六年级下册数学教案
作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。写教案需要注意哪些格式呢?以下是小编为大家整理的六年级下册数学教案,希望能够帮助到大家。
六年级下册数学教案1
教学目标
1. 在具体情境中,通过画一画的活动,初步认识正比例图像。
2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的
变量的值。
3.利用正比例关系,解决生活中的一些简单问题。
教学重点
1.在具体情境中,通过画一画的活动,初步认识正比例图象。
2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
教学难点
1.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
2.利用正比例关系,解决生活中的一些简单问题。
教学过程
一、复习
活动一:判断下面的量是否成正比例关系?
1.每行人数一定,总人数和行数。
2.长方形的长一定,宽和面积。
3.长方体的底面积一定,体积和高。
4.分子一定,分母和分数值。
5.长方形的周长一定,长和宽。
6.一个自然数和它的倒数。
7.正方形的边长与周长。
8.正方形的边长与面积。
9.圆的半径与周长。
10.圆的面积与半径。
11.什么样的两个量叫做成正比例的量?
二、新授
活动二:探索一个数与它的5倍之间的关系。
1.求出一个数的5倍,填写书上表格。自己独立完成。
2.判断一个数的5倍和这个数有怎样的关系?说说你判断的理由。
(一个数和它的5倍之间具有正比例关系。)
3.根据上表,说出下图中各点的含义。(图见书上P22)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。
4. 连接各点,你发现了什么?
(所描的点都在同一条直线上。)
5.利用书上的'图,把下表填完整。
6.估计并找一找这组数据在统计图上的位置。
自己独立完成。
7.在统计图上估计一下,看看自己估计的是否准确。
三、练习
活动三:试一试。
1. 在下图中描点(图见课本P22),表示第20页两个表格中的数量关系。
2. 思考:连接各点,你发现了什么?
活动四:练一练。
1. 圆的半径和面积成正比例关系吗?为什么?
教师讲解:因为圆的面积和半径的比值不是一个常数。
2. 乘船的人数与所付船费为:(数据见书上)
(1)将书上的图补充完整。
(2)说说哪个量没有变?(每人所需的乘船费用没有变化。)
(3)乘船人数与船费有什么关系?(乘船费用与人数成正比例。)
(4)连接各点,你发现了什么?(所有的点都在一条直线上。)
3. 回答下列问题:
(1)圆的周长与直径成正比例吗?为什么?
(圆的周长与直径成正比例关系。)
(2)根据右图,先估计圆的周长,再实际计算。
① 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。
② 直径为15厘米的圆的周长估计值为(),实际计算值为( )。
4.把下表填写完整。试着在上页第(1)题的图中描点表示上表中的数量关系,并连接各点,你发现了什么?(表格见书上)
(所有的点都在同一条直线上。)
四、课堂小结
同学们,这节课我们再次巩固练习了正比例的相关知识。大家有什么收获?
六年级下册数学教案2
教学目标
1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;
2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;
3、培养学生分析和解决实际问题的能力,发展学生的思维;
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学关键 培养学生分析和解决实际问题的能力
教学重点 复习分数乘除法应用题,掌握解题方法。
教学难点 找准单位“1”
教学步骤 教学过程 教学课件演示 教学意图
一、基础训练导入。
师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的.是什么?
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?
我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?
常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。
二、根据看线段图列式
师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习
基础练习只列式不计算
师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?
【教学课件演示】
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。
六年级下册数学教案3
教学目标
1、通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2、通过圆柱体体积公式的推导,培养学生的分析推理能力。
3、理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重难点
圆柱体体积的计算
教学过程
(一)创设情境,激趣引入。
师:同学们,周末老师去超市买饮料,看到同一品牌两种包装的饮料售价都是3.5元,你能帮老师挑选出哪一种饮料含量最多吗?
出示:两种圆柱体饮料。
师:对,它们的粗细、长短都不同,要知道它们的体积才行。
(二)探索尝试,解释交流。
师:怎样求圆柱的`体积呢?
师:首先想一想,在学习计算圆的面积时,我们是怎样把圆变成已学过的图形来计算面积的?
(出示:圆面积推导过程)
1、师:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?(学生:把圆柱切开,拼成长方体)
师:你的想法很好,怎样转化呢?
2、师:请小组内想一下,把怎么把圆柱转化为近似的长方体?并研究转化后的长方体和圆柱体积、底面积、高之间的关系?
3、师:哪个小组愿意展示一下你们小组的研究结果?
师:同学们真了不起!你们的发现非常正确。我们来看一看演示。
(演示将圆柱的割拼过程)
师:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。
你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的?
根据学生的回答师板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
师:如果用V表示体积,用S表示圆柱的底面积,用h表示高。你能用字母表示圆柱的体积公式吗?
4、师:刚才我们共同研究出了求圆柱的体积的计算公式,你能根据公式计算两瓶饮料的体积吗?(师给出有关数据,由学生计算。)
(三)课堂练习。
1、计算下面圆柱体积。
2、用数学
(1)一根圆柱形柱子,底面半径是0.4米,高是5米。它的体积是多少?
(2)从水杯里面量,水杯的底面积直径是6厘米,高是16厘米,这个水杯能容多少毫升水?
(3)金箍棒底面周长是12.56厘米,长是200厘米。这根金箍棒的体积是多少立方厘米?如果这根金箍棒是铁制的,每立方厘米铁的质量是7.9g,这根金箍棒的质量是多少千克?
总结
谈谈这节课的收获?
六年级下册数学教案4
教学目标:
1.知道扇形统计图,能说出其特点;
2.会画出简单的扇形统计图;
3.能从扇形统计图中尽可能多地得到信息。
教学准备:
两幅扇形统计图。
教学过程:
一、复习引新
l.复习旧知。
提问:在简单的统计里我们学习过哪些知识,其中条形统计图和折线统计图各有什么特点?
2.引入新课。
出示两幅扇形统计图。说明:这也是一种统计图,叫做扇形统计图。(板书:扇形统计图)哪位同学来说一说,这里的扇形统计图各表示的什么意思?说明:扇形统计图究竟有什么特点呢?它是怎样绘制出来的呢?这就是本节课要学习的内容。
二、教学新课
1.说明扇形统计图及其特点。
说明:从上面的扇形统计图可以看出:它是用一个圆表示各个部分的总数量,在圆里用大小不同的扇形表示出各个部分的数量占总数量的百分之几。这种统计图清楚地反映出各个部分数量同总数量之间的关系。
2.教学例题。
(1)出示例题.根据扇形统计图的表示形式,讨论制成扇形统计图的步骤。引导学生交流各自的想法,得出步骤井板书:
①
②
③
④计算百分数;计算圆心角;画出圆和扇形;标明百分数。
(2)要求学生自己完成第一步,在练习本上计算出各部分数量占总数量的百分之几。同时指名一1
人板演,然后集体订正,用加法检验各部分百分比的和是不是100%。
(3)先说明一个圆的度数是360度,再让学生按总数量的百分之几求出表示各部分数量扇形的圆
心角度数。学生口答,老师板书算式和结果。检验几部分圆心角的和是不是360度。
(4)分割成扇形。
老师说明画法,同时板书:先画一个圆,说明表示总数量;再分割成3个扇形,说明各表示哪个数量。
(5)标明各部分数量名称和百分数。
指名学生说说每个扇形各表示哪个数量,占百分之几,老师在图中板书。让学生自己画圆、分扇形并标明各个部分数量的'名称和百分数。
(6)区分各部分并写出统计图名称。
说明要用阴影或不同颜色区分不同的扇形,写出统计图名称,并让学生自己完成。指名一人板演,其余学生完成在自己的统计图上。集体订正。
(7)小结过程。
提问:谁来看图说说刚才制作这幅统计图的过程?你能说一说这幅统计图的意思吗?扇形统计图有什么特点?
三、课堂练习
l.做课后习题第1题。
提问:统计图里的圆表示什么?这个扇形统计图表示什么意思?让学生计算后填写课本上的表格。出示表格,指名口答结果,老师板书。让学生说说每一个数量是怎样计算出来的。
2.做课后习题第2题。
提问:这个圆等分成多少份?每份所对扇形的圆心角多少度?请大家先计算每项收入相应的扇形圆心角度数,再画出扇形统计图。老师巡视辅导。提问学生每一部分所占扇形是图的20等份里的几份。
四、课堂小结
扇形统计图有什么特点?怎样根据统计数据来制作扇形统计图?
六年级下册数学教案5
教学内容:
课本第99页例9和“练一练”,练习十六第7-10题。
教学目标:
懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。
教学重点:
按折扣进行计算。
教学难点:
对折扣的理解,并正确列出算式。
课前准备:
课件
教学过程:
一、创设情境,引入新课
春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。
刚才很多同学都说出了一个新的`词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。
二、实践感知,探究新知
1、提问:看到“打折”两个字,你会想到什么?
学生全班交流。
小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。
出示:华联超市的毛衣打“六折”出售。
提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?
小结:“几折”就是十分之几,也就是百分之几十。
提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?
质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?
学生交流课前搜集到的有关打折信息的意思。
提问:说一说下面每种商品打几折出售。
①一辆汽车按原价的90%出售。
②一座楼房按原价的96%出售。
③一只旧手表按新手表价格的80%出售。
2、教学例9。
学生自己读题。
出示例9的场景图。让学生说说从图中获取到哪些信息。
提问:你知道“所有图书一律打八折销售”是什么意思吗?
提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?
学生独立尝试。
全班交流算式和思考过程
解:设《趣味数学》的原价是ⅹ元。
ⅹ×80%=12
ⅹ=12÷0.8
ⅹ=15
答:《趣味数学》的原价是15元。
3、引导检验,沟通联系。
启发:算出的结果是不是正确?你会不会对这个结果进行检验?
先让学生独立进行检验,再交流交验方法。
启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。
4、指导完成“练一练”。
先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?
三、巩固练习
1、做练习十六第7题。
指名口答。
2、做练习十六第8题。
让学生独立解答,再对学生解答的情况适当加以点评。
四、课堂总结
提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?
五、布置作业
练习十六第9、10题。
六年级下册数学教案6
教学目的:
1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
2、培养学生认真审题的良好学习习惯。
教学重点:
灵活运用周长或面积公式解决实际问题。
教学过程:
一、周长与面积的区别。
1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?
2、计算下题。求出它的周长与面积。
(1)学生动手计算。
(2)周长与面积有什么不同?
概念不同,计算公式不同,单位不同。
3、判断。两个图形相比较,哪个图形的.周长长,哪个图形的面积就大。
(错。周长的长短和面积的大小没有必然的联系。)
二、运用所学知识解决实际问题。
1、一个圆形花坛,直径是4米,周长是多少米?
=(米)
2、一个圆形花坛,周长是米,直径是多少米?
=4(米)
3、一个圆形花坛的半径是2米,它的面积是多少平方米?
=(平方米)
4、一个圆形花坛的周长是米,它的面积是多少平方米?
r=()=2(米)=(平方米)
5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?
6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)
7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要宽的位置就餐,这张餐桌大约能坐多少人?+
三、综合练习。
1、判断对错,(1)圆的半径都相等。()
(2)在同圆或等圆中圆周长约是半径的倍。()
(3)半圆的周长是圆周长的一半。()
2、只列式不计算。
(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?
(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?
(3)一个圆形铁板的周长是分米,它的面积是多少平方分米?
3、说一说下面各题的解题思路。
(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?
(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是多少平方米?
四、布置作业
练习十七1-3,思考第4题。
六年级下册数学教案7
教学目标
1、结合具体情境,体会生活中存在着大量互相依赖的变量。
2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学重点
结合具体情境,体会生活中存在着大量互相依赖的变量并尝试用自己的语言描述两个变量之间的关系。
教学过程
一、创设情境,导入新课。
课件出示一个人从婴儿、幼儿、儿童的成长变化图,让学生观察,并说一说图中的变化情况。
1、用手势表示出自己从出生到现在身高的变化。
2、用手势表示出自己从出生到现在体重的变化。
3、师:身高、体重都会变化,这些都是变化的量。(板书课题)
在生活中,很多事物在发生变化。如:每天的气温、人的体温等。有时候,一个量的变化能引起另一个量的变化。比如:人的身高一般会随着年龄的变化而变化,汽车行驶的路程会随着时间的变化而变化,我们把这些变化的量,称之为“变量”。今天这节课,我们就一起来认识变化的量以及它们之间的变化关系。
二、观察表格,感知变量。
淘气和笑笑分别用表格和图表示了妙想6岁前的体重变化情况。我们一起来看一看。
出示图片,教师引导学生观察,鼓励学生积极发言。
1、从表中你知道了什么?
2、观察表中的数据,哪些量在发生变化?
3、年龄和体重,谁随着谁的变化而变化?
4、说一说妙想6岁前的体重是如何随年龄增长而变化的?
5、体重一直会随年龄的增长而变化吗?
师:在上表中,有体重和年龄两个变量,而且随着年龄的增长,体重也在增长,我们就说体重和年龄是一组相关联的.量。(板书:相关联的量)
三、自主探究,感悟变量。
(一)活动一:骆驼的体温
教师引导学生自主观察骆驼体温随着时间变化统计图,讨论、交流下列问题。
1、图中所反映的是哪两个变化的量?
2、横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、一天中,骆驼的体温最高是多少?最低是多少?
4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5、第二天8时在图上是哪一个时刻?第二天8时骆驼的体温与前一天8时的体温有什么关系?
6、第三天12时骆驼的体温是多少?
7、骆驼的体温有什么变化的规律吗?
教师小结:骆驼体温随着时间变化而呈周期性的变化。
(二)活动二:蟋蟀的叫声
刚才我们了解到骆驼一些有趣的现象,其实自然界中这种有趣的现象还很多很多,不信,我们来看一看娇小的蟋蟀有什么有趣的现象。
1、请同学们看课本40页第3小题。
2、全班展示,交流。(h=t÷7+3)
3、理解式子中量的变化。
师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
(三)课堂小结:
1、观察这三道题,你发现它们之间有什么相同的地方吗?
2、例举一个量随着另一个量变化而变化的例子。
(路程)随着(时间)的变化而变化,(气温)随着(时间)的变化而变化,(工作时间)随着(工作总量)的变化而变化,(汽车载重量)随着(汽车的数量)的变化而变化
四、练习巩固,加深理解。
1、连一连,把相互变化的量连起来。
路程正方形面积
边长购卖数量
总价行驶时间
2、填一填。
(1)香蕉的单价一定,购买的()和()在发生变化。
(2)轮船行驶的速度一定,行驶的()和()在发生变化。
(3)李叔叔从家到厂家骑自行车的()和()在发生变化。
3、判断下面两个变量是不是相关联的量。
(1)人的长相与身高。
(2)正方形的边长与周长。
(3)人的身高与跳绳的速度。
(4)每袋米有50千克,米的袋数与米的总质量。
4、举例说一说,下面这两道题中一个量是怎样随另一个量变化而变化的?
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
五、课堂小结。
这节课就要结束了,能谈谈这节课你的感受或你还有什么问题?
六年级下册数学教案8
教学内容:
课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。
教学目标:
1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
3、培养和解决简单的实际问题的能力,体会生活中处处有数学。
教学重点:
掌握百分数在实际生活中的应用。
教学难点:
渗透生活即数学的教学思想。
课前准备:
课件
教学过程:
一、认识、了解纳税
教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。
二、教学新课
1、教学例7。
出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?
指名学生读题后全班学生再次读题。
提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?
学生尝试练习。
学生可能有下面两种方法:
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
集体订正,教师板书算式。说说这题你是根据什么来列式的?
强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额
2、做“试一试”。
提问:这道题先求什么?再求什么?
生:先求5000元的20%是多少?再求实际获得的奖金。
学生板演与齐练同时进行,集体订正。
3、完成练一练后全班交流。
三、反馈练习
只列式不计算。
1、一家运输公司10月份的营业额是260000元,如果按营业额的`3%缴纳营业税,10月份应缴纳营业税多少万元?
2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?
3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?
四、课堂总结
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
五、布置作业
练习十六第1—3题。
六年级下册数学教案9
教学过程
1、出示主题图。教材第2页主题图。
2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃和2℃各代表什么意思?)
引出课题并板书:负数的初步认识
1、教学例1 。
(1)教师板书关键数据:0℃ 。
(2)教师讲解0℃的意思: 0℃表示淡水开始结冰的温度。
比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。
(2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
2、学生讨论合作,交流反馈。
(1)请同学们把图上其它各地的.温度都写出来,并读一读。
(2)教师展示学生不同的表示方法。
(2)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
2、教学例2。
(1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:
像20xx,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-122这样的数表示的是支出的钱数。
(2)教师:上述数据中500和-500意义相同吗?
(500和-500意义相反,一个是存入,一个是支出)。
你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?
师把学生的表示结果一一板书在黑板上。
4、归纳正数和负数。
(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。
(2)教师展示分类的结果,适时讲解。
像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。
像-8,-4,-500,-20这样的数,我们把它叫做负数。
(2)那么0应该归为哪一类呢?
组织学生讨论,相互发表意见。
(4)归纳:0既不是正数也不是负数,它是正数和负数的分界点。
(5)你在什么地方见过负数?
鼓励学生注意联系实际举出更多的例子。
六年级下册数学教案10
教学内容:
苏教版小学数学六年级下册第二单元信息窗一《圆柱和圆锥的认识》(P15-P18)
教材分析:
《圆柱和圆锥的认识》一课是在学生掌握了长方体和正方体以及圆的相关知识基础上进行教学的,是小学阶段几何知识的最后一部分内容的起始课,是以后进一步学习几何知识的基础。本节课的学习会使学生对立体图形的认识更深入、更全面,有利于进一步发展学生的空间观念。
教学目标:
1、在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握他们的特征。
2、经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。
3、在观察与实验、猜测与验证,交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点、难点:
重点:圆柱圆锥的特征。
难点:认识圆柱和圆锥的高。
教具、学具准备:多媒体课件、剪刀,圆柱、圆锥实物等。
教学过程:
一、创设情境,提供素材。
1、观察情境图中的物体,形成直观表象。
2、寻找生活中的圆柱和圆锥,积累感性认识。
3、由实物抽象出几何图形,发展空间观念。
4、提出问题,培养问题意识。
5、揭示课题。
谈话:通常我们先研究圆柱和圆锥的特征,然后再研究它们的表面积、体积等。随机板书课题:《圆柱和圆锥的认识》。
设计意图:兴趣是学习成功的动力,通过实物图形,引起学生的学习兴趣,让学生感知生活中处处有圆柱、圆锥。通过分类、举例,使学生对圆柱、圆锥整体上认识,形成初步的表象,在此基础上抽象出几何图形,由物到形,由生活走向数学,引导学生对照模型想图形,在头脑中形成圆柱和圆锥的表象,帮助学生形成空间观念。让学生提问题,激发学生的探究欲望,进一步培养学生的问题意识。
二、分析素材,理解概念。
1、观察圆柱,发现特征。
2、学生动手操作,教师巡视。
3、全班交流,探究特征。
4、研究圆柱的高。
5、总结圆柱的特征:刚才我们研究圆柱时,由表及里,运用先看,再比一比、量一量、摸一摸等方法,知道圆柱的特征。
6、研究圆锥的特征。
7、让学生完整的说一说圆锥的特征。
设计意图:放手让学生自主探究圆柱的特征,通过课件演示,学生看一看、摸一摸、比一比、量一量、议一议等活动,让学生亲身经历知识的形成过程,进一步整体感知圆柱,加深对圆柱的认识,培养学生的空间观念,建立对圆柱的表象的认识;通过举例认识高,将抽象的数学知识形象化,便于理解;通过小组合作,交流认识、动手操作,培养了学生的合作能力。
前面有了对圆柱的'特点的学习,圆锥的学习全部放手,让学生不仅受获“渔”,而且要学会运用“渔”进行“捕鱼”,同时,体验获取成功的喜悦,提高学生的学习能力。
三、借助素材,总结概念。
1、比较异同。
让学生对比观察,圆柱和圆锥有什么相同和不同?
预设一:相同处。它们的底面都是圆形;侧面都是曲的;都有高。
预设二:不同处。圆柱有2个底面,圆锥有1个底面;圆柱有无数条高,圆锥只有一条高。
2、想象拓展,建立联系。
让学生想象一下:如果从圆柱的底面开始,把上底面缩小,再缩小,再缩小(手势表示)最后会变成一个什么图形?
小结:从这看出,圆柱和圆锥也有着密切的联系。
设计意图:通过比较圆柱和圆锥的异同,使学生深化认识圆柱和圆锥的特点。让学生想象,培养学生的空间想象力,加强了圆柱和圆锥的联系,为后面学习圆柱和圆锥的体积关系作铺垫。
四、巩固拓展,应用概念。
1、下面物体的形状,哪些是圆柱?哪些是圆锥?
(1)先指出图形让学生说是什么图形,个别的说说原因。
(2)上边一行左数第四个、下边一行左数第二个,让学生说说为什么既不是圆柱又不是圆锥,进一步明确圆柱和圆锥的特征。
2、圆柱的侧面展开图:让学生沿着侧面上的一条高剪开(教师指圆柱上的一条高),猜想一下展开后会是什么图形,再让学生动手剪一下看看是什么图形。
预设一:得到的是一个长方形
预设二:得到一个正方形。
引:展开后的这个图形与原来的圆柱有什么关系?指学生多说,并大屏幕展示。
圆锥的侧面展开图:沿着圆锥的顶点和底面任意一点的连线斜着剪开会得到一个什么样的图形,先想一下,再指生剪演示。
拓展作业:如果圆柱也这样斜着剪,会得到一个什么样的图形?有兴趣的同学可以回去剪剪看。
3、将如下图所示的长方形、半圆形、梯形和三角形小旗快速旋转。想象一下,小旗旋转一周能形成什么图形?
(1)教师先让学生想象转动后的图形。
(2)课件演示旋转后的图形。
设计意图:通过多个不同层次的练习,目地是让学生在练习中加深对圆柱圆锥的认识,提高学生思维的深刻性和灵活性,体现数学知识“有用”。而第三小题的出现,为进一步培养学生的空间想象能力起了推动作用。
五、回顾梳理,总结提升。
通过这节课的学习,你有什么收获?你能试着从以下三个方面说吗?
1、你学到了什么知识?
2、你学到了哪些方法?
3、你有什么感受?
设计意图:学生自主回顾、梳理所学新知,进一步提高了学生的思维能力和语言表达能力及概括能力。
板书设计:
圆柱和圆锥的认识
六年级下册数学教案11
单元目标:
1、使同学认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
使同学理解求圆柱的侧面积和外表积的计算方法,并会正确计算。
使同学理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
单元重点:
掌握圆柱的外表积的计算方法和圆柱、圆锥体积的计算公式。
单元难点:
圆柱、圆锥体积的计算公式的推导 1、圆柱
(1)圆柱的认识
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各局部的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养同学细致的观察能力和一定的空间想像能力。
3、激发同学学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名同学回答,使同学熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名同学回答,其他同学评判答案是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、平安、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的外表
(1)摸摸圆柱。请同学摸摸自身手中圆柱的外表,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导同学考虑:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的`高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,丈量哪一条最为简便?
老师引导同学操作分析,得出丈量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤ 斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②同学再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化生长方形长和宽的过程。)
③同学交流后说出自身的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高和正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化生长方形?
课件显示:平行四边形通过割补转变生长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不论侧面怎样剪,得到各种图形,都能通过割补的方法转化生长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的同学和时辅导。
3.做第15页练习二的第4题。
四、安排作业
完成一课三练P15的1、2题。
板书:
┌长方形
沿高剪┤ 斜着剪:平行四边形
└正方形
圆柱的底面周长 → 长方形的长
圆柱的高 → 长方形的宽
六年级下册数学教案12
教学目标:
1.使学生加深对直线、射线和线段特征的认识,进一步理解它们之间的关系,丰富对角的概念的理解,完善认知结构。
2.使学生进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
教学重点:
使学生加深对直线、射线和线段、角等特征的认识,进一步理解它们之间的关系。
教学难点:
用量角器量角、画角,理解垂直与平行的关系,画垂线
教学过程:
一、知识梳理,形成网络
1.提出要求
①分别画一条直线、一条射线和一条线段。
②看图说说直线、射线和线段的相同点和不同点。
③说说直线、射线和线段的关系。
④在纸上画出两条直线
2.根据学生的回答小结
同一平面内两条直线的`关系,并板书。
a相交(当两条直线相交成相交直角时,这两条直线互相垂直)
b不相交(当两条直线不相交时这两条直线互相平行)
二、巩固练习,反馈校正
完成教科书第100页“练习十九”
1.完成第2题:让学生列举生活中的事例先分小组说,再全班交流
2.完成第3题:先让学生观察图形,再独立思考,最后指导学生用两点决定一条直线的知识说明。
3.完成第4题:先让学生讨论:通过一个点可以画多少条直线?通过两个点呢?再指导学生用两点之间的连线最短的知识说明
4.完成第5题:指导学生说思考过程时,师着重指出:因为从直线外的一点到直线的所有线段中,垂直的线段是最短的,因此从A或B点出发,连通主管道的小管道应该与主管道相应部分垂直。最后让学生独立操作。
三、拓展延伸,整理反思
1.师提问:我们学过哪些角?你能填写下表吗?学生独立做好后全班交流。
2.师让学生用活动角演示上面的各种角,引导学生进一步思考:角的大小与什么有关?学生讨论后,师小结:角的大小与两条边叉开的大小有关。
3.完成教科书第101页“练习十九”第6题学生独立填后反馈校对。
4.画角、量角器量角
(1)让学生说一说用量角器量角的方法。
(2)师让学生尝试画45度和135度的角各一个,在用量角器量,并让学生对比,这两个角画时和量时有什么不同?要注意什么?
(3)完成教科书第101页“练习十九”第7题
四、全课总结
通过这一课的学习你学到了什么?还有什么不懂?
六年级下册数学教案13
【教材分析】
正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。
【学情分析】
学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。
【设计理念】
数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:
1.从学生已有的知识经验出发,将数学学习与生活实际相联系。
2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。
3.注重积累数学学习经验,渗透数学思想方法。
4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。
【教学目标】
1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。
2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。
3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。
【教学重点】
理解正比例的意义。
【教学难点】
掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。
【教学准备】
教学课件。
【教学过程】
一、激趣设疑,铺垫衔接。
1.谈话:看到“正比例的意义”这个课题,你有什么疑问?
2.结合现实情境回忆常见的数量关系。
【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。】
二、合作探究,发现规律。
1.教学例1
出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。
谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。
组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。
谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?
预设:
(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。
(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。
根据学生的`交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。
提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?
根据学生的回答,板书:
提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。
请学生完整地说一说表中的路程和时间成什么关系。
【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】
2.教学“试一试”。
让学生自主读题,根据表中已经给出的数据把表格填写完整。
谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。
提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?
根据学生的回答,板书:
让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。
【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】
3.抽象概括
请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?
启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?
根据学生的回答,板书:,并揭示课题。
请大家想一想,生活中还有哪些成正比例的量?
【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】
三、分层练习,丰富体验
1.“练一练”第1题。
出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。
讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。
学生按要求活动,并组织反馈。
提问:张师傅生产零件的数量和时间成正比例吗?为什么?
2.“练一练”第2题。
出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。
3.练习十第1题。
先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?
4.练习十第2题。
出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。
出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。
结合学生的回答小结。
追问:判断两种相关联的量是否成正比例关系,关键看什么?
【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】
四、反思回顾,提升认识
谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?
【板书设计】
正比例的意义
两种相关联的量
六年级下册数学教案14
教学目标
1. 理解圆柱体积公式的推导过程,掌握计算公式。
2. 体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。
3. 感受探索数学奥秘的乐趣,培养学习数学的积极情感,
教学重难点
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程
教学过程
一、复习导入
同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
出示学习目标:
理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。
能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。
二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、下面长方体、正方体和圆柱的底面积都相等,高也相等
(1).长方体和正方体的体积相等吗?为什么?
(2).猜一猜,圆柱的体积与长方体、正方体 的体积相等吗?用什么办法验证呢?
2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)
[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]
3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:
①拼成的近似长方体的体积与原来的圆柱体积有什么关系?
②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?
?.拼成的近似长方体的'高与原来的圆柱的高有什么关系?
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
3、电脑演示操作
(1)电脑演示圆柱体转化成长方体的过程:
仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?
动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?
(分的分数越多,拼成的图形就越接近长方体)
(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
三、练习巩固,灵活应用
闯关1.
1、填表。(课件)
2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?
让学生试做,集体反馈。
闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?
学生讨论、交流、汇报。
小结:解决以上问题的关键是先求出什么?(生:底面积)
闯关3.
1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( ),它的底面积等于圆柱的( ),高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( )乘( ),用字母表示是( )。
2、圆柱底面半径为r厘米,高为h厘米,体积v=( )立方厘米
学生在练习本上独立完成,集体反馈。
3、我是小法官
1.正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。( )
2.长方体、正方体、圆柱体的体积都 可以用底面积乘高的方法来计算。( )
3.圆柱体的底面积越大,它的 体积越大。( )
4.圆柱体的高越长,它的体积越大。( )
5.如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍.( )
4、填空
1.一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积( )。
2. 一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是( )立方厘米。
拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?
四、课堂小结
学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)
五、布置作业
教科书第21页练习三第1-4题。
六年级下册数学教案15
教学内容:
P702– 75
教学目标:
1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;
2、培养学生仔细审题,认真思考,探索规律的良好习惯。
教学重难点:
理解正比例的意义和性质。
教学过程:
一、复习引入:
我们已学了一些常见的数量关系,谁能来说一说:
1、路程、速度、时间;
2、单价、数量、总量;
3、工作效率、工作时间、工作总量;
……
二、先观察、后概括:
1、例1:一列火车行驶的时间和路如下表:
时间(小时) | 1 | 2 | 3 | 4 | 5 | 6 | …… |
路程(千米) | 60 | 120 | 180 | 240 | 300 | 360 | …… |
观察上表,回答下列问题:
⑴、表中有哪两个量是相关联的?
⑵、路程是怎样随着行车时间的变化而变化的?
⑶、相对应的路程和时间的比分别是多少?比值是多少?
从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的`,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。
写成关系式是:=速度(一定)
2、新改例2:一种铅笔,支数与总价如下表:
支数) | 1 | 2 | 3 | 4 | 5 | 6 | …… |
总价(元) | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | …… |
由上表可以发现什么特征?
(哪几个量是相关联的?这两个相关联的量之间有什么关系?)
写成关系式是:=单价(一定)
比较例1、例2,它们有什么共同点?
概括:
⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。
⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:
= K(一定)
(结合例1、例2说一说)
3、练一练P75
三、巩固练习:
1、 P76看后判断,并连起来说一说。
2、 P76 – 2先观察,再分析。
3、 P76 – 3
四、小结:
要判断两个量是否成正比例,依据什么来判断?
1、两个相联的量?
2、一个量随着另一个量的变化而变化,并且它们的比值一定。
五、作业:
P76 3 4
【六年级下册数学教案】相关文章:
六年级下册数学教案02-28
六年级下册人教版数学教案12-01
六年级下册人教版数学教案(通用)12-01
六年级下册数学教案最新05-08
小学六年级下册数学教案02-13
人教版六年级下册数学教案02-19
人教版六年级下册数学教案12-03
六年级下册数学教案15篇02-28
人教版六年级下册数学教案范文03-26