺地。 12分米

  师:怎么铺?会多出来吗? 18分米

  学生说出:每行铺18快,铺12行,不会多出来。

  师:有没有其它铺的方法?

  学生说出:我用边长2 分米的正方形地面砖铺。

  师:怎么铺?

  学生说出:每行铺9快,铺6行。

  师:有没有其它铺的方法?

  学生说出:我用边长3分米的正方形地面砖铺,每行6块,铺4行,也正好。

  学生还可能说出:用边长4分米的正方形地面砖铺地。

  让学生小组讨论:按要求能不能铺?让学生明确要锯分铺了。

  师:还有其它铺的方法吗?

  让学生说出:还可以用边长6分米的正方形铺地,每行3块,铺2行。

  师:哦,原来小红家卫生间有这么多的铺法?

  小红爸爸要铺得快一点,那一种铺法最好?

  [设计意图:课始,创设生活情境,将学生有然地带入求知的情境中去,通过设疑,让学生从这些生活情境中提出问题。创设这样的情境,一是调动学生的学习兴趣、感受到数学与生活的密切联系;二是初步培养学生提出问题、解决问题的能力。这样既激发了学生探求知识的欲望,同时又为后面解决问题提供了学习的目标。]

  二、引导自主探索

  1、自主探索、形成概念

  师:那我还要问一问,你们是怎么想出可以用边长是1、2、3、6分米的正方形地面砖铺呢?

  让学生说出:①1、2、3、6都是18的因数,又都是12的.因数

  ②1、2、3、6是18和12的公有的因数

  师:18的因数和12的因数有几个?能举完吗?

  让学生说出:能,只有4个,个数是有限的

  师:我们可以把这4个数叫做18和12的公因数,最大的一个是几?

  师:谁给它起个名字?

  由此引出最大公因数的概念。

  [设计意图:在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。]

  2、观察发现、探索方法

  出示例4:8和12的公因数有那些?最大公因数是几?

  师:你能用那些方法解决这个问题?小组讨论;

  让小组代表逐一汇报:

  方法1:8的因数:1、2、4、8 ; 12的因数:1、2、3、4、6、12

  8和12的公因数有:1、2、4;最大的公因数是4

  方法2:先找8的因数,再从8的因数中找出12的因数

  8的因数:1、2、4、8其中1、2、4也是12的因数

  8和12的公因数有:1、2、4;最大的公因数是4

  方法3:把8和12用几个素数的乘积来表示:8=2×2×2 ;12=2×2×3

  8和12的公因数有:1、2、4;最大的公因数是2×2=4

  ……

  师:还可以用下面的图来表示:

  [设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。]

公因数与最大公因数教案3

  一教学内容

  教材第82、83页练习十五的第2一9题。

  二教学目标

  1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公约数。

  2.培养学生抽象、概括的能力。

  三重点难点

  掌握找两个数最大公约数的方法。

  四教具准备

  投影。

  五教学过程

  1.完成教材第82页练习十五的第2题。

  学生先独立完成,然后集体交流找最大公约数的经验,并将这8组数分为三类。

  2.完成教材第82页练习十五的第3一5题。

  学生独立填在课本上,集体交流。

  3.完成教材第83页练习十五的第6题。

  学生独立填写,集体交流,体会两个数的最大公约数是1的`几种情况。

  4.完成教材第83页练习十五的第7一11题。

  学生独立审题,理解题意,然后试着解答,集体交流。

  5.指导学生阅读教材第83页的“你知道吗”。

  请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?

  思维训练

  1.某服装厂的甲车间有42人,乙车间有48人。为了开展竞赛,把两个车间的工人分成人数相等的小组。每组最多有多少人?

  2.有一个长方体,长70厘米,宽50厘米,高45厘米。如果要切成同样大的小正方体,这些小正方体的棱长最大可以是多少厘米?

  3.把一块长8分米、宽6分米的铁皮切割成同样大小的正方形铁皮,如果没有剩余,正方形个数又要最少,那么可以切割成多少块?

  课堂小结

  通过本节课的学习,主要掌握了找两个数的最大公约数的方法。找两个数的最大公约数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公约数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公约数。

公因数与最大公因数教案4

  教学内容:

  苏教版小学五年级下册第三单元《公倍数和公因数》教科书第26-27页的例3、例4和“练一练”,练习五的第1-5题。

  教学目标:

  1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

  2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学重点:

  认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

  会用列举的方法找到100以内两个数的公因数和最大公因数

  教学难点:

  会用列举的方法找到100以内两个数的公因数和最大公因数

  教学准备:

  长18厘米、宽12厘米的长方形纸片,边长6厘米、4厘米的正方形纸片。

  教学方法:

  练习法、谈话法、演示法等

  教学过程:

  一、复习引入

  6的因数有( );8的因数有( )

  师:说说怎样可以找到一个数的因数?

  二、经历操作活动,认识公因数

  出示例3,指导操作。

  ⑴要求:分别用边长6厘米、4厘米的正方形纸片铺长18厘米、宽12厘米的长方形。

  问:哪种纸片能将长方形正好铺满?为什么?

  学生操作,汇报交流。

  A、 边长6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形。

  12÷6=2 18÷6=3(长方形的长、宽都能被6整除)

  B、 边长4厘米的正方形不能铺满长18厘米、宽12厘米的长方形。

  12÷4=3 18÷4=4……2(长方形的长不能整除正方形的边长)

  ⑵讨论交流:还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?

  问 :1、2、3、6有什么共同的特征?(都是18和12的公因数)

  4为什么不是12和18的公因数?(4不能整除18)

  揭示:1、2、3、6既是12的'因数,又是18的因数,它们是12和18的公因数。

  二、自主探索,用列举的方法求公因数和最大公因数

  1、出示例4,自主探索。

  提问:8和12的公因数有哪些?最大的公因数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ①先找出8的因数,再从8的因数中找出12的因数。

  ②先找出12的因数,再从12的因数中找出8的因数。

  ③先找出8和12的因数,再从8和12的因数中找出它们的公因数。

  2、明确8和12的公因数中最大的一个是4,指出:就是8和12的最大公因数。

  3、用集合图表示。

  出示相交的集合圈,让学生把8和12的因数分别填在集合图中的合适部分,再看图说说各自的想法。

  4、完成“练一练”

  重点让学生操作与填空。

  三、展示台(巩固练习,加深对公因数和最大公因数的认识)

  1、才艺展示(练习五第1题)。

  填好后让学生看图说说15和20的因数分别有哪些,公因数有哪些,最大公因数是几?

  2、技能展示(练习五第2题)。

  学生审题并在书上独立完成,集体订正。

  3、实践演练(练习五第3题)。

  先让学生独立完成,再具体说说找两个数的公因数和最大公因数的方法。

  4、我能行(练习五第4题)。

  先出示第1组数,让学生判断,并说说是怎样判断的。然后完成先面几组。

  5、侠客风采(练习五第5题)。

  鼓励学生用自己的方法找出每组数的最大公因数,并说说是怎样做的,怎样想的。

  四、全课小结

  提问:今天学习的是什么内容?什么是两个数的公因数和最大公因数?怎样找两个数的最大公因数?

  引导:你还有什么疑问?

  教学后记:

公因数与最大公因数教案5

  教学内容:教科书第30页,练习五第12~14题、思考题。

  教学目标:

  1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。

  2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。

  教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。

  教学难点:弄清公倍数和公因数联系与区别。

  教学过程:

  一、揭示课题

  今天我们继续完成一些公因数、公倍数的有关练习。

  二、基础训练

  1.写出36和24的公因数,最大公因数是多少?

  2.写出100以内10和6的公倍数,最小公倍数是多少?

  学生独立完成,汇报交流。

  说说自己是用什么方法找到的?

  三、综合练习

  1.完成练习五第12题。

  谁能说说什么数是两个数的公倍数?两个数的公因数指什么?

  在书上完成连线后汇报方法。

  你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?

  2.完成第13题。

  独立完成。交流各自方法。

  3.完成第14题。

  独立完成。交流各自方法。

  求最大公因数和最小公倍数的方法有什么相同和不同?

  什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的'最小公倍数?

  4.完成思考题。

  (1)小组讨论方法。

  (2)指导解法。

  把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。

  5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法

  四、课堂

  大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。

公因数与最大公因数教案6

  一、教学目标

  结合解决实际问题,通过具体操作和交流活动,认识公因数和最大公因数,学好求两个数的公因数和最大公因数的方法。

  在探索公因数和最大公因数意义的过程中,经历观察、猜测、验证、归纳等数学活动,进一步发展初步的推理能力。

  学会用公因数和最大公因数的知识解决简单的实际问题,体验数学与生活的密切联系。

  二、课时安排

  1课时

  三、教学重点

  找两个数最大公因数的方法。

  四、教学难点

  找两个数最大公因数的方法。

  五、教学过程

  (一)导入新课

  出示信息窗1:这张纸长24厘米,宽18厘米。把它剪成边长是整厘米的正方形,要想剪完后没有剩余,正方形的边长可以是几厘米呢?

  你从中能读出哪些数学信息?

  讲授新课

  师生交流数学信息,你能提出什么问题?

  学生讨论交流。

  正方形的边长可以是几厘米?最长是几厘米?

  探究问题:正方形的边长可以是几厘米?最长是几厘米?

  分别用边长是1厘米、2厘米、3厘米的正方形纸片摆一摆。

  学生探究后交流。

  ①我用边长是2厘米的正方形纸片摆,正好摆满。

  ②我用边长是4厘米的正方形纸片摆,有剩余。

  ③我不用摆,算一算就知道了:24÷3=8 ,18÷3=6 。因此,用边长3厘米的正方形纸片摆,正好可以摆满,没有剩余。

  你有什么发现吗?

  学生探究后交流。

  用边长1厘米、2厘米、3厘米、6厘米的正方形纸片摆,都正好摆满,没有剩余;用边长4厘米、5厘米 的正方形纸片摆,有剩余。

  交流后小结:正方形的边长可以是1厘米、2厘米、3厘米、6厘米。最长是6厘米。

  重难点精讲:

  探究问题:1、2、3、6与24、18有什么关系呢?

  学生讨论后交流:

  我发现它们既是24的因数,也是18的因数。

  也可以用下图表示:

  师启发:我们来总结一下。

  1、2、3、6既是24的因数,也是18的因数,它们是24和18的公因数。其中6是最大的,是24和18的最大公因数。

  探究问题:怎样找12和18的公因数和最大公因数?

  学生讨论后交流:

  ①先分别写出12和18的因数

  12的因数:1、2、3、4、6、12。

  18的因数:1、2、3、6、9、18。

  12和18的公因数:1、2、3、6。

  12和18的最大公因数:6。

  ②先找出12的因数,再从这些因数中找出18的'因数。

  12的因数:1、2、3、4、6、12。

  12和18的公因数:1、2、3、6。

  12和18的最大公因数:6。

  师讲解:还可以用短除法求12和18的最大公因数。

  通过上面的活动,你有什么发现吗?

  几个数公有的因数,叫做这几个数的公因数。

  其中最大的一个叫做它们的最大公因数。

  画图和操作能帮助我们发现规律。

  归纳小结

  通过刚才的探究,你能说说你的收获吗?

  师生交流后小结:

  几个数公有的因数,叫做这几个数的公因数。

  其中最大的一个叫做它们的最大公因数。

  画图和操作能帮助我们发现规律。

  课堂检测

  1、15的因数有__________________。

  40的因数有__________________。

  15和40的公因数有________________,最大公因数是____。

  2、

  16和28的最大公因数是( )。 36和42的最大公因数是( )。

  用短除法求下列每组数的最大公因数。

  36和54 60和18 45和75

  20和30 64和32 52和78

  3、

  用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?

  先分别找出每组数的最大公因数,再仔细观察。你发现了什么?

  6 和 12

  24 和 96

  18 和 54

  8 和 9

  17 和 28

  15 和 32

  板书设计

  公因数和最大公因数

  几个数公有的因数,叫做这几个数的公因数。

  其中最大的一个叫做它们的最大公因数。

  画图和操作能帮助我们发现规律。

  作业布置

  1、实验小学用地板砖铺设长90分米、宽60分米的微机室地面(如图)。

  (1)从不浪费材料的角度考虑(使用的地板砖都是整块),可以选择边长是多少分米的正方形地板砖?

  (2)你认为选用边长是多少分米的地板砖比较合适?说说理由。

  2、预习第33、34、35页的有关内容。

公因数与最大公因数教案7

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第41~42页例9、例10和“练一练’’,第45页练习七第1~2题。

  教学目标:

  1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。

  2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。

  教学重点:

  求两个数的公因数和最大公因数。

  教学难点:

  理解求公因数和最大公因数的方法。

  教学准备:

  小黑板

  教学过程:

  一、铺垫准备

  1.直观演示,作好铺垫。

  出示边长6厘米和边长5厘米的两个正方形。

  提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?

  2.引入新课。

  谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。

  二、学习新知

  1.认识公因数。

  (1)出示例9,了解题意。

  启发:观察正方形纸片的边长和长方形的.长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。

  交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?

  结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:12÷6=2 18÷6=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:12÷4=3 18÷4=4......2)

  (2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。

  交流:还有哪些边长整厘米数的正方形也能正好铺满?你是怎样想的? 你发现正方形边长的厘米数符合什么条件,就能把这个长方形正好铺满?

  (3)引导:现在你发现,哪些数既是12的因数,又是18的因数?

  指出:大家发现,1、2、3、6这几个数,既是12的因数,又是18的因数,也就是12和18公有的因数,我们称它们是1 2和18的公因数。(板书)

  追问:4是1 2和18的公因数吗?为什么不是?

  2.求公因数。

  (1)出示问题。

  引导:我们已经知道,两个数公有的因数,是它们的公因数。那如果已知两个数,你能不能找出它们所有的公因数呢?接着看一个问题。

  出示例10,让学生明确要找出8和1 2的所有公因数,并找出其中最大的一个。

  (2)探索方法。

  引导:先想想怎样的数是8和12的公因数;再想怎样可以找到8和12的公因数。和同桌商量商量,找出它们的公因数,并找出最大的一个。

  学生思考、尝试,教师巡视、指导。

  交流:你是怎样找8和12的公因数和最大的公因数的?

  结合交流,引导学生理解不同思考方法:(在交流中板书过程)

  ① 分别找出8和12的因数,再找公因数,并确定最大的一个。

  ②先找出8的因数,再从8的因数里找1 2的因数,并确定最大的一个。 提问:为什么可以这样找8和12的公因数?

  ③先找1 2的因数,再从1 2的因数里找8的因数,并确定最大的一个。 追问:这种方法是怎样想的?

  小结

  3.用集合图表示公因数。

  出示两个圈:8的因数 12的因数(图略) 让学生分别说出8和12的因数,教师板书。

  引导:如果要在图里既看出8的因数和12的因数,又能把公有的因数写在共同的部分,这两个圈怎样合并到一起比较合适?小组里讨论讨论。

  4.回顾内容。

  提问:回顾今天的学习,我们认识了哪些内容?(板书课题) 什么是公因数和最大公因数?

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第1题。

  学生练习,指名板演。检查板演过程,说明最大公因数;有错订正。

  4.做练习七第2题。 让学生直接写出得数。

  提问:能根据算式说说哪个数是哪个数的因数或倍数吗?

  四、小结收获

  提问:今天这节课你收获了什么?在学习过程中你还有哪些体会?<

【公因数与最大公因数教案】相关文章:

最大公因数的教学反思02-10

五年级数学公因数和最大公因数教案04-07

求最大公因数教学反思10-25

最大公因数质教学反思11-01

公倍数和公因数教案12-19

《最大的麦穗》教案07-20

《最大麦穗》教案07-17

[热]《最大的麦穗》教案05-06

最大的麦穗教案范文08-29