人教版三数学教案上册教案
作为一名老师,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的人教版三数学教案上册教案,仅供参考,大家一起来看看吧。
人教版三数学教案上册教案1
教学目标:
1、理解并掌握“单价×数量=总价、速度×时间=路程”这两种数量关系,并能运用数量关系解决实际问题。
2、初步培养学生运用数学术语的能力,发展学生分析、比较、归纳、抽象、概括的能力。
3、感受数学知识与生活的密切联系,在解决问题的过程中感受三位数乘两位数笔算方法的应用价值。
教学重点:
理解并掌握单价、数量和总价及速度、时间和路程之间的关系。
教学难点:
运用数学术语概括、表达数量关系,并能在解决问题的过程中加以应用。
教学准备:
课件
教学过程:
一、谈话引入
1、回顾生活中的常见问题。(课件出示题目)
(1)每个书包50元,4个书包多少钱?
(2)一列动车每小时行200千米,4小时行多少千米?
(3)李师傅每天生产15个零件,他6天可以生产多少个零件?
指名学生口头列式,师生交流反馈。
2、导入新课。
在日常生活中,存在着许许多多的数量关系,弄清楚这些常见的数量关系,对于我们分析问题和解决问题都有很大帮助。这节课我们就一起来学习生活中常见的数量关系。(板书课题)
二、交流共享
(一)教学单价、数量和总价的关系。
1、课件出示教材第28页例题2情境图。
学生观察情境图,收集情境中的信息:钢笔每支12元,练习本每本3元;要买4支钢笔和5本练习本。
2、理解“单价”“数量”和“总价”。
(1)提问:什么是单价?什么是数量?什么是总价?
(2)追问:每种商品的单价各是多少?购买的数量呢?
(3)介绍单价的读法和写法。
(4)认识总价。
引导思考:根据题目中购买钢笔的情况,我们可以求什么呢?
指出:“4支钢笔一共多少钱”指的就是4支钢笔的总价。
3、理解单价、数量和总价的数量关系。
(1)课件出示下表:
单价数量总价
钢笔( )元/支( )支( )元
练习本( )元/本( )本( )元
让学生先填写商品的单价和购买的数量,再分别求出总价。教师巡视,发现错误及时纠正。
(2)交流讨论:总价与单价、数量之间有什么关系?
教师结合学生的汇报情况进行板书:
总价=单价×数量
(3)思考:已知总价和单价,可以求什么?怎样求?已知总价和数量呢?
师生交流后板书:
数量=总价÷单价
单价=总价÷数量
4、师生共同小结。
根据单价、数量和总价三个量的关系,只要知道两个量,就可以求出第三个量。我们在记这一组数量关系式时,只要记住“总价=单价×数量”,就可以根据乘法算式各部分之间的关系,得出“数量=总价÷单价”和“单价=总价÷数量”。
(二)教学速度、时间和路程的关系。
1、课件出示教材第28页例题3情境图。
引导学生读题,收集情境图中的信息。
2、理解“速度”“路程”和“时间”的含义。
(1)提问:情境中给出的两条信息可以称为什么?
(2)交流速度的写法和读法。
先让学生自己阅读教材,再进行交流。
(3)认识时间和路程。
提问:行程问题中除了速度之外,还有哪些数量呢?
指名说说对时间和路程的理解。
3、探究速度、路程和时间的数量关系。
(1)课件出示下表:
单价数量总价
列车( )千米/时( )时( )千米
自行车( )米/分( )分( )米
学生先填写和谐号列车与李冬骑自行车的'速度,再分别求出行驶的路程。教师巡视,发现错误及时纠正。
(2)交流讨论:路程与速度、时间之间有什么关系?教师结合学生的汇报情况进行板书:
路程=速度×时间
(3)思考:已知路程和速度,可以求什么?怎样求?已知路程和时间呢?
师生交流后板书:
时间=路程÷速度
速度=路程÷时间
4、小结。
三、反馈完善
1、完成教材第29页“练一练”第1~3题。
第1题:练习单价和速度的写法。
第2题:运用例题3的数量关系解决求路程的问题。
第3题:运用例题2的数量关系解决求总价的问题。
学生独立完成并集体订正。
2、完成教材第30~31页“练习五”第8、9题。
第8题:已知路程和时间求速度的问题。
第9题:已知总价和数量求单价的问题。
学生独立完成,汇报时让学生说说题中的数量关系各是什么。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
人教版三数学教案上册教案2
一、教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
a:知识与技能目标
(1)、理解对顶角和邻补角的概念,能在图形中辨认。
(2)、掌握对顶角相等的性质和它的推证过程
(3)、会用对顶角的性质进行有关的简单推理和计算。
b:过程与方法目标
(1)、通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2)、体会具体到抽象再到具体的思想方法。
c:情感、态度与价值目标
(1)、感受图形中和谐美、对称美。
(2)、感受合作交流带来的成功感,树立自信心。
(3)、感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待。
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间。根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法。
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法。
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:a、两直线相交构成的4个角两两相配共能组成几对?(6对)
b、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
c、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
d、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的`引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算。例题放手让学生自己解决,比教师单纯地讲解效果会更好。尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻)、
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)
环节五:点金帚(学后反思感悟收获)
通过本堂课的探究
我经历了……
我体会到……
我感受到……
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系。)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础。)
五、教学设计说明:
设计理念:面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
人教版三数学教案上册教案3
教学目的:
1、使学生初步认识含有三个已知条件的两步应用题的结构。
2、使学生初步理解和掌握两步应用题的解题思路,会分步列式解答两步应用题。
3、培养学生分析问题和解决问题的能力,培养学生举一反三,灵活解题的能力。
教学过程:
一、引入新课
(1)师:谁知道10月1日是什么节?今年的10月1日是我们伟大的中华人民共和国50岁的生日,为了庆祝这一盛大的节日,一些同学做了许多美丽的花朵。
板书:同学们做黄花25朵,做紫花18朵。
根据这两个条件,谁能提出一个问题,使它成为一道完整的应用题呢?怎样列式解答呢?(学生口述,电脑出示。)
大家仔细观察,这是一道几步计算的应用题?
(2)师:老师也提一个问题——"做了多少朵红花?(板书)看能不能解答?为什么?"(因为题中没有告诉红花与黄花、紫花的关系,所以不能解答。)
如果老师增加一个条件——"做的红花比黄花和紫花的总数少3朵"(板书)、现在红花与黄花、紫花有关系吗?这道题能不能解答了?
二、进行新课
1、师:这是我们今天要学习的例1,谁来把题读一遍。
2、引导理解题意。
这道题告诉我们的已知条件有哪些?要求什么问题?
红花的.朵数跟什么有关系呢?(总数)有什么样的关系呢?谁能用自己的话说说这句话是什么意思?
3、画线段图。
师:我们可以借助线段图来分析它们之间的关系。先画出一条线段表示黄花的朵数,(边说边画)黄花有多少朵?接着画线段表示紫花的朵数,表示紫花的线段应该比表示黄花的线段长呢?还是短呢?为什么短?画完后问:哪一条线段表示的是黄花和紫花的总数呢?(指名上台指出)再画表示红花的线段(师故意把表示红花的线段画得和总数一样长)、提问:是这样吗?为什么不对?应该怎样改?这条线段就表示红花的朵数,也就是这道题要求的问题。
4、分析、解答。
(1)师:请大家想一想,求红花的朵数用一步计算可以吗?为什么不能?要求做了多少朵红花,必须先算什么?
(2)师:每一步怎样算呢?求出黄花和紫花的总数,就可以求出什么了?请你在练习本上试着列式解答,谁最先做完,就上来把答案写在黑板上,其他同学做完后看书自检。
(3)小结:解答例1时,已知红花的朵数比黄花和紫花的总数少3朵,题中没有直接告诉黄花和紫花的总数,所以要先算出黄花和紫花一共多少朵,再算做了多少朵红花,需要几步计算?(两步。)
5、揭示课题:这就是我们今天学习的"两步应用题"(板书课题)、
6、改编例题。
(1)师:下面老师把例1改变一下,把第三个已知条件中的"少"改为"多"。(电脑出示。)
请你默读题目,思考以下问题。
①这道题和例1比,哪些地方发生了变化?
②线段图怎样改?
③解答这道题要先算什么?再算什么?
根据学生讨论情况归纳后,学生独立解答,个别板演。集体订正。问:解答这道题需要几步呀?第一步算什么?第二步算什么?
(2)师:下面老师把例1再改变一下(电脑出示题目。)指名读题后,先提问上述问题,学生再独立解答。
师生集体订正。
7、比较归纳。
(电脑出示)思考:这三道题有什么相同的地方?
有什么不同的地方?解答方法上有什么相同?有什么不同?
学生讨论。
小结:这三道题讲的事情相同,前两个已知条件和问题相同,第三个已知条件不同。从解答方法来看,因为红花的朵数都与黄花和紫花的总数有关系,而"总数"没有直接告诉,所以三道题都需要两步计算,先算出来黄花和紫花一共多少朵,然后再求做了多少朵红花。不同的是求红花的朵数计算方法不同。因为例1告诉我们红花比黄花和紫花的总数少3朵,应该用总数减3;想一想第1题是告诉做的红花比黄花和紫花的总数多3朵,应该用总数加3;想一想的第3题是知道做的红花是黄花和紫花的总数的3倍,也就是3个43,所以用总数乘以3、大家在做应用题时一定要认真分析题意,确定先算什么,再算什么,每一步怎样计算。
三、巩固练习
1、(多媒体出示)填空。
(1)同学们跳绳,小华跳75下,小明跳85下。小青比小华和小明跳的总数少30下。小青跳了多少下?师引导学生分析题意。要求"小青跳了多少下",必须先算( )、算式是:( )、
(2)畜牧场养出羊120只,养奶羊410只。养绵羊的只数是山羊和奶羊总只数的4倍。养绵羊多少只?
师引导学生分析题意。
要求"养绵羊多少只",必须先算( )、
算式是:( )、
2、小游戏——猜一猜。
两名学生报出年龄、身高,师说出教师的年龄、身高与两名学生年龄、身高的关系,让学生猜一猜老师的年龄、身高。
四、课堂总结
今天我们学习了两步应用题,做题时要认真分析题意,确定先算什么,再算什么,每一步该怎样计算。
五、布置作业(略)
【三数学教案上册教案】相关文章:
三年级上册数学教案05-15
三年级人教版数学教案上册11-07
三年级上册数学教案11-09
苏教版三年级上册数学教案05-07
三年级上册数学教案【实用】05-15
苏教版三年级上册《练习三2》数学教案04-10
初一上册数学教案10-24
初三数学教案05-16
三年级上册数学教案(15篇)02-24