当前位置:9136范文网>教育范文>教案>七年级下册数学教案

七年级下册数学教案

时间:2024-09-18 12:11:48 教案 我要投稿

七年级下册数学教案(优秀15篇)

  作为一位杰出的教职工,总归要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那要怎么写好教案呢?下面是小编整理的七年级下册数学教案,仅供参考,希望能够帮助到大家。

七年级下册数学教案(优秀15篇)

七年级下册数学教案1

  教学要求

  1、使学生在与同伴的游戏中学会合作。

  2、通过观察、比较,培养学生初步的观察判断能力。

  3、使学生理解连加、连减、加减混合的含义,掌握其运算顺序和计算方法。

  教学重点

  1、体会连加、连减混合的含义。

  2、掌握连加、连减混合的运算顺序并且能够应用知识解决实际问题。

  教学难点

  1、体会连加、连减混合的含义。

  2、掌握连加、连减混合的运算顺序并且能够应用知识解决实际问题。

  教学设计

  一、活动一:

  导入

  1、同学们都乘坐过公共汽车,乘车时有什么规则吗?

  2、乘车时要按顺序排队,要先下后上,要遵守乘车秩序。乘车时也有关于数学的问题。

  这节课,我们就一同研究乘车中的.数学问题。

  板书课题:乘车

  二、活动二:

  乘车

  (一)教学主题图1

  1、出示图片:乘车图1

  教师说明:114路公共电车驶来了,驶向白石桥站。

  2、教师提问。

  (1)从图上你都看到了什么?知道了什么?

  (2)你们能提出哪些问题?

  (3)你们准备怎么解决这个问题?

  3、小组讨论。

  4、集体反馈。

  2+1+4=7你先算的是什么?为什么?

  (二)教学主题图2

  1、出示图片:乘车图2

  教师说明:114路公共电车上现在有7人。

  2、出示图片:乘车图2

  教师说明:车继续向前开,到百万庄站。后门下去3人,前门上去2人。

  3、小组讨论:看了刚才的演示,你知道了什么?可以提出什么问题?你们准备怎么解决?

  4、集体反馈

  7—3+2=6你先算的是什么?为什么?

  (三)教学主题图3

  1、出示图片:乘车图4

  教师说明:114路公共电车继续向前开,到总站白云路站前门和后门都下去3人。

  2、小组讨论:现在车上还有乘客吗?你会解决吗?

  3、全班交流

  教师板书:6—3—3=0

  小结:通过乘车活动,我们计算了乘车中的几个问题,你知道先算什么了吗?

  三、活动三:

  动手摆

  (一)摆圆片列式

  1、5个红圆片、再摆两个蓝圆片、拿走3个。列式:

  2、根据列式动手摆:4+1+5=

  3、同桌互相出题摆圆片、列式。

  (二)两人一组,一人说,另一人摆。并说出算式。

  四、活动四:

  日常生活

  1、请同学们想一想:在我们日常生活当中,你能提出哪些与今天所学的知识有关的问题?怎样解决?

  2、学生自己提出问题,并说出解决问题的方法。

  五、课堂小结

  通过这节课的学习、活动,你有什么收获?你想对同学和老师说些什么?

  六、板书设计

  2+1+4=7 7—3+2=6 6—3—3=0

  教案点评:

  课堂的导入,直入问题的情境,使学生在情境中感悟、体会,新课的教学整个贯穿在此条线索中,各个环节的教学线条流畅,学生在每个环节的情境中合作学习,共同讨论,共同探索,共同找出解决问题的方法,给每个孩子发挥、展示自己的空间。自主探索得到的知识,不但有利于知识的掌握,对学生的观察、分析、判断等能力的形成和提高也大有裨益。

七年级下册数学教案2

  教学目标:

  1.使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。

  2.使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。

  教学重点:求图上距离和实际距离。

  教学难点:求实际距离。

  教学过程:

  一旧知铺垫

  1.什么叫做比例尺?

  板书:图上距离:实际距离=比例尺

  2.说一说下列各比例尺表示的具体意义。

  (1)比例尺1:45000

  (2)比例尺80:1

  (3)0----40㎞

  1.教学例2。

  (1)出示课文例题及插图。

  (2)说一说从中你得到哪些信息。

  已知条件:

  ① 1号线的图上长度是10㎝;

  ②这幅地图的比例尺1:500000。

  所求问题:1号线的实际长度是多少?

  (3)你认为可以用什么方法解决问题?

  ①学生尝试解决问题。

  ②教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。

  ③汇报解答情况。

  方程解:

  解:设地铁1号线的实际长度是X厘米。

  根据图上距离:实际距离=比例尺,可以例比例式解答

  10/X=1/500000

  X=10×500000(问:根据什么?)

  根据比例的基本性质。

  X=5000000

  5000000㎝=50㎞

  答:略

  算术解:

  根据图上距离除以实际距离等于比例尺,得出:实际距离等于图上距离除以比例尺

  10÷1/500000

  =10×500000

  =5000000(㎝)

  5000000㎝=50㎞

  答:略

  2.教学例3。

  (1)出示例题,学生了解题目要求。

  (2)讨论:你想怎样画?

  通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。

  ①确定比例尺;

  ②求出图上的距离;

  ③画出操场的平面图。

  (3)小组同学合作,解决问题。

  学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。

  (4)汇报,交流。

  ①小组派代表说明你的方案和结果。

  ②选择合适的方案,展示结果,并说明解决方案

  如:选择比例尺1:1000画图。求出图上的长度

  80×1/1000=0.08m

  0.08m=8㎝

  图上的宽=60×1/1000=0.06m

  0.06m=6㎝

  操场平面图:

  三巩固练习

  1.完成课文“”做一做”

  2.完成课文练习八第4~10题。

  辅导记录:学习用比例尺解决问题后,要求学生必须会用比例的知识解答,个别学生图简便,直接用算术法,而忽略了比例尺的方法,这种方法的单位换算是最容易出错的。

  补充练习:

  比例尺

  1、在比例尺是1∶5000000的地图上,量的'甲乙两地的距离是8厘米,甲乙两地的实际距离是( )千米。

  2、在一幅地图上,甲、乙两地之间的距离是3厘米,甲、乙两地的实际距离是150千米。这幅地图的比例尺是( )

  3、有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是( )

  4、从海口到三亚全长340千米,如果将它画在1:50000的地图上,约是( )厘米。(得数保留整厘米数)

  5、一块长方形的地,长75米,宽30米,用1/1000的比例尺把它画在图纸上,长画( ),宽画( )。

  6、大新小学体育场长150米,宽80米,请用1/10000的比例尺把它画在图纸上,并求出图纸上的体育场的面积是多少?

  7、在长28厘米,宽18厘米的纸上,画学校的平面图。校园东西长520米,南北宽320米。用多大的比例尺比较合适?运动场长150米,在图上应画多长?

  8、在比例尺是1:400的地图上,量得一个长方形的周长是20厘米,长与宽的比是3:2。这个长方形的实际面积是多少?

  填空:

  1、如果a×3=b×5,那么a∶b=( )∶( )。

  2、1:20xx的图纸上面积是24平方厘米,实际面积是( )公顷。

  3、一个精密仪器零件图纸的比例尺是50:1,图上长5厘米,实际长( )厘米。

  4、将2、5、8再配上一个数组成比例,这个数可以是( )。

  5、如果x÷y = 712 ×2,那么x和y成( )比例;如果x:4=5:y,那么x和y成( )比例。

  6、一种精密零件长5毫米,把它画在比例尺是12:1的零件图上长应画( )厘米。

  7、在一幅中国地图上量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是180千米。这幅地图的比例尺是( )。

  8、、A的与B的相等,那么A∶B=(  )∶(  ),它们的比值是(   )。

  9、在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是(    )千米。

  10、甲乙两个互相咬合的齿轮,它们的齿数比是7:3,甲乙齿轮的转数比是(    ).

  11、在一张比例尺为1∶300的图纸上量得一个房间的长是2厘米,宽1.5厘米,这个房间的实际长是( )米;如果有一条道路的长60米,画在这张图纸上应画( )厘米。

七年级下册数学教案3

  教学目标

  掌握幂的乘方法则,并能够运用法则进行计算。

  会进行简单的幂的混合运算。

  在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点

  幂的乘方法则的运用。

  难点

  幂的乘方法则的推导以及幂的混合运算。

  教学过程

  一、复习导入

  1.表示什么意义?表示什么意思呢?

  2.同底数幂乘法法则是什么,它是怎样推导的?

  通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?

  二、新课讲解

  探究新知

  1.思考:

  ①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?

  ②你能说出、的意义吗?

  ③请你计算、,并想一想每一步计算的依据是什么?

  (鼓励学生站起来回答,培养学生数学表达的能力)

  2.发现:

  ①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?

  ②验证猜想,得出结论

  ===(m,n都是正整数)

  用语言叙述为:幂的乘方,底数不变,指数相乘。

  三、典例剖析

  例1计算:

  (1);(2);(3)(m是正整数);(4)(n是正整数)

  要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。

  例2计算:

  学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。

  四、课堂练习

  基础练习

  1.填空:

  (1);(2);

  2.下面的计算对不对?如果不对,应怎样改正?

  教师要注意发现学生的.错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。

  提高训练:

  3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?

  引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。

  4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。

  学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。

  5.已知,求的值。

  逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。

  五、小结

  师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  1.P40第2题

  2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。

七年级下册数学教案4

  一、合理安排小组合作学习的时间

  “合作时间”的安排是小组合作学习的关键,只有合理的时间安排才能使整个合作学习过程不趋于形式,进而收获成效。对于小组合作学习来说,学习的时间的长短应根据教学内容而定,教师可以把一节课或者几节课的时间用来进行小组合作学习,让学生在合作式探索和相互学习中更深入理解课本知识,或者在课堂内让学生对某个问题进行短时间的辩论思考。在这个过程中,最重要的一点是要使学生的思维活动得到充分的表达,让学生在每次合作学习过程中有充足的时间去独立思考、发表个人意见以及对问题进行相互讨论。同时,教师需要密切关注各小组情况,引导学生进行课内外的合作延伸,并对部分有学习困难的小组实施及时的帮助。

  二、合理设计问题

  教师在课堂中提出的问题不应过于简单,简单的问题虽然看起来能使课堂气氛活跃,但时间久了会培养学生的思维惰性,设计的问题应能够促进学生动脑,有利于集体探究、促进合作,引导他们主动探究数学知识。比如在上《三角形中位线》这一课程时,根据学生反馈,像“什么是三角形的中位线?一个三角形有多少条中位线?中位线和中线有什么区别?如何证明三角形中位线定理?”问题的'前面部分学生能够很轻松地理解和掌握,但他们对课本上关于这个定理的证明思路及方法是陌生而疑惑的这个时候不需要急着去向学生解释,应该让班上同学提出他们的问题,针对问题的要害来进行适当的点拨,让他们发挥集体智慧再进行讨论,进而通过合作来解决问题。

  三、教师角色扮演

  在小组合作学习过程中,教师作为学生学习的向导及促进者,甚至是学习合作者,其主要的行为表现就是交流、倾听、分享、办作,他们在合作学习过程中同时扮演顾问、权威和同伴三种角色,学生学习方式的转变是通过教师角色的变化实现。教师需要注意每个学生的参与度,根据不同班级和小组的特定情况,教师应当使用恰当的语言对学生的学习过程进行指导和评价,使各问题的形成和解决过程得到充分的展示,使互动过程达到高效的目的

  四、对小组合作学习进行恰当评价

  小组合作学习总的评价标准是小组的成就,其表现主要分为两个方面:

  ①对学生学业方面的进步做出评价;

  ②对小组的工作以及合作情况做出评价。小组评价标准需要在进行小组合作学习开始的时候就已明确,小组评价标准是一个十分重要的前提条件,小组合作任务不同则标准可以不同,要求越具体就越能使学生明确所要达到的目标,越有利于提高学习效率。以下案例可以说明这个问题:

  案例1

  在“整式”教学过程中教师提出了如下评价标准:达标:小组内每个成员都积极参与。良好:组内成员均积极合作、互帮互助,实现了真正的合作。优秀:组内每个成员学会了知识的同时还发展了能力。

  案例2

  老师和同学在二次函数3种表示的教学过程中共同制定标准:a.三人一组,由老师随机抽査。b.由老师决定被抽到小组的哪位成员选择相应表示方式。c.每人用一种表示来轮流完成某一函数的3种表示方式。d.组内成员均表示正确且合理的小组为优秀。由以上两个案例可以看出,第一个案例的小组评价分了几个等级,但并没有表述出很强的操作性,真正参与和真正合作的定义不明,缺少具体的行为目标,在实施过程中会导致偏差的出现。

  五、结束语

  小组合作学习的教学方式要重视小组合作的实效,避免形式主义,并不是场面热闹就能促进学习效率。这种全新的学习和教学方式的目的是使学生在学习方式上得到转变,自身素质得到全面发展,该方式的推广需要广大教师积极探索、不断创新。

七年级下册数学教案5

  学习目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

  2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用。

  难点:理解对顶角相等的性质的探索。

  教学过程

  一、复习导入

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。

  学生欣赏图片,阅读其中的文字。

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。本章要研究相交线所成的角和它的特征,相交线的'一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题。

  二、自学指导

  观察剪刀剪布的过程,引入两条相交直线所成的角

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。

  三、问题导学

  认识邻补角和对顶角,探索对顶角性质

  (1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线。

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线。

  ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等。

  (3).概括形成邻补角、对顶角概念。

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。

  如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。

  四、典题训练

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。

  2.:判断下列图中是否存在对顶角。

  小结

  自我检测

  一、判断题:

  1.如果两个角有公共顶点和一条公共边,而且这两角互为补角,那么它们互为邻补角。 ( )

  2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补。 ( )

  二、填空题:

  1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

  2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=________.

  三、解答题:

  1.如图,直线AB、CD相交于点O.

  (1)若∠AOC+∠BOD=100°,求各角的度数。

  (2)若∠BOC比∠AOC的2倍多33°,求各角的度数。毛

  2.两条直线相交,如果它们所成的一对对顶角互补,那么它的所成的各角的度数是多少?

七年级下册数学教案6

  一、教学内容分析

  1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

  定义规定了原点、正方向、单位长度的直线叫数轴

  三要素原点正方向单位长度

  应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

  师:三个温度计所表示的温度是多少?

  生:2℃,—5℃,0℃。

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零。具体方法如下

  (边说边画):

  1。画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2。规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3。选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示—1的点在什么位置?

  (4)原点向右0。5个单位长度的A点表示什么数?

  原点向左1。5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的`定义。

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴。

  进而提问学生:在数轴上,已知一点P表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3)。画出数轴并表示下列有理数:

  1、1。5,—2。2,—2。5,,,0。

  2。写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念。

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

  十二、课后练习习题1。2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级下册数学教案7

  〖教学目标〗

  1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。

  2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。

  3、会用多项式的乘法解决简单的实际问题。

  〖教学重点与难点〗

  教学重点:多项式与多项式相乘的`运算。

  教学难点:例2包含了多种运算,过程比较复杂是本节的难点。

  〖教学过程〗

  一、创设情境,引出课题

  小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?

  二、引出新知,探究示例

  1、合作探索学习:有一家厨房的平面布局如图1

  (1)请用三种不同的方法表示厨房的总面积。

  (2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?

  (3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?

  (让学生以同桌合作的形式进行探索,然后表达交流)

  答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm

  (2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①

  =ab+am+nb+nm……②

  第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。

  (3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:

  (学生归纳,教师板书)

  2、运用新知,计算例题

  例1:计算

  (1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2

  解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by

  (2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3

  (3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1

  教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。

  反馈练习:课内练习1

  例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=

  解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3

  当a=时,原式=17a—3=17×()—3=—19—3=—22

  注意的几点:(1)必须先化简,再求值,注意符号及解题格式。

  (2)当代入的是一个负数时,添上括号。

  (3)在运算过程中,把带分数化为假分数来计算。

  反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。

  2、课内练习2、3。

  三、分层训练,能力升级

  1、填空

  (1)(2x—1)(x—1)=

  (2)x(x2—1)—(x+1)(x2+1)=

  (3)若(x—a)(x+2)=x2—6x—16,则a=

  (4)方程y(y—1)—(y—2)(y+3)=2的解为

  2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。

  3、某人以一年期的定期储蓄把xx元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?

  四、小结

  让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。

  五、布置作业

  课本的分层作业题。

七年级下册数学教案8

  教学目标:

  1、能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2、在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3、了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的`数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点:

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程:

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.

  2、引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.

  3、引导学生剖析法则

  (1)等号左边是什么运算?

  (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?

  (4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1、完成课本“想一想”:a?a?a等于什么?

  2、通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3、独立处理例2,从实际情境中学会处理问题的方法。

  4、处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:

  计算:

  (1)—a2·a6

  (2)(—x)·(—x)3

  (3)ym·ym+1

  (4)?7?8?73

  (5)?6?63

  (6)?5?53?5?。

  (7)?a?b?a?b?75422

  (8)?b?a?a?b?

  (9)x5·x6·x3

  (10)—b3·b3

  (11)—a·(—a)3

  (12)(—a)2·(—a)3·(—a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1、请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2、完成课本习题1.4中所有习题。

七年级下册数学教案9

  [教学目标]

  1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  [教学重点与难点]

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  [教学设计]

  一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活的世界中,蕴涵着大量的`相交线和平行线,本章要研究相交线所成的角和它的特征。

  观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

  教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

  共能组成几对角?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

  几何语言准确表达;

  有公共的顶点O,而且 的两边分别是 两边的反向延长线

  2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交 所形成的角 分类 位置关系 数量关系

  教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2) 邻补角是互补的两个角,互补的两个角是邻补角

  (3) 对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  四.巩固运用例题:如图,直线a,b相交, ,求 的度数。

  [巩固练习](教科书5页练习)已知,如图, ,求: 的度数

  [小结]

  邻补角、对顶角.

  [作业]课本P9-1,2P10-7,8

七年级下册数学教案10

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的.条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

  五、作业课本15页-16页练习的1、2、3、

  5.2.2平行线的判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

七年级下册数学教案11

  教学目标:

  1.掌握数轴三要素,能正确画出数轴.

  2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

  教学重点:

  数轴的概念.

  教学难点:

  从直观认识到理性认识,从而建立数轴概念.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示课本P7的“问题”(学生画图)

  (二)合作交流,解读探究

  师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

  【点拨】(1)引导学生学会画数轴.

  第一步:画直线,定原点.

  第二步:规定从原点向右的方向为正(左边为负方向).

  第三步:选择适当的长度为单位长度(据情况而定).

  第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

  对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?

  (2)有了以上基础,我们可以来试着定义数轴:

  规定了原点、正方向和单位长度的直线叫数轴.

  做一做学生自己练习画出数轴.

  试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

  讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

  小结整数在数轴上都能找到点表示吗?分数呢?

  可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.

  (三)应用迁移,巩固提高

  【例1】下列所画数轴对不对?如果不对,指出错在哪里?

  【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

  【例3】下列语句:

  ①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(  )

  A.1个B.2个C.3个D.4个

  【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.

  【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有(  )

  A.1998个或1999个B.1999个或20xx个

  C.20xx个或20xx个D.20xx个或20xx个

  (四)总结反思,拓展升华

  数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

  (五)课堂跟踪反馈

  夯实基础

  1.规定了、     、的'直线叫做数轴,所有的有理数都可从用上的点来表示.

  2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.

  3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是(  )

  A.7 B.-3

  C.7或-3 D.不能确定

  4.在数轴上,原点及原点左边的点所表示的数是(  )

  A.正数B.负数

  C.不是负数D.不是正数

  5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.

  提升能力

  6.与原点距离为3.5个单位长度的点有2个,它们分别是和.

  7.画出一条数轴,并把下列数表示在数轴上:

  +2,-3,0.5,0,-4.5,4,3.

  开放探究

  8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.

  9.下列四个数中,在-2到0之间的数是(  )

  A.-1 B.1 C.-3 D.3

七年级下册数学教案12

  教学目标

  1.理解和掌握倒数的意义。

  2.能正确的求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点

  认识倒数并掌握求倒数的方法

  教学难点

  小数与整数求倒数的方法

  教学过程

  一、基本训练

  (一)口算

  =

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

  (板书:倒数)

  三、新课教学

  (一)乘积是1的两个数存在着怎样的倒数关系呢?

  请看:,那么我们就说是的倒数,反过来(引导学生说)是的`倒数,也就是说和互为倒数。

  和存在怎样的倒数关系呢?2和呢?

  (二)深化理解

  教师提问

  1.什么是互为倒数?

  2.怎样理解这句话?(举例说明)

  (的倒数是,的倒数是,……不能说是倒数,要说它是谁的倒数。)

  3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

  (三)求一个数的倒数

  1.例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是.

  (能不能写成,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  2.深化

  你会求小数的倒数吗?(学生试做)

  三、训练、深化

  (一)下面哪两个数互为倒数

  (演示课件:倒数的认识1)

  (二)求出下面各数的倒数

  (演示课件:倒数的认识2)

  (三)判断

  1.真分数的倒数都是假分数。( )

  2.假分数的倒数都小于1.( )

  3.0没有倒数。( )

  (四)提高

  如果末尾加上=1怎么填?

  如果末尾加上=0怎么填?

  如果末尾加上=2怎么填?

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

  五、课后作业

  (一)下面哪两个数互为倒数?

  (二)写出下面各数的倒数。

  六、板书设计

七年级下册数学教案13

  教学目标:

  知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

  能力目标:进一步培养学生分析、归纳和探索能力。

  情感目标:培养学生数形结合的思想。

  教学重难点:公式的应用及推广。

  教学过程:

  一、复习提问:

  1.(1)用较简单的代数式表示下图纸片的面积.

  (2)沿直线裁一刀,将不规则的`右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

  讲评要点:

  沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,这样裁开后才能重新拼成一个矩形。

  (3)比较(1)(2)的结果,你能验证平方差公式吗?

  学生讨论,自己得出结果

  2.(1)叙述平方差公式的数学表达式及文字表达式;

  (2)试比较公式的两种表达式在应用上的差异.

  说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

  3.判断正误:

  (1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

  二、新课:

  运用平方差公式计算:

  (1)102×98;(2)(y+2)(y2)(y2+4).

  填空:

  (1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();

  思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

七年级下册数学教案14

  教学目标:

  (一)知识目标:

  1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

  2、理解运算法则及在乘法中对系数运算和指数运算的不同规定、

  (二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

  (三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

  教学重点:

  探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

  教学难点:

  理解运算法则及在乘法中对系数运算和指数运算的不同规定、

  教学过程:

  导入新课:

  为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、

  受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、

  想一想:

  (1)对于上面的画面小明得到如下的结果:

  第一幅画的`画面面积是x(mx)米2、

  第二幅画的画面面积是(mx)(x)米2、

  他的结果对吗?可以表达得更简单些吗?说说你的理由、

  (2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?

  (3)如何进行单项式与单项式相乘的运算?

  教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

七年级下册数学教案15

  教学目标:

  1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。

  2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力

  3、经历解决问题的基本过程,了解数学与生活的密切关系。

  重点难点:运用所学知识解决实际问题。

  教学过程:

  一、揭示课题

  1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

  2、自行车里会有数学问题吗?想一想。

  二、研究普通自行车的速度与内在结构的关系

  1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

  2、分析问题

  (1)学生讨论如何解决问题。

  方案一:直接测量,但是误差较大。

  方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

  (2)讨论:前齿轮转一圈,后齿轮转几圈?

  前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数

  建立数学模型,收集数据并求解。

  (1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)

  (2)分组收集所需要的`数据,带入上述模式,求出答案。

  4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。

  三、研究变速自行车能组合出多少种速度?

  1、提出问题:变速自行车能组合出多少种速度?

  (1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

  (2)根据这个结构,可以组合出多少种速度?

  2、分析问题,求解,汇报。

  3、蹬同样的圈数,哪种组合使自行车走得最远?

  四、课堂作业

  1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?

  2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)

  五、课堂小结

  自行车里的学问可真大,你还能提出一些数学问题并解决吗?

【七年级下册数学教案】相关文章:

七年级下册数学教案05-06

下册总复习数学教案04-10

七年级下册生物教案05-17

七年级下册地理教案01-05

语文七年级下册教案02-23

七年级数学教案06-08

七年级下册生物教学总结11-09

七年级英语下册教学反思03-29

七年级下册生物教学反思12-03