当前位置:9136范文网>教育范文>教案>八年级数学教案

八年级数学教案

时间:2024-06-21 14:42:09 教案 我要投稿

八年级数学教案(大全15篇)

  在教学工作者实际的教学活动中,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?下面是小编收集整理的八年级数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

八年级数学教案(大全15篇)

八年级数学教案1

  创设情境

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  探究归纳

  平行四边形的判定方法:

  证明:两组对边分别相等的四边形是平行四边形

  已知:

  求证:

  做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?

  学生交流:把你做的四边形和其他同学做的.进行比较,看看是否都是平行四边形。

  观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形

  练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形

八年级数学教案2

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:对于平均数、中位数、众数在不同情境中的应用。

  教学方法:归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1,……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的`成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:

  每人销售件数 1800 510 250 210 150 120

  人数 113532

  (1)求这15位营销人员该月销售量的平均数、中位数和众数;

  (2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。

  例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:复习题B组、C组(选做)

八年级数学教案3

  教学目标

  理解平行四边形的定义,能根据定义探究平行四边形的性质.

  教学思考

  1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.

  2.能够根据平行四边形的性质进行简单的推理和计算.

  解决问题

  通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.

  情感态度

  在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

  重点

  平行四边形的性质的探究和平行四边形的性质的应用.

  难点

  平行四边形的性质的应用.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1欣赏图片,了解生活中的特殊四边形

  活动2剪三角形纸片,拼凸四边形

  活动3理解平行四边形的概念

  活动4探究平行四边形边、角的性质

  活动5平行四边形性质的应用

  活动6评价反思、布置作业

  熟悉生活中特殊的四边形,导出课题.

  通过用三角形拼四边形的.过程,渗透转化思想,激发探索精神.

  掌握平行四边形的定义及表示方法.

  探究平行四边形的性质.

  运用平行四边形的性质.

  学生交流,内化知识,课后巩固知识.

  教学过程设计

  问题与情景

  师生行为

  设计意图

[活动1]

  下面的图片中,有你熟悉的哪些图形?

  (出示图片)

  演示图片,学生欣赏.

  教师介绍四边形与我们生活密切联系,学生可再补充列举.

  从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.

  问题与情景

  师生行为

  设计意图

  [活动2]

  拼一拼

  将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.

  (1)你拼出了怎样的凸四边形?与同伴交流.

  (2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.

  学生经过实验操作,开展独立思考与合作学习.

  教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.

  教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容

八年级数学教案4

  一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  1、平移

  2、平移的性质:

  ⑴经过平移,对应点所连的线段平行且相等;

  ⑵对应线段平行且相等,对应角相等。

  ⑶平移不改变图形的大小和形状(只改变图形的位置)。

  (4)平移后的图形与原图形全等。

  3、简单的平移作图

  ①确定个图形平移后的位置的条件:

  ⑴需要原图形的位置;

  ⑵需要平移的方向;

  ⑶需要平移的距离或一个对应点的位置。

  ②作平移后的图形的方法:

  ⑴找出关键点;

  ⑵作出这些点平移后的对应点;

  ⑶将所作的对应点按原来方式顺次连接,所得的;

  二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

  1、旋转

  2、旋转的性质

  ⑴旋转变化前后,对应线段,对应角分别相等,图形的.大小,形状都不改变(只改变图形的位置)。

  ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

  ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  ⑷旋转前后的两个图形全等。

  3、简单的旋转作图

  ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

  ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

  ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

  三、分析组合图案的形成

  ①确定组合图案中的“基本图案”

  ②发现该图案各组成部分之间的内在联系

  ③探索该图案的形成过程,类型有:

  ⑴平移变换;

  ⑵旋转变换;

  ⑶轴对称变换;

  ⑷旋转变换与平移变换的组合;

  ⑸旋转变换与轴对称变换的组合;

  ⑹轴对称变换与平移变换的组合。

八年级数学教案5

  分式方程

  教学目标

  1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

  2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

  3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

  教学重点:

  将实际问题中的等量 关系用分式方程表示

  教学难点:

  找实际问题中的'等量关系

  教学过程:

  情境导入:

  有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

  如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

  根据题意,可得方程___________________

  二、讲授新课

  从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

  这 一问题中有哪些等量关系?

  如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

  根据题意,可得方程_ _____________________。

  学生分组探讨、交流,列出方程.

  三.做一做:

  为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

  四.议一议:

  上面所得到的方程有什么共同特点?

  分母中含有未知数的方程叫做分式方程

  分式方程与整式方程有什么区别?

  五、 随堂练习

  (1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

  (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

  (3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

  六、学 习小结

  本节课你学到了哪些知识?有什么感想?

  七.作业布置

八年级数学教案6

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的.基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:xxx

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

八年级数学教案7

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习习惯.

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)、此公理与前面学过的公理区别与联系

  (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1) 讲解例1。学生分析完成,教师注重完成后的点评。

  例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的.支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1= 只要证什么?

  (3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)

  (2)讲解例2(投影例2 )

  例2已知:如图AB=DC,AD=BC

  求证:∠A=∠C

  (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

  (2)找学生代表口述证明思路。

  思路1:连接BD(如图)

  证△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

  例3如图,已知AB=AC,DB=DC

  (1)若E、F、G、H分别是各边的中点,求证:EH=FG

  (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上写出证明,然后选择投影显示。

  证明:(略)

  说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。

  例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

  求证:AC=2AE.

  证明:(略)

  学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

  5、课堂小结:

  (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

  在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业:

  a、书面作业P70#11、12

  b、上交作业P70#14 P71B组3

八年级数学教案8

  学习目标:

  1. 在同一直角坐标系中,感受点的坐标变化与图形的变化之间的关系,并能找出变化规律。

  2. 通过坐标的变化探索新旧图形之间的变化。

  重点:

  1. 对称轴的对称图形,并且能写出所得图形各点的坐标。

  2. 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

  难点:

  1. 理解并应用直角坐标与极坐标。

  2. 解决一些简单的问题。

  学习过程:

  第一课时

  一、旧知回顾:

  1. 平面直角坐标系定义:在平面内,两条垂直且有公共端点的数轴组成平面直角坐标系。

  2. 坐标平面内点的坐标的表示方法是(x,y)。

  3. 各象限点的坐标的特征:

  第一象限:x和y坐标都是正数。第二象限:x坐标为负数,y坐标为正数。第三象限:x和y坐标都是负数。第四象限:x坐标为正数,y坐标为负数。

  二、新知检索:

  1. 在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形。

  三、典例分析:

  例1、

  (1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

  (2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

  例2、

  (1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

  (2) 将鱼的顶点的横坐标不变,纵坐标变成原来的一半,并绘制图形。分析得到的图形和原图形之间有什么不同?

  四、习题组训练

  1、在平面直角坐标系中,将点(0,0)、(2,4)、(2,0)和(4,4)连接形成一个图案。

  (1)将这四个点的纵坐标保持不变,横坐标变成原来的一半,然后依次连接得到新图形。得到的图形和原图形之间有什么变化?

  (2)将纵坐标和横坐标都增加3,所得到的图形会发生怎样的变化?

  (3)将纵坐标和横坐标都乘以2,所得到的.图形会发生怎样的变化?

  归纳得出:图形坐标变化的规律

  1、平移规律

  2、图形伸缩规律

  第二课时

  一、已学内容回顾:

  1、轴对称图形的定义:如果一个图形能够沿着某条轴翻折成重合的两部分,那么这个图形就是轴对称图形。

  2、中心对称图形的定义:如果一个图形绕着某个点旋转一定的度数后与原图形完全重合,那么这个图形就是中心对称图形。

  二、新学内容引入:

  1、如下图所示,左边的鱼和右边的鱼是关于y轴对称的。

  (1) 左边的鱼可以通过平移、压缩或拉伸来得到右边的鱼吗?

  (2) 左边鱼和右边鱼的顶点坐标之间有怎样的关系?

  (3) 如果将右边的鱼沿着x轴正方向平移1个单位长度,然后通过不改变关于y轴对称的条件,那么左边的鱼的顶点坐标会发生怎样的变化?

  三、典型例题解析:

  1、如下图所示,右边的鱼是通过何种变换得到左边的鱼的?

  2、如果将右边鱼的横坐标保持不变,纵坐标变成原来的一倍,绘制得到的图形与原图形之间有何不同?

  3、如果将右边鱼的纵坐标和横坐标都变成原来的一倍,所得到的图形和原图形之间有何不同?

  四、习题组练习:

  1、当坐标发生如下变化时,图形会做出怎样的变化?

  1、已知点位移的矩阵:

  ① (x,y) → (x,y + 4)

  ② (x,y) → (x,y - 2)

  ③ (x,y) → (1/2x,y)

  ④ (x,y) → (3x,y)

  ⑤ (x,y) → (x,1/2y)

  ⑥ (x,y) → (3x,3y)

  2、在第一象限内有一只蝴蝶,现在在第二象限内画出一个与它形状大小完全一样的蝴蝶,并标出它们的各个顶点坐标。

  3、以图中的字母M为轮廓,在y轴上作出与它关于轴对称图形,并标出相应端点的坐标。

  4、简要描绘图示中枫叶图案关于x轴对称的轴对称图形。

  学习笔记:

八年级数学教案9

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:

  体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:

  对于平均数、中位数、众数在不同情境中的应用。

  教学方法:

  归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的.可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:

  复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:

  复习题B组、C组(选做)

八年级数学教案10

  第二环节:探索发现勾股定理

  1、探究活动一

  内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

  问:你能发现各图中三个正方形的面积之间有何关系吗?

  学生通过观察,归纳发现:

  结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

  意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

  效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;

  2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

  2、探究活动二

  内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

  (1)观察下面两幅图:

  (2)填表:

  A的面积

  (单位面积)B的面积

  (单位面积)C的面积

  (单位面积)

  左图

  右图

  (3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

  学生的方法可能有:

  方法一:

  如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。

  方法二:

  如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

  方法三:

  如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

  (4)分析填表的数据,你发现了什么?

  学生通过分析数据,归纳出:

  结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

  意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形C的面积计算是一个难点,为此设计了一个交流环节。

  效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

  3、议一议

  内容:(1)你能用直角三角形的边长,来表示上图中正方形的面积吗?

  (2)你能发现直角三角形三边长度之间存在什么关系吗?

  (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?

  勾股定理:直角三角形两直角边的.平方和等于斜边的平方。如果用,分别表示直角三角形的两直角边和斜边,那么。

  数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。

  意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

  效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;

  2.通过作图培养学生的动手实践能力。

八年级数学教案11

  教材分析

  1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

  2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的'研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

  学情分析

  1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

  2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

  教学目标

  知识技能:1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:1、观察等腰三角形的对称性,发展形象思维。

  2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

  情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

  教学重点和难点

  重点:等腰三角形的性质及应用。

  难点:等腰三角形的性质证明。

八年级数学教案12

  《正方形》教学设计

  教学内容分析:

  ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

  ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

  ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

  学生分析

  ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

  ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

  教学目标:

  ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

  ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

  ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

  重点:掌握正方形的性质与判定,并进行简单的推理。

  难点:探索正方形的判定,发展学生的推理能

  教学方法:类比与探究

  教具准备:可以活动的四边形模型。

  一、教学分析

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

  教学过程

  一:复习巩固,建立联系

  【教师活动

  问题设置:①平行四边形、矩形,菱形各有哪些性质?

  ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

  【学生活动

  学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

  【教师活动

  评析学生的结果,给予表扬。

  总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

  演示平行四边形变为矩形菱形的过程。

  二:动手操作,探索发现

  活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

  【学生活动

  学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

  设置问题:①什么是正方形?

  观察发现,从活动中体会。

  【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

  【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

  设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

  【学生活动】

  小组讨论,分组回答。

  【教师活动】

  总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

  设置问题③正方形有那些性质?

  【学生活动】

  小组讨论,举手抢答。

  【教师活动

  表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

  活动二:拿出活动一得到的.正方形折一折,正方形是轴对称图形吗?有几条对称轴?

  学生活动

  折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

  教师活动

  演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

  学生活动

  小组充分交流,表达不同的意见。

  教师活动

  评析活动,总结发现:

  一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

  有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

  有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

  四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

  以上是正方形的判定方法。

  正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

  学生交流,感受正方形

  三,应用体验,推理证明。

  出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

  方法一解:∵四边形ABCD是正方形

  ∴∠ABC=90°(正方形的四个角是直角)

  BC=AB=4cm(正方形的四条边相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的对角线互相平分)

  ∴AO=×4=2cm

  方法二:证明△AOB是等腰直角三角形,即可得证。

  学生活动

  独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

  教师活动

  总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

  出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

  学生活动

  小组交流,分析题意,整理思路,指名口答。

  教师活动

  说明思路,从已知出发或者从已有的判定加以选择。

  四,归纳新知,梳理知识。

  这一节课你有什么收获?

  学生举手谈论自己的收获。

  请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

  发表评论

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学教案13

  教学目标:

  1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

  2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

  教学重点:

  算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程

  一、情境导入

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?

  这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

  二、导入新课:

  1、提出问题:(书P68页的'问题)

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值。

  一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0。

  也就是,在等式=a(x0)中,规定x = 。

  2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。

  3、想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。

  4、例1求下列各数的算术平方根:

  (1)100;(2)1;(3);(4)0。0001

  三、练习

  P69练习1、2

  四、探究:(课本第69页)

  怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

  五、小结:

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根

  六、课外作业:

  P75习题13.1活动第1、2、3题

八年级数学教案14

  一、教材分析

  1、特点与地位:重点中的重点。

  本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

  (2)难点:求解最短路径算法的程序实现。

  3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析

  1、知识目标:掌握最短路径概念、能够求解最短路径。

  2、能力目标:

  (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

  (2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

  3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析

  课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的.反应控制好教学进度是本节课成功的关键。

  四、学法指导

  1、课前上次课结课时给学生布置任务,使其有针对性的预习。

  2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

  3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析

  (一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

  教学方法及注意事项:

  (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

  (2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

  (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

  (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)

  1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

  (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

  ①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

  ②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

  ③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

  ④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:

  ①启发式教学,如何实现按路径长度递增产生最短路径?

  ②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)

  1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业

  1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

  六、教学特色

  以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

八年级数学教案15

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>

  2。当x

  >2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的.定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

【八年级数学教案】相关文章:

八年级数学教案12-30

八年级数学教案11-13

八年级上册人教版数学教案02-27

八年级下册数学教案05-24

八年级数学教案(优选15篇)06-20

最新人教版八年级上册数学教案01-06

数学教案中班10-20

初中数学教案12-26

小学数学教案06-13