《三角形的面积》教案
作为一名人民教师,编写教案是必不可少的,借助教案可以更好地组织教学活动。那么教案应该怎么写才合适呢?以下是小编精心整理的《三角形的面积》教案,希望对大家有所帮助。
《三角形的面积》教案1
【活动目标】
1。认识三角形的特征,知道三角形由3条边,三个角。
2。能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3。发展幼儿观察力,空间想象力。
【活动准备】
PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
【活动过程】
一.导入:手指游戏:快乐的小鱼二.学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1)。引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店
(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)
(3)引导幼儿在活动室里找一找三角形的物品
3、老师小结
三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
三.复习三角形的特征
提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
【活动反思】
小班幼儿的'思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
《三角形的面积》教案2
教学目标:
1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。
2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。
3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重、难点:
探究三角形面积公式的推导过程。
教学准备:
课件,2个完全一样的钝角、锐角、直角三角形,剪刀。
教学方法:合作探究
教学过程:
一、谈话导入、揭示课题
同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?
我们已经学过哪些图形的面积?
红领巾是什么形状的?
会求三角形的面积吗?这节课我们就学习三角形的面积。
二、合作探究、汇报交流
1、猜测:
你想用什么方法求三角形的面积?
平行四边形能转化成学过的'图形求面积,三角形能转化成学过的图形求面积吗?
用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。
转化成学过的图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?
2、同桌合作动手操作。
用两个同样的钝角三角形拼一拼。展示作品。
3、小组合作。
锐角三角形、直角三角形能拼成学过的图形吗?
同学们想试试吗?根据提示板上的提示研究吧。
提示:
做一做:想办法把三角形转化成学过的图形。
找一找:转化成的图形和原来的图形有什么关系。
想一想:三角形的面积该怎么求呢?
4、学生汇报。
5、归纳小结。
转化后的图形用一个名字概括,哪个比较合适?
三、推导公式
1、回顾
课件演示:两个同样的三角形旋转、平移拼成了平行四边形。
每个三角形与拼成的平行四边形有什么关系?
三角形的底和高与拼成的平行四边形的底和高有什么关系?
2、得出结论
三角形的面积该怎样计算?
为什么要除以2?
三角形的面积计算公式用字母该怎样计算?
3、小结方法
刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。
4、拓展延伸
介绍刘徽用一个三角形推导出了面积公式。
四、运用公式解决问题
1、解决红领巾的问题。
2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。
体会底和高的对应性。
3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?
五、全课总结
同学们,通过这节课的学习,你有收获吗?一起来分享吧!
追问:
三角形的面积为什么要除以2?
怎样推导出三角形的面积计算公式的?
只要大家勤动手、勤思考,就一定能学到更多的数学知识。
板书设计:
三角形的面积
三角形的面积=平行四边形的面积÷2
=底×高÷2
S=ah÷2
《三角形的面积》教案3
《三角形面积计算》这节课的内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我注重引导学生自己动手操作。从操作中掌握方法,发现问题,解决问题。
一、动手操作,拼一拼,摆一摆 ,创造性的使用教材
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但是在这个环节上,学生的推导方法太单一,都是将两个完全相同的三角形拼在一起,我是在想老师应不应该点拨其他方法,老师点拨就会导致讲的太多,不讲呢有的学生不好理解。还有就是课堂上学生活动的时间不够多,这是本课中的缺憾。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,并没有直接探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的两个问题。所以在后面练习的时候有的学生和问出为什么“除以2”。如果再上这节课我会引导学生探讨这个问题,在探讨这个问题时,可采用小组讨论的方式,在讨论中发现问题,解决问题。小组讨论既可培养学生的.合作精神,又可活跃课堂气氛。这节课总这个地方处理的不好。
三、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。补充了一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
总的来说这节课放手让学生自行探究三角形的面积公式这一点,我做得非常大胆,体现了新课程中关于让学生自主学习的理念。但我发现在某些方面仍存在“牵着学生鼻子走”,如学生合作和思考的时间不足,教师讲的过多,提示(暗示)得过多;学生练习时间不够,形式比较少等。在实际教学中,发现学生在推导过程中遇到困难——两个完全一样的钝角三角形和两个完全一样的锐角三角形如何剪拼成学过的长方形,开始相当部分学生无从下手,推导受阻,浪费了一定的时间,使整节课的教学效果受到一定的影响。如何处理好这个环节,是一个非常值得探讨的问题。
在后面的学习中,我还要重点解决“等底等高的三角形与平行四边形面积”之间的关系这个问题。
《三角形的面积》教案4
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。
2.培养学生观察能力、动手操作能力和类推迁移的能力。
3.培养学生勤于思考,积极探索的学习精神。
教学重点
理解三角形面积计算公式,正确计算三角形的面积。
教学难点
理解三角形面积公式的推导过程。
教学过程:
一、复习铺垫。
1.剪下第137页的三角形,标出它的底和高(量出底和高的长度)
2.出示长方形、正方形、平行四边形、三角形的图片
提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?
师:今天我们一起研究“三角形的面积”(板书课题)
3.学习新知识之前共同回忆平行四边形面积的计算公式是怎样得出的?(电脑演示推导过程)
二、指导探索
第一部分:数方格面积。
1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)
2.订正:看一看电脑博士数出的每个三角形的面积。
(演示课件:拼摆图形下载)
3.评价一下以上用“数方格”方法求出三角形面积。
第二部分:推导三角形面积计算公式。
拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。
启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
1.用两个完全一样的直角三角形拼。
(1)教师参与学生拼摆,个别加以指导
(2)电脑演示拼摆过程(演示课件:拼摆图形下载)
(3)讨论:①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
2.用两个完全一样的`锐角三角形拼。
(1)组织学生利用手里的学具试拼。(指名演示)
(2)电脑演示拼摆的过程(突出旋转、平移),(演示课件:拼摆图形下载)
提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
3.用两个完全一样的钙角三角形来拼。
(1)由学生独立完成。
(2)(演示课件:拼摆图形下载)
4.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
第三部分:三角形面积的应用。
1.例1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
2.由学生独立解答。
3.订正答案(教师板书)
5.6×4÷2=11.2(平方厘米)
答:这个三角形的面积是11.2平方厘米。
三、质疑调节
1.总结这一节课的收获,并提出自己的问题。
2.教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
(3)把三角形转化成已学过的图形,还有别的方法吗?
四、反馈练习
1.下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。
2.计算下面每个三角形的面积。
(1)底是4.2米,高是2米;
(2)底是3分米,高是1.3分米;
(3)底是1.8米,高是.1.2米;
3.指出P69三个三角形的底和高,算出它们的面积各是多少?
五、板书设计
典型例题
1、一个三角形的底是18厘米,面积是126平方厘米,高是多少厘米?
分析:两个完全一样的三角形可以拼成一个平行四边形,三角形与拼成的平行四边形等底等高。
先用三角形面积乘以2,求出平行四边形面积,再用平行四边形面积除以底(18厘米),就是平行四边形的高,也就是三角形的高。
解:(厘米)
答:三角形的高是14厘米。
2、如图,正方形ABCD,三角形(1)的面积比三角形(2)的面积大8平方厘米,厘米,求DE的长。
分析:正方形中包括梯形AOCD,三角形ADE中也包括梯形AOCD。三角形(1)的面积比三角形(2)大8平方厘米,说明三角形ADE的面积比正方形ABCD的面积大8平方厘米。正方形面积是(平方厘米),那么三角形ADE的面积就是(平方厘米),已知三角形ADE的面积和高,就可以求出三角形的底(DE)。
解:(平方厘米)
(厘米)
答:DE的长为21.6厘米。
3、一个等腰直角三角形的斜边长是6分米,这个等腰直角三角形的面积是多少?
指导:按常规方法,只有找出三角形的底和高才能求出三角形的面积,显然此种途径用小学所学的数学知识是行不通的。我们可以把四个完全一样的等腰直角三角形拼成一个正方形(如图)
边长是6分米的正方形是一个等腰直角三角形面积的4倍。
(平方分米)
答:这个等腰直角三角形的面积是9平方分米。
例4下图中平方厘米,D、E、F分别是BC、AC、AD的中点,求
分析:三角形ABD和三角形ADC是两个等底等高的三角形,所以它们的面积相等,三角形ADC的面积占三角形ABC的一半,面积是平方厘米。在三角形ADC中,三角形ADE和三角形CDE等底等高,所以三角形ADE的面积占三角形ACD面积的一半,是平方厘米。在三角形ADE中,AEF和DEF是两个等底等高的三角形,它们的面积相等,所以三角形DEF的面积相当于三角形ADE的一半,即平方厘米。
(平方厘米)
答:三角形DEF的面积是3平方厘米。
《三角形的面积》教案5
内容:小学数学第九册(84页--87页)
教学目标:
1、学会用旋转、平移的方法,推导三角形面积计算公式。
2、使学生理解、掌握和运用三角形面积计算公式。
3、培养学生自学能力和动手操作的能力。渗透爱国主义情感教育。
教学重点:三角形面积的计算
教学难点:每个三角形面积与它同底等高的平行四边形面积之间关系。
教具准备:动像投影片(锐角三角形、钝角三角形、直角三角形各两个)
学具准备:印发锐角三角形、钝角三角形、直角三角形各一对。
设计说明:
小学数学教学如何体现素质教育?我认为,重要措施之一就是要让学生生动、活泼、主动地学习与发展。在获取知识的同时,掌握数学思维方法,发展探究推理能力。教学要改革,首先是教师的教育思想、教学观念的更新,由传授知识为主的教学观,转变为引导学生主动探究、主动研讨、主动发展,结合教学内容有机进行操作训练、听说训练、思维训练。基于以上认识,在教学《三角形面积计算》一课时,改变常规“先分后总”的方法为“先总后分”给学生最大限度地提供操作、探究、思考的时间与空间,让学生在观察中思考,感知三角形面积计算规律;在操作中思考,分层验证公式;在练习中思考,训练思维能力。
教学过程:
一、观察--思考--感知规律
出示一个平行四边形。
回忆:平行四边形面积怎样计算?
观察:沿平行四边形对角线剪开成两个三角形。两个三角形的状,大小有什么关系?(完全一样)
思考、讨论:(1)三角形面积与原平行四边形的.面积有什么关系?
(2)三角形面积计算规律是什么?
[说明:这一剪多问,学生在观察的基础上通过建立与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
二、操作--思考--验证公式
“底×高÷2”这个规律适用于所有形状的三角形面积计算吗?学生持怀疑态度,又怀着较强烈的好奇心。教师因势利导让学生利用自己的学具进行操作、剪拼、思考、归纳。
三角形面积计算是一个什么样的计算规律呢?教师随着这个问题提出以下要求:
(1)学具袋里有一些三角形,同学们可以利用学过的知识进行剪、摆、拼、思考一下三角形面积是不是都有“底×高÷2”的计算规律。
(2)同桌同学可共同讨论、研究。
(3)有结论以后可到黑板前面展示其过程,并说明理由。随学生展示出现以下情况:
摆拼一:用两个完全一样的三角形摆拼
(两个锐角三角形)(两个钝角三角形)
平行四边形面积=底×高
三角形面积=底×高÷2
(两个直角三角形)
长(正)方形面积=长×宽
三角形面积=底×高÷2
剪拼二:用一个三角形剪拼。
图(1)(2)(3)三角形面积=平行四边形(长方形)面积。
(1)三角形面积=底×(高÷2)=底×高÷2
(2)三角形面积=(底÷2)×高=底×高÷2
(3)三角形面积=底×(高÷2)=底×高÷2
从而归纳三角形面积=底×高÷2
4.引导学生用字母表示面积公式.
教师:如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式还可以表示成:
S=ah÷2
[说明:学生怀着验证三角形面积是不是“底×高÷2”的强烈心理动机在课堂提供了较大“自由”空间里。主动进行摆拼、剪拼、思考、讨论。归纳并验证了“三角形面积=底×高÷2”的求积公式。手、口、脑并用,操作能力、听说能力、概括能力、思维能力、得到了充分的训练]
5.出示第85页的例题,让学生独立做在练习本上,抽一学生板演,集体订正.
三、练习--思考--培养能力
1.完成第85页上的“做一做”.要求学生先指出三角形的底和高各是多少,再算出它的面积.订正时,教师引导学生重点弄清为什么要除以2?
2.独立练习86面练习十六第1.2.3题。
3.想一想,下面说法对不对?为什么?
(1)三角形面积是平行四边形面积的一半()
(2)两个等底等高三角形可以拼成一个平行四边形()
(3)一个三角形面积为20cm2与它等底等高平行四边形面积是40cm2
4.思考:
(1)右图中甲、乙面积是()
A.一样大B.甲大
C.乙大D.不能判断
(2)如右面三角形A.B.C的面积
为6cm2,底边AB长为4cm
在图中画出第三个顶点C的位置。
顶点C的位置仅有一处吗?
你能作几处呢?
[说明:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]
四、课堂小结
教师:今天这节课,我们主要学习了什么知识?你有什么收获?
板书设计:
平行四边形面积=底高
等底等高三角形面积=底高2
《三角形的面积》教案6
教学内容
P84~85例子1~2
教学目标
1理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2培养学生观察能力、动手操作能力和类推迁移的能力.
知识重点
理解三角形面积计算公式,正确计算三角形的面积
教学难点
理解三角形面积公式的推导过程
学生准备的学具
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
教学方法和手段
引入
1.出示平行四边形
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
教学过程
开始探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的.面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
―――――――――――――――――――――――
教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
课堂练习
P85做一做
P86~87练习16
小结与作业
课堂小结
课后追记
本课用了两个相同的三角形拼成一个平行四边形,化未知为已知,一定要让学生亲自来拼摆,把可以目前可以计算和暂时无法计算的摆放方法都摆出来,再进行区分,选择可以计算的方法,虽然会占用一点课堂时间,但是学生记忆深刻,对公式的理解也比较深刻。动手能力也得到一定的加强
这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。
《三角形的面积》教案7
教学内容:
教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。
教学目标:
1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。
教学重点:
经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。
教学难点:
理解三角形面积公式的推导过程。
教学准备:
多媒体课件、教材第115页的三角形。
探究方案:
一、自主准备
1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?
()()()
2.思考:
(1)三角形的面积与它拼成的平行四边形的面积有什么关系?
(2)有没有直接计算三角形面积的方法呢?
(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成
二、自主探究
1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。
2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。
3.想一想
(1)拼成平行四边形的两个三角形有什么关系?
(2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?
(3)根据平行四边形的面积公式,怎样求三角形的面积?
三、自主应用
试一试:完成书上第10页的“试一试”。
四、自主质疑
说一说:
(1)三角形的面积公式是怎么推导的?你还有什么疑问?
(2)你认为本节课应学会什么?
教学过程:
一、明确目标
提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?
二、交流提升
1.出示例4的方格图及其中的平行四边形。
(1)全班交流:每个涂色的三角形的面积各是多少平方厘米?
(2)小组交流:你是怎么得出每个三角形的面积的?说说你的.想法。
(3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出平行四边形的面积,再除以2得出三角形的面积。
三角形的面积和平行四边形的面积会有什么联系呢?
2.交流三角形面积公式的探究情况。
(1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。
小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的平行四边形的底和高各是多少?面积是多少?
(2)全班交流:你有什么发现?(即例5下面的问题)
(3)梳理、明确
两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。
这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的平行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2
3.交流“试一试”
(1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2?
(2)学生订正。
三、巩固提升
1.完成“练一练”的1、2两题。
学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个平行四边形,三角形的面积和平行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。)
2.练习二第6题。
学生独立完成,组织校对。
3.练习二第7题。
(1)多媒体出示第7题的方格图及平行四边形和三角形。
(2)独立思考:你认为图中哪几个三角形的面积是平行四边形面积的一半?为什么?
(3)小组交流:分别是怎么想的。
(4)全班交流、总结
可以通过计算,判断三角形的面积是不是平行四边形面积的一半,也可以把三角形的底和高与平行四边形逐一比较,很快作出判断。
4.练习二第8、9题。
(1)学生独立完成,再交流想法。
(2)学生订正。
四、总结延伸
本节课你有什么收获?还有什么疑问?
板书设计:
三角形的面积计算
两个完全一样的三角形都可以拼成一个平行四边形。
平行四边形的面积=底×高
2倍一半
三角形的面积=底×高÷ 2
《三角形的面积》教案8
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积的推导过程。
教法与学法:
教法:演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:
完全相同的三组(锐角、钝角、直角)不同的三角形卡片、
教学过程:
一、情境引入,明确目标
同学们,你们每天都佩戴着鲜艳的红领巾,代表你们是一名少先队员,是共产主义的接班人,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的面积(板书课题)
二、自主学习、合作探究
教师出示学具,学生动手操作、观察、分析、推理
(1)用两个完全一样的三角形拼一拼,能拼出什么图形?
(2)拼出的图形与原来的三角形有什么联系?
(3)拼出的图形的.面积你会计算吗?
三、展示交流、点拨归纳
1、课件出示直角三角形、锐角三角形、钝角三角形拼成的图形
(1)想一想:每个直角三角形的面积与拼成的长方形或平行四边形的面积有什么关系?
(2)想一想:每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?
(3)想一想:每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?
2、学生回答,教师总结:
通过以上的实验可以看出:
两个完全一样的三角形可以拼成一个__________________。
这个平行四边形的底等于____________________________。
这个平行四边形的高等于____________________________。
每个三角形的面积等于拼成的平行四边形面积的________。
所以得出结论:
三角形的面积=平行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
三、巩固训练、拓展提升
(1)这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米),高多少吗?(33厘米)
你能计算出它的面积吗?
在练习本上算一算
小结:通过这道题的解答,你明白了什么?
(2)你认识下面的这些道路交通警示标志吗?
向右急转弯 注意危险 减速慢行 注意行人
交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?
学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式这节课你们最大的收获是什么?(学会了三角形的面积怎样计算;学会了用转化的方法推导三角形的面积计算公式。)
下节课我们继续运用转化的思想探究梯形面积的计算方法。
《三角形的面积》教案9
一、创设情境,引入课题
裁缝店的王阿姨接到一笔订货单:东风小学要在一年级新生中发展150名少先队员,需要做150条红领巾,要买多少布料呢?这可难坏了王阿姨,同学们,你们能帮她解决这个问题吗?怎么解决?
那么,做一条红领巾必须知道什么?(面积)
红领巾是什么形状的?(三角形)
怎样才能算出三角形的面积呢?这节课我们就来共同探究三角形面积的计算方法。(板书课题)
[设计意图]通过学生熟悉的情境,使学生产生解决问题的欲望,并能积极主动的投入到探究活动中。
二、探究新知
1、复习平行四边形面积公式的推导方法
请同学们回忆一下前面我们学过的平行四边形的面积是怎样推导出来的?(学生口述)
2、三角形面积公式的推导
活动一:
请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:
你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)
(1)学生分小组进行操作实践活动
(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。教师根据学生的汇报出示相应的课件)
拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长宽,所以,三角形的面积=底高2。
拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底高,所以三角形的面积=底高2。
学生汇报,教师板书:
平行四边形的面积=底高
三角形的面积=底高2
拼法三:两个完全一样的'钝角三角形拼成一个平行四边形。
拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。
拼法五:两个完全一样的等腰直角三角形可拼成一个正方形。
教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:
三角形的面积=底高2
[设计意图]学生在平行四边形面积推导的基础上,运用转化的数学思想,通过动手操作,推导出三角形的面积公式。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。在操作、观察、分析、推理、概括的过程中,培养学生的合作能力、动手能力、解决问题的能力。
活动二:
除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。
(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?
(2)交流汇报(请学生展示剪拼过程)
中线
中线
平行四边形的面积=底高
(三角形的面积)(三角形的底)(三角形高的一半)
三角形的面积=底高2
活动三:
老师还会一种推导方法,叫折叠法,看哪位同学最聪明,能用这种方法推导出三角形的面积公式来。
学生思考,得出结果,汇报交流并演示折叠过程。
教师讲解,并用课件演示。
长方形的面积=长宽
(三角形的面积)(三角形的底2)(三角形高的2)
[设计意图]让学生体会到解决问题方法的多样性。这对有余力的学生是一种提高,进一步培养了学生的创新意识,开阔了学生的思维,使学生也体会到了学习数学的乐趣。
3、教师小结:我们用拼图法、剪拼法、折叠法的方法把三角形转化成学过的图形,推导出了三角形的面积公式。那么,如果用字母a表示三角形的底,h表示三角形的高,S表示三角形的面积,你能用字母表示三角形的面积公式吗?
S=ah2(板书)
4、公式运用
出示例题:王阿姨计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?
(1)学生尝试完成
(2)交流做法和结果
S=ah2
=100332
=33002
=1650㎝2
三、巩固拓展
1、算出下面每个三角形的面积。
2、这些道路交通警示标志你认识吗?算一算一块标志牌的面积大约是多少平方分米?
176㎡
3、已知三角形的面积和底,求高。
4、下图中哪个三角形面积相等?(两条虚线互相平行)你还能画出和他们面积相等的三角形吗?
[设计意图]通过有层次的练习,使学生能够较好的巩固所学知识,开拓思维。2小题的设计又对学生进行了交通安全教育。
四、小结。
今天我们学习了三角形面积的计算方法,你都有哪些收获?
《三角形的面积》教案10
教学内容:人教版义务教育课程标准实验教科书五年级上册第84-86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境,揭示课题
师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?
(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)
[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。]
二、探索交流、归纳新知
1.寻找思路:(出示一个平行四边形)
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)
三角形面积与原平行四边形的面积有什么关系?
[设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)
师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?
(屏幕出示课本84页主题图让学生观察、引发思考)
接着出示思考题:
(1)将三角形转化成学过的什么图形?
(2)每个三角形与转化后的图形有什么关系?
[设计意图:学生由于有平行四边形面积公式
的推导经验,必然会产生:能不能把三角形也转化
成已学过的图形来求它的面积呢?从而让学生自己
找到新旧知识间的联系,使旧知识成为新知识的铺垫。]
2.分组实验,合作学习。(音乐)
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
[设计意图:这里,根据学生“学”的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会。]
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的?能说一说你的拼法吗?(若学困生含糊的,动画显示一个作好高的'三角形,移出一个与它同样大小的三角形,再把这个三角形旋转、移动,和下一个三角形拼成一个平行四边形。如图,让学困生模仿练习)
[设计意图:不仅使学生找到了新旧知识的连接点与转化方式,而且使学生正确掌握操作方法,形成操作技能]
(3)展示学生的剪拼过程,交流汇报。(音乐停)
①各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形)
师:谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:拼成的平行四边形是三角形面积的二倍。
生:每个三角形的面积是拼成的平行四边形的面积的一半。(评价、肯定)
[设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率。]
3.归纳公式
(1)讨论:(屏幕显示提纲)
A、三角形的底和高与平行四边形的底和高有什么关系?
B、怎样求三角形的面积?
C、你能根据实验结果,写出三角形的面积计算公式吗?
[由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解。]
(2)归纳交流推导过程,说出字母公式。
根据学生讨论、汇报,教师进行如下板书:
因为:三角形面积=拼成的平行四边形面积÷2
所以:三角形面积=底×高÷2
师:为什么要除以2?
生:......
师:如果用S表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书S=ah÷2
[设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:“三角形面积的计算公式是怎样的?”从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力。]
4.看书质疑。指名讲述课本中是怎样得出三角形面积公式的。
(养成看书的良好习惯。)
师:我们刚才是从两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你们还能用别的方法去推导三角形的面积公式吗?
如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。
老师课前做好下面课件帮助学生理解
方法一:期量子论方法二:方法三:
得出:三角形的面积=底×(高÷2)=底×高÷2(方法一)
三角形的面积=底×(高÷2)=底×高÷2(方法二)
三角形的面积=(底÷2)×高=底×高÷2(方法三)
师:同学们真了不起,想到那么多的方法推导出三角形的面积公式。得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?(反扣公式,加深理解)
4、进行爱国教育
师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了。请同学们课后把85页的“你知道吗”看一看。
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)
1、(屏幕显示)出示85页例1:
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
2、独立完成P85做一做。
完成后交流、讲评。
四、深化理解、应用拓展
1.课本86页的练习第1题。课件出示下图:
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
师:要计算出每个三角形的面积,需要什么数据?要怎么做?
先让学生想,小组交流,再汇报,最后学生动手操作计算、评讲。
3、课本86页第3题:已知一个三角形的面积和底
(如右图),求高。
师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?
(生讨论汇报,再计算、反馈。)
4.想一想,下面说法对不对?为什么?
(1)三角形面积是平行四边形面积的一半。()
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平
方米。()
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。()
(4)等底等高的两个三角形,面积一定相等。()?
(5)两个三角形一定可以拼成一个平行四边形。()?
5、求右图三角形面积的正确算式是()
①3×2÷2②6×2÷2
③6×3÷2④6×4÷2
6.做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?
[设计意图:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]
五、回顾总结,深化提高:
1、师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)
(屏幕显示)让学生说一说图意:
师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
[设计意图:这两问引导学生从学习内容及学习方法对本课作出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于探究的精神。]
六、课外作业:P87-5、6、7
板书设计
因为:平行四边形的面积=底×高,例1......
三角形面积=拼成的平行四边形面积÷2S=ah÷2
所以三角形面积=底×高÷2=100×33÷2
S=ah÷2=1650(cm2)
《三角形的面积》教案11
教学内容:人教版9册 三角形面积公式推导部分
教学目的:
1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。
2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。
3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。
教学过程:
一、阅读质疑。
先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。
1厘米
学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:
(1)数方格怎么求三角形的面积?
(2)不数方格怎么求三角形的面积?有没有一个通用公式?
(3)能把三角形也转化成我们学过的图形求面积吗?
(4)转化成的这些图形跟三角形有什么关系吗?
(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)
二、点拨激思
1。数方格的问题
学生根据学习材料可以解答用数方格的方法求三角形的面积。
老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。
学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。
嗯,看来数方格求面积是有一定局限性的, 今天我们就来研究三角形的面积。
(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)
2。转化的问题
你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。
师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。
(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)
三、探索解疑
学生操作,讨论,汇报。
1。转化的图形
学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。
2。 解决转化前后图形间的关系
(1)大小的关系
通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S = S÷2。一个三角形转化成的图形跟三角形关系是S =S
(2)底和高的关系
拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?
生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2
师:思路真清晰,为什么÷2,谁还想说。
(学生依次讲拼成的长方形,正方形这两种情况)
(3)公式推导
师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?
生:底×高÷2
师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?
生:S=a×h÷2
(4)推导拓展
师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?
学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2
师:这个方法怎样,谁来评价一下。学生评价,太棒了。
生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的`,所以,三角形的面积是底×高÷2
(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)
<三>归纳小结
出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。
(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)
总析:本节课有以下两个特点
1。 充分体现了“问题意识的培养”。
老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。
2。重视研究问题的过程。
这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。
《三角形的面积》教案12
第一课时
教学内容:
三角形面积的计算(例题、做一做和练习十七第1~4题。)
教学要求:
1.使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。
2。通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3。引导学生运用转化的方法探索规律。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学过程:
一、激发
1.出示平行四边形
1。5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底高)
(2)底是2厘米,高是1。5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1.用数方格的方法求三角形的面积。
(1)指名读P。69页第一段。
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。
2.用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?
引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。
面积=面积的一半
3.用锐角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。
提问:你发现了什么?
引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)
①把两个锐角三角形重叠放置。
提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗?
②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。
③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。
(3)教师带着学生规范地操作。
重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)
(4)对照拼成的图形,你发现了什么?
引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
板书:
面积=面积的一半
(5)练习十八第1题。
①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。
②通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半。
面积=面积的一半
4.归纳、总结公式。
(1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?
(2)汇报结果。
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。
(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)
板书:三角形面积=底高2
(4)完成书空。
5.教学字母公式。
(1)学生看书71页上面3行。
(2)提问:通过看书,你知道了什么?
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:
S=ah2。(板书)
三、应用
1。教学例题:一种零件有一面是三角形,三角形的底是5。6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
①读题。理解题意。
②学生试做。指名板演。
③订正。提问:计算三角形面积为什么要除以2?
2。做一做。
订正时提问:计算时应注意哪些问题?
3.填空。
两个完全一样的三角形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(
)。因为每个三角形的面积等于拼成的平行四边形的面积的(),所以()。
4.练习十七第2、3题。
5.利用公式求P。75页方格上的三角形的面积。
四、体验
今天有何收获?怎样求三角形的面积?三角形面积的.计算公式是怎样推导的?
五、作业
练习十七4题。
第二课时
教学内容:
三角形面积计算的练习(练习十七5~10题)
教学要求:
1。是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2。能运用公式解答有关的实际问题。
3。养成良好的审题、检验的习惯,提供正确率。
教学重点:
运用所学知识,正确解答有关三角形面积的应用题。
教具准备:
投影
教学过程:
一、基本练习
1。填空。
⑴三角形的面积=,用字母表示是。
为什么公式中有一个2?
⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2。8米,高是1。5米。三角形的面积是()平方米,平行四边形的面积是(
)平方米。
二、指导练习
1。练习十七第7题:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?
⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来
2。练习十七第11※题:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?
分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是222=2平方厘米。
3。练习十七第12※题:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。
分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400602=12000(平方米)=1。2公顷。
三、课堂练习
练习十七第6、8题。(分组完成)
四、作业
练习十七第9、10题。
《三角形的面积》教案13
一、教学目标
(一)知识与技能
让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
二、教学重难点
教学重点:探索并掌握三角形面积计算公式。
教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。
三、教学准备
多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。
四、教学过程
(一)复习铺垫,激趣引新
1.复习旧知。
(1)计算下面各图形的面积。(PPT课件演示)
(2)创设情境。(PPT课件演示)
同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?
2.回顾引新。
(1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?
(2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)
【设计意图】
首先复习旧知,体会用公式计算图形面积的便捷性,回顾平行四边形面积计算公式的推导过程,唤醒学生相关的活动经验,为后面推导三角形面积计算公式的教学做好准备。同时,用学生熟悉的红领巾引入新课,体会数学问题来源于生活,激发了他们的学习兴趣。
(二)主动探索,推导公式
1.操作转化。
(1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?
(2)学生分组操作,教师巡视指导。
学生操作预设:如果学生只用一个三角形时无法利用割补法将三角形转化成已学过的图形,教师可适时引导换一种思考方式,用两个相同的三角形试试。
(3)学生展示汇报。
预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。
预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。
预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。
(4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?
学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。
2.观察思考。
(1)观察拼成的平行四边形和原来的三角形,你发现了什么?(PPT课件演示)
(2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。
3.概括公式。
(1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)
(2)总结公式。
①板书公式:三角形的面积=底高2。
②用字母表示三角形面积计算公式。(PPT课件演示)
(3)回顾与小结。
①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的?
② 教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的平行四边形的`底相等,原三角形的高与拼成的平行四边形的高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。
【设计意图】本环节设计了操作转化、观察思考和概括公式三个层次的教学,先提出问题,让学生利用转化的思想,带着问题进行操作;再从自己的展示和思考中发现用两个完全一样的三角形能拼成一个平行四边形,从而发现两者之间的等量关系;最后的小结环节,让学生回顾推导公式的过程,既培养他们回顾反思的能力,同时又进一步渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第92页例2。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道红领巾的底是100 cm,高是33 cm,求它的面积是多少。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求红领巾的面积,其实就是求什么?
③归纳:要求红领巾的面积,其实就是求底是100 cm、高是33 cm的三角形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
(6)对照实物与计算结果,帮助学生建立一定的空间观念。
2.完成做一做练习。
(1)完成教材第92页做一做第1题。(PPT课件演示)
①学生独立完成。
②同桌互相说说自己是怎样做的。
(2)完成教材第92页做一做第2题。(PPT课件演示)
①学生独立完成。
②全班集体交流:这个三角形的底和高分别是多少?怎样计算它的面积?
(3)完成教材第92页做一做第3题。(PPT课件演示)
①学生独立完成。
②同桌互相说说自己是怎样做的。
③全班集体交流:这个问题你是怎样算的?
【设计意图】例2呼应了开课时提出的研究问题,既巩固三角形面积计算公式的应用,又培养了学生解决实际问题的能力;紧接着,完成课后的做一做练习,可以帮助学生进一步深化理解面积公式。
(四)变式练习,内化提高
1.基本练习。
完成教材第93页练习二十第1题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流:你能说说这每个交通警示标识牌所表示的含义吗?怎样计算它的面积?用手势比划一下一个交通警示标识牌的大小。(同时进行安全教育,同时帮助学生建立空间观念。)
2.提高练习。
完成教材第93页练习二十第3题。(PPT课件演示)
(1)理解题意:怎样计算出这三个三角形的面积?需要知道什么?(先测量出每个三角形的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:每个三角形的底和高分别是多少?怎样计算三角形的面积?
【设计意图】通过分层练习,巩固了学生对三角形面积计算公式的理解和应用,同时对学生进行交通安全教育。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们推导出了三角形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导计算公式时,我们选择将两个完全一样的锐角三角形、直角三角形或钝角三角形拼摆在一起,转化成已知的平行四边形面积来研究,再通过观察对比发现转化前后三角形与平行四边形之间的等量关系,从而推导出三角形的面积计算公式等于底乘高除以2。同学们今天依然是利用转化的思想解决了遇到的问题,最后还利用公式顺利解决了生活中的实际问题。
3.介绍数学小知识。
(1)同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了。(PPT课件演示)
(2)同学们,我国古代数学家固然伟大,但是,老师觉得你们也很了不起!咱们不也找到三角形面积的计算方法了吗?其实,只用一个三角形也能转化成平行四边形,推导出三角形面积的计算公式,有兴趣的同学课下可以试一试!
(六)作业练习
1.课堂作业:练习二十第2题。
2.课外作业:练习二十第4题。
《三角形的面积》教案14
教学内容:九年义务教育六年制小学数学教科书第九册69页至71页。
教学目标:
1.通过指导实际操作,帮助学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;
2.使学生明白事物之间是相互联系,可以转化和变换的。
3.通过交流,观察、比较,培养学生发现问题、提出问题、分析问题、解决问题的能力,发展学生的空间观念。
教学重点:探究三角形面积公式的推导过程,掌握和运用三角形面积计算公式进行计算。
教学难点:理解三角形面积计算公式。
设计特色:针对本课的知识特点,课前设计目的性明确、可操作性强的前置性作业,充分调动学生学习的热情,提高课前预习的效果,为成功的课堂教学做好铺垫;在课堂上,运用小组交流的学习方式,每个成员都有机会展示自己,小组交流后再进行全班的.汇报,根据学生汇报的情况教师有目的地板书,然后引导学生观察、比较,进而推导出三角形的面积计算公式。
教学过程:
一、导入:
1、平行四边形面积计算公式是怎样推导的?
总结:把没学的图形转化成已经学过的图形从而推导出面积计算公式。
2、今天,我们也用同样的方法推导三角形面积计算公式,板书课题。
二、讨论
小组交流课前小研究。
三、推导
1、汇报课前研究的方法,老师根据学生的汇报有目的地板书。
2、推导三角形面积计算的公式。
四、应用
1、教学例1
2、强调格式
五、练习
1、下面平行四边形的面积是12平方厘米,斜线部分三角形的面积是多少?
(口答,并说出理由)
2、判断:
(1)三角形的面积是平行四边形面积的一半。()
(2)三角形的高是2分米,底是5分米,面积是10分米。()
3、说出求下面三角形的面积
板书设计:
课前小研究
研究者:班级:
前言:我们已经学过用转化的方法,把平行四边形转化成已经学过的图形,从而推导出它的面积计算公式,请你想一想:能否也把三角形转化成我们已经学过的图形,从而研究三角形面积的计算方法?
(可以在学具盒或在附图中选材料)
1、我用的材料是:
我的做法(文字或画图表示):
我的结论:
2、我用的材料是:
我的做法(文字或画图表示):
我的结论:
3、我用的材料是:
我的做法(文字或画图表示):
我的结论:
4、我用的材料是:
我的做法(文字或画图表示):
我的结论:
附图2
材料一
材料二
《三角形的面积》教案15
一、创设情境,游戏导入。
1、游戏导入。考考你的眼力,看看谁能找到形状、大小完全一样的三角形。(黑板预先出示如下题目和三角形图)(学生找到的完全一样的三角形重叠给学生看后贴在黑板的左边。)
(1)找一找:出示几组完全一样的三角形,打乱顺序后让学生找。
(2)拼一拼:这些完全一样的两个三角形能拼成你学过的什么图形?
(把贴在左边的完全一样的几对三角形让学生上台来拼成几种学过的图形,如:长方形、正方形、平行四边形和两个直角三角形合起来的大三角形,分别贴在黑板的左边。)
3、引入新课:这些拼成的图形的面积你会计算吗?
二、动手操作,探索交流。
1、引导学生寻找思路:刚才我们这些图形都是由完全相等的两个三角形拼成的,那么这些三角形与拼成的图形有什么联系呢?三角形的面积有没有计算公式呢?能否从这些拼成的.图形中把三角形的面积计算出来呢?
2、小组合作探究。
3、展示学生的探索过程,汇报交流。
师:哪个小组愿意将你们探索的结果与大家交流分享?
汇报的每一小组两人代表带着实验报告表上台来汇报实验情况,并把拼出的图形贴在黑板上。
两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;每个三角形的面积是拼成的平行四边形面积的一半。
还有不同的拼法吗?
4、归纳并用字母表示公式。
(1)引导学生归纳三角形面积的计算公式。
师:根据刚才的分享交流,现在我们一起来归纳三角形的面积计算公式。拼成的平行四边形的面积会计算吗?那三角形的面积怎样计算呢
拼成的平行四边形的面积 = 底 × 高
一半
三 角 形 的 面 积 = 底 × 高 ÷ 2
(2)用字母表示公式。
师:如果用字母S表示三角形的面积,a表示三角形的底,h表示三角形的高,那么三角形的面积计算公式用字母怎样表示?(板书:S=ah÷2)
三、实践运用,拓展创新。
1、学习P85的例1
师:你们真棒!把三角形的面积计算公式推导出来了,下面我们应用公式来解决一些实际问题。少先队员的标志是红领巾,你们知道自己每天佩戴的红领巾面积有多大吗?
这条红领巾的底长就是1米,老师把高也量出来了33CM(课件出示P85的例1),现在你们会计算了吗?
学生列式计算。教师巡视找来学生不同答案的练习本,展示学生的完成情况,让学生点评。
S = a h S = a h ÷ 2
=100×33 =100×33÷2
=3300(平方厘米) =1650(平方里米)
(生1)做错了,他那样做是求平行四边形的面积,不是求三角形的面积。
那求三角形的面积该怎么样?
S = a h ÷2,不要忘记除以2。(强调÷2。)
2、认识交通警示牌,通过计算渗透安全教育。(课本第86页)
师:少先队员要模范遵守交通规则,交通警示牌能让我们更好的遵守交通规则。那你们认识这些警示牌吗?(逐个让学生认识)
……
部门为了大家的安全,准备制作两块这样的警示牌,需要多少铁皮,同学们能帮忙算算吗?(课件出示题目和图)
3、课本第86页第3题:选择一个你自己喜欢的三角形量出有关的数据计算面积。
4、动脑筋。比较下面两个三角形的大小(小组讨论)练习题第5题。
结论:等底等高的两个三角形面积相等。
四、评价体验,总结延伸。
能谈谈这节课你有什么收获吗?能评评各小组或其他同学吗?
【《三角形的面积》教案】相关文章:
三角形面积教案11-22
小学数学教案:三角形面积02-18
三角形的面积说课稿05-21
《三角形的面积》说课稿12-02
面积与面积单位教案05-27
《面积》教案06-23
面积的教案11-19
三角形的面积教学设计05-29
《三角形的面积》教学设计04-22