当前位置:9136范文网>教育范文>教案>比例的基本性质教案

比例的基本性质教案

时间:2024-06-21 12:56:02 教案 我要投稿

比例的基本性质教案

  作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?下面是小编为大家整理的比例的基本性质教案,希望对大家有所帮助。

比例的基本性质教案

比例的基本性质教案1

  教学目标

  一、知识目标

  1、使学生理解比例的意义和比例的基本性质.

  2、认识比例的各部分名称,会组成比例.

  二、能力目标

  1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

  2、培养学生的观察能力和判断能力.

  三、情感目标

  1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

  2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学对象分析

  低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

  教学策略及教法设计

  教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

  1.多媒体教学

  运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.

  2.动手操作法

  引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.

  教学步骤

  一、铺垫孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

  教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

  二、探究新知

  (一)比例的意义

  例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1、教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2、教师明确:两个比的.比值都是40,所以这两个比相等.因此可以写成这样的等式

  或 .

  3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4、练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  ① 和 ② 和

  ③ 和 ④ 和

  填空

  ①如果两个比的比值相等,那么这两个比就( )比例.

  ②一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质

  1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2、练习:指出下面比例的外项和内项.

  3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以 为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4、学生自己任选两三个比例,计算出它的外项积和内项积.

  5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  (板书课题:加上“和基本性质”,使课题完整.)

  6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7、练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习

  1、说一说比和比例有什么区别.

  比是表示两个数相除的关系,有两项;

  比例是一个等式,表示两个比相等的关系,有四项.

  2、在 这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  (1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业

  根据3×4=2×6写出比例.

  六、板书设计

比例的基本性质教案2

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例.

  (2)一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  板书课题:加上“和基本性质”,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据3×4=2×6写出比例.

  六、板书设计.

  省略

  第一课时

  教学内容:P32~34 比例的意义和基本性质

  教学目的:1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

  2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。

  3、使同学初步感知事物间是相互联系、变化发展的。

  教学重点;比例的意义和基本性质

  教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

  教学过程:

  一、回顾旧知,复习铺垫

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把同学举的例子板书出来,并注明比的各局部的名称。

  2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。

  12:16 : 4.5:2.7 10:6

  同学求出各比的比值后,再提问:哪两个比的比值相等?

  (4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)出示P32例1。

  每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的`比。

  5: 2.4:1.6 60:40 15:10

  每面国旗长和宽的比值有什么关系?(都相等)

  5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

  象这样表示两个比相等的式子叫做比例。

  比例也可以写成:

  (2)我们也学过不同的两个量也可以组成一个比,如:

  一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  指名同学读题。

  教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:

  第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

  指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”

  根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

  (3)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (4)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

  同学判断后,指名说出判断的根据。

  ②做P33“做一做”。

  让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。

  ③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。

  ④P36练习六的第1~2题。

  对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。

比例的基本性质教案3

  教学内容:比例的意义、基本性质,比例各部分名称,组比例。

  教学目标:

  1. 使学生理解比例的意义,认识比例各部分的名称。

  2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

  教学重点:比例的意义和基本性质。

  教学难点:理解比例的基本性质。

  教学过程:

  一、 复习

  1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

  2、 求下面各比的比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、 新授

  提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

  1、 比例的意义

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  从上不中可以看到,这辆汽车:

  第一次所行台的.路程和时间的比是____;

  第二次所行驶的路程和时间的比是____;

  这两个比的比值各是多少?它们有什么关系?

  (1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

  板书:80:2=200:5 或 =

  师:这样的式子,我们给它一个名字叫做比例。

  (2) 口答

  A、把复习第2题中两个比值相等的比用等号连起来。

  B、用等号连接起来的式子叫做什么?

  C、根据刚才的回答,你能说出什么叫比例吗?

  (3) 小结。

  A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

  B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。

  (4) 练习,课本第10页做一做。

  2、 比例的基本性质。

  (1) 比例各部分的名称。

  引导学生观察黑板上的例题:80:2=200:5

  并自学课本

  提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

  (2) 说出下面各比例的外项和内项?

  6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

  (3) 计算:上面比例中的外项积与内项积。

  (4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

  师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

  (5)你能得出什么结论?

  三、 巩固练习

  1、 完成第2页的做一做。

  2、 完成第3页的做一做第1题。

  四、 总结

  1、 比例的意义和基本性质是什么?

  2、 怎样判断两个比能否组成比例?

  五、 作业

  1、 完成练习四的第1-3题。

比例的基本性质教案4

  教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

  3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

  教学重点:理解并掌握比例的基本性质。

  教学难点:引导观察,自主探究发现比例的基本性质

  教学过程:

  一、复习导入

  1、昨天学习了什么内容?(比例)什么叫比例?

  2、判断下面每组中两个比能否组成比例?把组成的比例写出来。

  ⑴ 3:5和18:30 ⑵ 0。4:0。2和1。8:0。9

  ⑶ 5/8:1/4和7。5:3 ⑷ 2:8和9:27

  学生独立完成,说说判断过程。

  你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  二、教学新课

  1、教学比例各部分的名称

  (1)课件出示:3:5

  前项后项

  (2)课件出示:3:5 = 18:30

  内项

  外项

  (3)如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  谈话过渡:现在我们已经知道了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  2、出示例4

  1、提问:你能根据图中的数据写出比例吗?

  (1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的`内项和外项。

  (2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

  2、学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  3、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成

  (4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  4、思考3/6=2/4是那些数的乘积相等。课件显示:交*相乘。

  5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  6、比例的基本性质的应用

  (1)比例的基本性质有什么应用?

  (2)做“试一试”

  a先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  C、根据比例的基本性质判断组成的比例是否正确。

  三、巩固练习

  1、做“练一练”

  (1)学生尝试练习。

  (2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

  2、在()里填上合适的数。

  1.5:3=():4

  12:()=():5

  先让学生尝试填写,再交流明确思考方法。

  3、做练习十第1、2题

  四、全课小结。

  通过今天的学习,你又有了哪些长进?

  五、作业

  练习十3、4题

比例的基本性质教案5

  教学内容:教科书第32~34页。

  教学目标:理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。

  教学过程

  一、复习

  1.什么叫做比?

  2.求出下面每个比的比值。

  12∶16∶(板书)

  二、教学比例的意义

  出示教材第32页的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。

  把图变换成四面国旗的画面,每面国旗标注了长和宽的尺寸。

  选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

  提问:根据求出的比值,你发现了什么?(两个比的比值相等)

  教师边总结边板书:因为这两个比的比值相等,所以我们可以写成一个等式:

  2.4∶1.6=60∶40或=(板书)

  像这样由两个相等的比组成的式子我们把它叫做比例。我们已经知道组成一个比的两个数分别叫做这个比的前项与后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

  四人小组讨论,教师巡视,给予指导。

  请小组汇报讨论结果,教师根据学生的汇报,将组成的比例分类板书在黑板上。

  教师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的.比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的比值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。

  三、教学比例的基本性质

  师:观察黑板上的比例式,你能发现比例的内项与外项之间有什么关系吗?教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。

比例的基本性质教案6

  教学内容:

  课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:理解比例的意义和基本性质。

  教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学关键:

  观察众多的实例,概括出比例意义的`过程;找出在比例里两个内项的积与两个外项的积相等的规律。

  教具:投影片、小黑板

  教学过程:

  一、谈话导入,创设情境

  (一)教师出示投影,结合画面谈话引入。

  师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  (二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。

  二、自主探究,学习新知

  (一)教学比例的意义

  1.合作互动,探求共性。

  先让学生在小组活动中完成“活动内容1”。

  活动内容1:

  (1)根据表中给出的数量写有意义的比。

  (2)观察写出的比,哪些比能用等号连接,为什么?

  (3)根据比与分数的关系,这样的式子还可以怎样写?

  然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

  2.抽象概括,及时巩固。

  (l)教师指导学生观察以上比例式,概括出共性。

  (2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

  (3)完成第2页“做一做”,并说明理由。

  (4)让学生自己举出两个比例,并说明理由。

  (二)教学比例的基本性质。

  1.认识比例各部分名称。

  (l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

  (2)让学生观察自己刚才举的比例,找出它的内项、外项。

  (3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

  2.引导学生发现比例的基本性质。

  (1)让学生小组活动完成以下活动内容2:

  活动内容2:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②如果把比例写成分数形式,是否也有如上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ④通过以上研究,你发现了什么?

  (2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

  (3)指导学生概括出比例的基本性质,并完成板书。

  三、分层练习,辨析理解

  1.完成练习一第1题区别比与比例。

  2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

  3.完成练习一第2题。

  4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2、3、4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  练习一第3题。

比例的基本性质教案7

  教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。

  教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。

  教学重点:理解比例的意义和基本性质。

  教学难点:用比例的意义或性质判断两个比成不成比例。

  教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。

  教具、学具准备:小黑板,教学课件

  教学步骤

  一、复习铺垫

  l.什么叫做两个数的比?请你说出两个比。(教师板书)

  2.什么是比的比值?上面两个比的比值是多少?

  3.引入新课。

  我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)

  二、导入新课

  1.教学比例的意义。

  让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)

  (1) 3 :5 24 :40 (2) :7.5 :3

  追问:比值相等,说明每组里两个比怎样?

  指出:表示两个比相等的式子叫做比例。

  说一说,上面两个等式表示的是怎样的式子?

  2.下面两个比之间的哪些○里能填“=”,为什么?

  1 :2○3 :6 0.5 :0.2○5 :2

  1.5 :3○15 :3:2○:1

  提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。

  3.教学例1。

  出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。

  让学生根据比例的'意义,在( )里填上适当的数。

  3 :6=5 :( ) 0.8 :( )=1 :

  4.教学比例的基本性质。

  向学生说明比例各部分的名称。

  让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。

  5.判断能否组成比例。

  出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?

  强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?

  让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?

  三、巩固练习

  1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?

  2. 完成“练一练”。

  指名4人板演.集体订正.说说是怎样判断的?

  3.做练习六第1题。

  让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。

  4.做练习六第2题。

  让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)

  5.完成练习六第3题。

  学生先观察、计算,然后口答,说明理由。

  四、全课小结

  这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?

  五、布置作业

  练习六第4、5题。

比例的基本性质教案8

  教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。

  教学目的:使学生理解比例的意义和基本性质。

  教学过程():

  一、教学比例的意义

  1.复习。

  (1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。

  (2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?

  教师板书出下面几组比,让学生求出它们的比值。

  12:16 :1 4·5:2.7 10:6

  学生求出各比的比值后,再提

  “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?

  这就是这节课我们要学习的内容。(板书课题:比例的意义)

  2.教学比例的意义。

  (1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。

  教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。

  板书:第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:

  “你们发现了什么?”(这两个比的比值都是40。)

  “所以这两个比怎么样?”(这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。

  指着比例式80:2=200:5,提问:

  “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。

  “从比例的意义我们可以知道.比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)

  (2)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (3)巩固练习。

  ①用手势判断下面卡片上的.两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9

  20:5和.16:8 0.8:0.4和 : :

  学生判断后,指名说出判断的根据。

  ②做第10页的“做一做”。

  让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

  ③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

  ④做练习四的第3题。

  对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

  二、教学比例的基本性质

  1.教学比例各部分的名称。

  教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)

  指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:

  80 :2=:200 :5

  内项

  外项

  2.教学比例的基本性质。

  教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

  两个外项的积是80×5=400

  两个内项的积是2×200=400

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。

  “通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。

  最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

  “如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =

  “这个比例的外项是哪两个数呢?内项呢?”

  “因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200

  3.巩固练习。

  教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  (1)应用比例的基本性质判断3:4和6:8能不能组成比例。

  教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以

  3:4和6:8可以组成比例。(边说边板书:3:4=6:8)

  (2)做第11页“做一做”的第1题。

  三、小结

  教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  四、作业

  练习四的第2题。

比例的基本性质教案9

  教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  教学重点难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  教具学具准备:幻灯片、学习卡。

  教学过程:

  一、创设情景,引入新课。

  出示三幅场景图。

  (1)图上描述的是什么情景?这几幅图都与什么有关?

  (2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

  (3)你们有见过这样的国旗吗?或者这样的?

  我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

  二、自主探究,明确意义

  1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

  2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

  3、学生汇报。

  4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

  像这样表示两个比相等的式子叫做比例。(板书)

  5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

  6、深入探讨:

  (1)比例有几个比组成?

  (2)是不是任意两个比都能组成比例?

  (3)判断两个比能不能组成比例,关键要看什么?

  7、完成“做一做”。

  三、探究比例的基本性质。

  1、学习比例各部分的名称。

  教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

  (1)指名读一读有关知识。

  (2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

  随着学生的回答教师出示:

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ =

  └------外项-------┘ (内项)(外项)

  (3)如果把比例写成分数形式,你能找出它的内项和外项吗?

  (4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

  2、研究比例的基本性质。

  (1)活动探究,总结性质。

  谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

  ①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

  2.4:1.6=60:40 =

  ②你能举一个例子,验证你的发现吗?

  ③你能得出什么结论?

  ④你能用字母表示这个性质吗?

  (2)运用性质。

  ①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

  ②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、巩固练习。

  1、填空

  (1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

  (2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

  (3)在一个比例里,两个外项互为倒数,那么两个内项的'积是( ),如果一个外项是 ,另一个外项是( )。

  (4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判断。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。( )

  (2)18:30和3:5可以组成比例。( )

  (3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

  (4)因为3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改写成比例:(能写几个写几个)

  16 × 3 = 4 × 12

  四、总结归纳

  1、这节课我们学习了什么知识?你有什么收获?

  2、判断两个比能不能组成比例,有几种方法?

  比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

  板书设计

  比例的意义和基本性质

  表示两个比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ 或 =

  └------外项-------┘ (外项)(内项)

  在比例里,两个外项的积等于两个内项的积。

  A:B=C → AD=BC

比例的基本性质教案10

  设计思路:

  1、从学生自主学习,自主探究入手,激发学生学习的兴趣。

  2、通过自主学习、师生共同研究的学习过程,让学理解并掌握比例的基本性质,并会应用比例的基本性质正确判断两个比能否组成比例。

  教学目标:

  1、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

  2、通过自主学习,让学生经历探究的过程,体验成功的快乐。

  教学重点:

  比例的基本性质。

  教学难点:

  应用比例的基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、基本训练

  1、什么叫做比例?

  2、指出下面比例的内项和外项。

  3∶5=24∶40

  80∶2=200∶5

  二、激趣导入

  我们已经知道比例的內项和外项,您能计算一下內项和外项的积吗?

  三、自主探究

  1、计算下面比例的两个外项和两个内项的积,你发现了什么?

  3∶5=24∶4080∶2=200∶5

  板书:外项的积:340=120外项的积:805=400

  内项的积:524=120內项的积:2200=400

  340=524805=2200

  2、验证结果。

  选几个比例,计算出它的外项积和内项积。

  15∶12=10∶81.5∶0.5=3∶1

  3、讨论并明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  4、板书课题:比例的基本性质。

  四、解释应用

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例,并写出组成的比例。

  6∶3和8∶50.2∶2.5和4∶50∶=∶

  五、全课小结(略)

  附:板书设计

  比例的基本性质

  3∶5=24∶4080∶2=200∶5

  板书:外项的`积:340=120外项的积:805=400

  内项的积:524=120內项的积:2200=400

  340=524805=2200

  在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

比例的基本性质教案11

  [教学目标]

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  [教学重点]比例的意义和基本性质.

  [教学难点]应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  [教学过程]

  1.什么叫做比?2.什么叫做比值?

  (二)求下面各比的比值.12∶164.5∶2.710∶6

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以用等号连接.教师板书:4.5∶2.7=10∶6

  二、新授教学.

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式80∶2=200∶5.

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)教师提问:什么叫做比例?组成比例的关键是什么?

  4.练习:下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15(2)20∶5和1∶4(3)0.6∶0.2和30:10

  5.填空(1)如果两个比的比值相等,那么这两个比就()比例.

  (2)一个比例,等号左边的比和等号右边的比一定是()的.

  ↓1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)80∶2=200∶5

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400内项积是:2×200=400

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.在6∶5=30∶25这个比例中,外项是()和(),内项是()和().

  根据比例的基本性质可以写成()×()=()×().

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  3.0.5∶0.2和3:14.1/2:4/15和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的'比例写出来.(能组几个就组几个)2、3、4和6

  80∶2=200∶5表示两个比相等的式子叫做比例.

  组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.

  在比例里,两个外项的积等于两个内项的积。

比例的基本性质教案12

  教学目标:

  1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

  2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义基本性质。

  教学难点:

  应用比例的意义和性质判断两个比是否成比例。

  教学过程

  一、导入新课

  1、什么叫比?

  2、求出下面各比的比值(小黑板)

  12:16 1/4:1/3 和9:12 4.5:2.7 10:6

  二、教学新课

  1、教学比例的意义

  (1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

  (2)归纳比例的意义

  (3)2:5和80:200能组成比例吗?你是怎样判断的?

  (4)完成第45页“做一做”

  2、教学比例的基本性质

  (1)在一个比例里,有四个数,这四个数分别叫什么名字?

  (2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

  (3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

  (4)指导学生归纳后,在比例里,两个外项的积等于两个内项的`积。这就是比例的基本性质。

  (5)指导学生完成第一46页“做一做”第1题。

  三、巩固练习

  四、课堂小结

  这节课你学到了哪些知识?

  创意作业:

  有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

比例的基本性质教案13

  教学内容:

  补充有关比例意义、基本性质和解比例的练习

  教学目标:

  1.进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。

  2.进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。

  3.通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。

  教学措施:

  帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。

  教学准备:

  上传补充练习

  教学过程:

  一、整理知识

  1.提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。

  2.学生同桌之间进行交流。

  3.指名学生交流,教师相机板书,将知识点进行梳理和归纳。

  4.揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)

  二、基本练习

  1.判断。

  (1)比例是一个等式。

  (2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。

  (3)比例的两个内项减去两个外项的积,差是0。

  (4)任意两个正方形的周长与边长的比都可以组成比例。

  (5)如果A╳9=B╳6(A、B均不为0),那么,A与B的比是3:2。

  组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。

  2.根据下面的等式,写出几个不同的比例。

  3╳40=8╳15

  (1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?

  (2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。

  3.判断四个数10.5、5/4、20/21、8能否组成比例?

  (1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)

  (2)你认为这里选择哪种方法比较方便?

  (3)指名学生交流后,学生写出比例。

  小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。

  4.按要求组成比例。

  (1)从2、10、4.5、9、5五个数中选出四个组成一个比例。

  (2)从18的所有约数中选出四个组成一个比例。

  (3)把8和9作两个外项,比值是1/2的一个比例。

  (4)给5、8、0.4三个数分别配上一个不同的数,组成两个不同的比例.

  逐个出示题目,学生练习之前先要弄清题目要求。

  学生完成后进行交流,要求说说自己的思考过程,教师及时评价。

  教师要及时关注学生存在的问题及时辅导。

  5.根据比例的'基本性质,在括号里填上合适的数。

  15:3=( ):1 2:0.5=12:( )

  0.3/4=( )/32 7/9:( )=1/2:3/5

  ( )/12=3/18 ( ):4.5=0.4:9

  先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。

  三、解比例

  25:7=X:35 514: 35= 57:x 23:X= 12:14 X:15=13: 56

  2、根据下面的条件列出比例,并且解比例

  a. 96和X的比等于16和5的比。

  b. 45 和X的比等于25和8的比。

  c. 两个外项是24和18,两个内项是X和36 。

  四、全课总结

  通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?

  四、布置作业

  补充相应练习

比例的基本性质教案14

  教学内容:

  比例的意义和基本性质 (省义务教材第十二册)

  教学目标:

  1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

  2、利用比例知识解决实际问题。

  3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学过程:

  一、 谈话导入,创设情境:

  出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的.确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。【诱发审美注意】

  我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  二、 自主探究,学习新知

  (一) 教学比例的意义

  1、 8厘米

  出示

  6厘米

  4厘米

  3厘米

  (1)根据表中给出的数量写出有意义的比。

  (2)哪些比是相关联的?

  (3)根据以往经验,可将相等的两个比怎样?(用等号连接)

  教师并指出这些式子就是比例。

  2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。

  3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

  4、 写出比值是1/3的两个比,并组成比例。

  (二) 教学比例的基本性质

  1、 比例和比有什么区别?

  2、 认识比例的各部分

  (1)让学生自己取。

  (2)组成比例的四个数叫做比例的项,两端的两项叫做比例的

  外项,中间的两项叫做比例的内项。

  板书: 8 : 6 = 4 : 3

  内 项

  外 项

  (3)让学生找出自己举的比例的内外项。

  ( )

  12

  2

  ( )

  =

  (4)找出分数形式比例的内外项位置又是怎样的?

  3、 出示 【启迪学生思维,展开审美想象】

  (1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。

  (2) 学生反馈,教师板书。

  (3) 你发现了什么?

  (4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

  4、 用比例性质验证你所写比例是否正确。

  5、练习 8 : 12 = X : 45

  0.5

  X

  20

  32

  =

  求比例中的未知项,叫做解比例。

  如何证明你的解是正确的?

  (三) 小结:今天这堂课你有什么收获?

  三、 巩固练习

  1、下面哪几组中的两个比可以组成比例。

  4

  1

  12 : 24 和18 : 36

  0.4 : 和0.4 : 0.15

  14 : 8 和7 : 4

  5

  2

  2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】

  3、从1 、8、0.6、3、7五个数中

  (1) 选出四个数,组成比例。

  (2) 任意选出3个数,再配上另一个数,组成比例。

  (3) 用所学知识进行检验。

  四、 实际应用

  不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

  同学们,如果你是汪骏强,你准备怎么办?

  执教者 方 艳

比例的基本性质教案15

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4

  0.5 :0.2和5:2

  1/2:1/3 和6 : 4

  0.2:0.8和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6 = 60:40

  内项:1.6 6o

  外项:2.4 40

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如:2.4 :1.6 = 60:40

  外 内 内 外

  项 项 项 项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1) 学生独立探索其中的规律。

  (2) 与同学交流你的发现。

  (3) 汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的.积等于两个外项的积。

  板书

  两个外项的积是2.440=96

  两个内项的积是1.660=96

  外项的积等于内项的积。

  (4) 举例说明,检验发现。

  0.6 :0.5=1.2: 1

  两个外项的积是 0.61 =0.6

  两个内项的积是0.51.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:2.4/1.6 = 60/40

  3.440=1.660

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5) 学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5 =1/4:1/10

  ( )( )=( )( )

  (2)0.8:1.2=4:6

  ( )( )=( )( )

  (3)45=210

  4:( )=( ):( )

  5.做一做。

  完成课本中的做一做。

  6.课堂小结

  (1) 说一说比例的基本性质。

  (2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

  三、巩固练习

  完成课文练习六第4~6题。

  补充习题

  一题多变化,动脑解决它

  (1)在比例里,两个内项的积是18,

  其中一个外项是2,另一个外项是()。

  (2)如果5a=3b,那么, = ,

  (3)a︰8=9︰b,那么,ab=( )

  教学反思:

  比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

【比例的基本性质教案】相关文章:

比例的意义和基本性质教案02-16

《比例的基本性质》教学设计05-22

比例的基本性质教学反思06-17

【必备】比例的基本性质教学反思07-07

比例意义和基本性质教学反思12-27

《比例的意义和基本性质》教学反思11-08

比例的意义和基本性质教学反思12-10

比例的基本性质教学反思15篇06-17

《比的基本性质》教案03-08

《分数的基本性质》教案08-25