五年级下册数学教案
作为一名优秀的教育工作者,常常需要准备教案,借助教案可以让教学工作更科学化。那要怎么写好教案呢?以下是小编整理的五年级下册数学教案,欢迎阅读与收藏。
五年级下册数学教案1
教学内容:
北师大版五年级下册第82页、83页“包装的学问”
教材分析:
《包装的学问》是综合实践课,学生已经学习了正方体、长方体的表面积计算,合并、分割正方体和长方体的有关知识。本课是组织学生探究发现、总结规律,开展有关“包装学问”的数学活动,在活动中重点培养学生综合运用长方体等相关知识解决实际问题的能力,使学生在实践、操作、探索中感受优化思想,形成数学思考,增强空间观念和节约意识。
教学目标:
(1)知识与技能目标:了解体积相等的不同长方体,表面积和长、宽、高的和的关系;了解不同的包装方法,计算比较长宽高的和,并比较出最节省的包装方法,体验策略的多样化,发展优化思想。
(2)过程与方法目标:发展动手操作能力和空间想象观念,培养积极思考、探究规律的能力,能用不同的方法解决简单的实际问题。
(3)情感态度价值观目标:渗透节约意识,了解包装的学问在生活中的应用,体会数学与生活的联系,提高学习数学的兴趣。
教学重点、难点:
重点是:空间构造多个长方体堆叠模型。
难点是:灵活、快速地找出最节省包装纸的包装策略。
教学准备:课件、长方体模型(学生每人准备一本新华字典)
教学过程:
一、创设情境,引入新课。
师:播放图片。(课件出示常用的'生活用品的包装盒)。
同学们,刚才看到的是生活中常见的包装。其实呀,包装在我们的生活当中应用非常广泛,外表亮丽,便于携带的包装总是最先吸引我们的注意,那么怎样包装最漂亮,怎样包装便于携带,怎样包装最节约包装纸…….这些都是学问,今天这节课我们就从节约的角度来研究一下包装中的学问。
二、组织新课,探究新知。
1、分别计算下面三个长方体的体积和表面积。(单位:cm)
你有什么发现?那么体积相等的长方体表面积有什么变化规律呢?学生分小组探究。教师引导:计算各个长方体长宽高的和,并比较它们的大小。
得出结论:体积相等的不同长方体,长宽高的和越小,表面积就越小。
2、把多个相同的长方体包装起来可以拼成若干个不同的大长方体,所需包装纸的大小就是所拼成的大长方体的表面积。
3、把两本新华字典堆叠起来拼成一个大长方体,有多少种不同的堆叠方案,每种方案所堆叠的大长方体的长宽高各是多少?那种方案最节省包装纸?(学生分小组操作探究)
4、如果把每种包装方案的表面积都算出来再比较会很复杂,有没有能比较准确的确定那种方案最节省包装纸呢?(先算各种方案的长宽高的和,再比较,计算和最小的那种方案的表面积就可以了)
5、把三本字典包装起来,求所需包装纸的最小面积。
课件展示每种包装方案的包装草图,学生自助计算。
三、拓展创新
如果把四本这样的字典包装在一起,怎样包装最节约?
四、全课总结,拓展延伸。
包装这个小问题,学问可真不少,在实际生活中、在包装的过程中还要考虑些什么因素呢?(要留出接头处、美观、便于携带等)。大家考虑的很全面,有兴趣的同学还可以深入的研究一下关于包装的学问。
五年级下册数学教案2
教学目标:
1、初步认识体积单位:立方厘米、立方分米、立方米。
2、掌握立方厘米、立方分米、立方米之间的进率。
3、会进行简单的体积单位之间的化聚。
教学重点和难点:
重点:掌握立方厘米、立方分米、立方米之间的进率。
难点:会进行简单的体积单位之间的化聚。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:直接写得数:
3-0.5÷0.5= 7.8÷3-2= 3.9÷3-0.7=
3.85×100÷0.1= 0.6×0.5+1= 5.5-5×0.1=
一、复习导入:
我们是如何规定体积为1立方厘米的?
棱长为1厘米的正方体,它的体积就是1立方厘米,也可以记作1cm2。
这节课让我继续学习立方分米、立方米。
揭示课题:
立方分米、立方米
一、探究新知:
1、 让学生体验1立方分米。
2、 这块小正方体的体积有多大呢?(课件演示)
3、 棱长为1分米的小正方体,它的体积就是1立方分米,可以记作1dm2。
板书:1立方分米 1dm2
4、 请学生感受一下1立方分米的大小。
5、 立方厘米与立方分米:
a) 让我们用1立方厘米的正方体积木来搭1立方分米,找一找它们之间的规律?(课件演示)
c) 小结。
6、 立方分米与立方米:
a) 让学生体验1立方米。我们如何规定体积为1立方米?(课件演示)
b) 棱长为1米的.小正方体,它的体积就是1立方米,可以记作1m2。
板书:1立方米 1m2
c) 让我们用1立方分米的正方体积木来搭1立方米,找一找它们之间的规律?(课件演示)
板书: 1000dm3=1m3
e) 小结。
7、 立方厘米、立方分米、立方米之间的进率:
a) 多少个1立方厘米的正方体积木可搭出1立方米?
b) 学生讨论交流。
c) 课件演示。
d) 说一说立方厘米、立方分米、立方米之间的关系。
板书:1m3=1000000 cm3 1m3=1000dm3 1dm3=1000cm3
e) 小结。
a) 练一练:
立方厘米、立方分米、立方米之间的化聚:
8 m3=__________dm3=__________ cm3
0.8 m3=__________dm3=__________ cm3
3 dm3=__________ cm3 0.568 dm3=__________ cm3
18 dm3=__________ cm3 0.006 dm3=__________ cm3
8000 cm3=__________dm3 5468 cm3=__________dm3
0.006 m3=__________dm3 0.64 m3=__________dm3
6000 dm3=__________ m3 17000 dm3=__________ m3
50 dm3=__________ m3 6523 dm3=__________ m3
三、巩固练习:
1、 填空:
(1) 一根木料长____________;一间客厅____________;
一瓶眼药水____________;一个仓库能容纳____________;
450立方米 65毫升 3米 25平方米
(2)一只铅笔盒的体积是360( )。
(3)物体______________________________的大小叫做物体的体积;常用的体积单位有_________、_________、_________。
2、 判断:
(1)体积单位比面积单位大。 ( )
(2)3.04立方分米=304立方米。 ( )
(3)把一个长方体铁块熔铸成一个正方体,形状变了,所以所占空间的大小也变了。 ( )
3、 至少要用多少个棱长为1厘米的正方体又可以拼成一个正方体?
4、 小结。
三、 总结:
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
检测练习:
3456789 cm3=__________dm3, 1884589 dm3=__________ m3
35.42 m3=__________dm3, 700.02 dm3__________ cm3
230 cm3=__________dm3 68000 cm3=__________dm3
9 m3=__________dm3 2.5 m3=__________dm3
6 m3=__________cm3
板书设计:1立方分米 1dm2
1000dm3=1m3
1m3=1000000 cm3 1m3=1000dm3 1dm3=1000cm3
五年级下册数学教案3
教学目标
1、结合具体活动情况,经历测量石块体积的实验过程,探索不规则物体体积的测量方法。
2、在实践与探索过程中,尝试用多种方法解决实验问题。
3、在观察、操作中,发展学生空间观念。
教学重点
探索不规则物体体积的测量方法。
教学难点
尝试用多种方法解决实际问题。
教具准备
量杯,石块
教学过程
一、创设情境,引入新课
1、回顾长方体和正方体的计算
2、同学们听说过《乌鸦喝水》的故事吗?乌鸦是怎么喝到水的?
3、出示石块
学生观察石块。
师问:如何测量石块的体积?
生想一想,如何测量石块的体积。(学生试、猜测量方法)
3、以小组为单位,先制定测量方案,再实际测量,能直接用公式吗?不能怎么办?
板书课题:有趣的测量
二、进行实验
(一)采用淘气的方法进行实验
1、出示一盛有不满水的长方体容器。师生讨论可以怎样测量出石块的.体积。
2、按照讨论的结果师操作:将石块放入盛有水的长方体容器里。(或课件演示)
3、学生测量出容器的底面长、宽和高分别是多少。
4、放入石块前水高10cm,放入石块后水面高15cm。石块的体积是多少?
师板书:15×10×(15-10)=750(cm3)
=7.5(dm3)
5、小结:放入石块后水面升高的体积就是石块的体积。
(二)实验二:溢出水的体积即石块体积的方法
1、除了刚才用求升高水的体积的方法,还可以用什么方法来石块的体积呢?
学生讨论,交流。
2、小组内操作实验。
(放入石块前,容器里的水是满的,放入石块后,溢出的水在水槽中,倒入量杯里,有多少毫升,就是石块的体积。)
(三)小结:今天我们一起探讨了测量不规则物体的体积方法,谁能说一说有哪些方法?在测量时我们应该注意什么?(注意:在测量时水要没过物体)
三、巩固练习
课本47页“练一练”的1、2题。
板书设计
有趣的测量
15×10×(15-10)=750(cm3)
=7.5(dm3)
五年级下册数学教案4
【教学目标】
[认知目标]:
1. 知道物体外部所有面的总面积叫做它的表面积。
2. 能正确计算正方体和长方体的表面积。
[能力目标]
让学生自主探究正方体和长方体表面积的计算方法。
[情感目标]
通过实际的操作过程,体验学习的快乐。
【教学重点】
掌握与理解正方体、长方体表面积的含义及计算表面积的方法。
【教学难点】
正方体、长方体表面积的推导过程。
【教学准备】
教学课件、长方体、正方体的附页等。
【教学过程】
一、复习导入:
1. 正方形的面积计算公式是什么?
板书:正方形的面积
S = a2
2. 请学生观察老师手中的正方体,回答问题?
(1)正方体有几个面?
(2)有什么特征?
(3)如何计算它们的面积?
3. 这节课让我们学习有关求正方体面积的知识。
4. 揭示课题:正方体的面积
【说明:让学生回忆有关正方体特征的知识,承上启下引导出本堂课的学习内容,激发学生学习的积极性。】
二、探究新知:
(一)正方体的表面积。
1. 小胖将一个棱成为5厘米的正方体盒子沿着棱切开,得到一个正方体表面的展开图。
2. 先仔细观察正方体表面的展开图,然后回答问题?
(1)正方体表面的展开图是由六个什么形状的面组成的?
(2)这六个面的形状都相同吗?
(3)面积都相等吗?
(4)面积的总和是多少?
这个正方体表面的展开图有6个正方形的面,它们的形状都相同,面积都相等。
面积的总和 = 6 × ( 棱成 × 棱长)
= 6 ×( 5 × 5)
= 150( cm3)
3. 正方体有六个大小相同的正方形面,六个面的面积总和称为正方体的表面积。
4. 小结。
【说明:充分让学生通过已有的知识和经验,小组合作,主动探究求正方体的表面积。】
三、练一练:
(一)求下面正方体的表面积?
1. 正方体的`棱长为6dm,求它的表面积。
解: S = 6 a2
=6×6×6
=216(cm2)
答:它的表面积是216平方厘米。
2. 正方体的棱成为7cm,求它的表面积。
一、探一探,练一练:
1. 下面哪些图形能沿虚线相折能围成正方体?先想一想,再利用附页1中的图形试一试。
2. 请学生把附页上的图形剪下后,先估测,然后拼一拼,看看是否能够围成正方体?
3. 交流讨论。(课件演示)
其中:a、c、e、f这四幅能够拼成正方体。
b和d的图形不能拼成正方体。
4.小亚用1立方厘米的正方体积木搭出了一个棱长为3厘米的正方体,并且将它的表面涂上了红色。
(1)三面涂上红色的1立方厘米的正方体积木有多少个?
(2)两面涂上红色的1立方厘米的正方体积木有多少个?
(3)一面涂上红色的1立方厘米的正方体积木有多少个?
(4)没有面涂上红色的1立方厘米的正方体积木有多少个?
5. 学生讨论交流,请学生可以用小正方体搭一搭,找出规律。
6. 利用课件反馈。
7. 小结。
【说明:这里的正方体的展开图并不是这一节的重点,只是为了能帮助学生推导出表面积,并相应地积累空间经验,并在思路上能从“立体”--“平面”--“立体”。第4题计数时要讲究策略:三面有颜色的在八个角上,共8块;两面有颜色的在各条棱上,每条棱上只有1块,共12块;一面有颜色的在6个面的中心,共6块;没有颜色的,只有1块,在“中心”。】
五、巩固练习:
(一)看图练习:
1. 下面的正方体的棱长为5m,先求它的表面积,再求体积。
2. 下面正方体的棱长为0.7dm,先求它的表面积,再求体积。
3. 下面图形中哪些能围成正方体?哪些不能围成正方体?
(二)拓展小练习:
1. 正方体的表面积是96平方厘米,它的一个面的面积是多少平方厘米?它的棱长是多少厘米?
2. 做一个棱长为7dm的正方体无盖木盒,需要多少平方分米的木板?
3. 用一根长60厘米的铁丝,围成一个正方体的小铁筐,在外面贴上手工纸,需要多少平方厘米的手工纸?它的体积是多少?
4. 用3块棱长为3厘米的小正方体拼成一个长方体,面积减少多少平方厘米?
5. 做一个正方体的玻璃金鱼缸,棱长为80厘米,需要多少平方厘米的玻璃?
6. 正方体的棱长是6cm,它的表面积和体积相比较,情况怎样?
7. 一个棱长为4厘米的正方体,在它的角上挖掉一块棱成为2厘米的小正方体(如下图),它的表面积发生了什么变化?是增加、减少、相等还是无法确定?
8. 小结。
【说明:通过练一练和拓展小练习,让学生进一步巩固求正方体表面积的计算方法。】
六、总结:
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
五年级下册数学教案5
教学目标:
1.初步体会到体积与重量的关系。
2.知道单位体积的重量,体积与物体重量之间的数量关系。
3.会计算形状是长方体或正方体的物体的重量。
教学重点、难点:
理解重量,体积与物体重量之间的数量关系。
教学过程:
一、创设情境
这是两块同样的木料,你估计哪块更重一些呢?
(生猜测,会出现不同的猜测结果。)
师:怎样来验证我们的猜测呢?
(生可能出现的回答:称重量,比大小)
师:其实这里的大小也就是我们已经学习过的体积。这节课我们就来继续学习有关重量与体积的知识。
二、探究新知
1.出示长方体木料
(1)问:如何能知道1立方厘米这样木块的重量吗?
你觉得需要哪些条件才能求出答案?
小组讨论
(2)交流
小结:需要知道木块的重量和体积。
可以先称出这块木料的重量,再量出它的长、宽、高,算出体积。最后,用木料的重量÷木料的体积=1立方厘米木料的重量。
(3)出示测量数据
木料重42g,体积为60cm3
生计算汇报:42÷60=0.7(g)--1立方厘米重0.7g。
2. 1立方分米、1立方米这种木料重多少克?是多少千克?
生独立解答,交流。
0.7×1000=700g=0 .7kg
700×1000=700 000g=700kg
师:你从中获得了哪些启示呢?
3.小结:
①同样的物体体积越大重量越大。
②1立方厘米、1立方分米、1立方米物体的重量统称为单位体积的重量。
4.练习
①1立方米这种木料重700千克,仓库里堆放了39立方米这种木料,这些木料重多少千克?
②1立方米这种木料重700千克,一辆卡车一共装了3.5t这种木料,这些木料的体积是多少立方米?
这两道题已知什么,要求什么?要能够熟练解答关键要知道单位体积的重量,体积与物体重量三者之间的数量关系。
木料的重量÷木料的体积=1立方厘米木料的重量
1立方厘米木料的'重量×木料的体积=木料的重量
木料的重量÷1立方厘米木料的重量=木料的体积
5.解决情境中的问题
只要比较两个木块的体积就能比较他们谁更重。给出数据:长方体长4分米、宽3分米、高5分米,正方体棱长4分米。
生独立解答。
三、巩固练习
1.一块钢板长3.2米,宽1.4米,厚0.02米,每立方分米钢重7.8千克,这块钢板的重量是多少千克?
2.一块正方体花岗岩,棱长是2分米,如果这块花岗岩重20千克,那么每立方分米石料重多少千克?
四、课堂总结:这节课你有什么收获?有什么感想吗?
五年级下册数学教案6
教材分析:
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
教学目标:
1.知识与能力:经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。
2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。
3.情感、态度与价值观:让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。
教学重点:
探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探究、归纳概括分数的基本性质。
教具准备:
课件
教学过程:
一、复习导入
1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。
2.商不变规律。
(1)计算:120÷30 12÷3 40÷5 400÷50
(2)说一说,你有什么发现?
(被除数和除数都缩小或扩大相同的倍数,商不变。)
二、新课讲授
1.教学例1。
(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书:(为什么相等?)
(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?
(3)汇报:随着学生汇报,老师板书。
(4)观察以上例子,你能得出什么结论?
分数的`分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
提问:为什么0要除外?
小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。
(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?
2.教学例2。出示题目
独立完成,集体订正,订正时说一说根据什么。
三、巩固练习
1.练习十四习题
第1题:按要求涂色,并比较它们的大小。
第2题:比较每组中的分数大小是否相等。
第3题:同位合作完成。
2.作业:练习十四4、5题,选作13题。
四、全课总结
这节课我们学了哪些知识?分数的基本性质是怎样的?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五年级下册数学教案7
一、教材解析及设计思路
1.教材解析
本节课教学内容是北师大数学五年级下册第78、79页的《数学好玩》环节的第二课时,是在五年级下册学习完第二单元《长方体(一)》,尤其是该单元第二课时《展开与折叠》的相关知识基础上展开的,学生已经对展开与折叠有了初步感知,本节课是进一步认识和感知展开与折叠的关系,尤其是对折叠的深入了解以及折叠在生活中的应用等。
因为我所带班级之前在第二单元已经对这个知识点进行了一定的拓展,部分内容学生有一定了解,所以我对该课部分环节和习题进行重新设计。
2.体现“数学好玩”
本节课是《数学好玩》的一个环节,所以设计了各种丰富多彩的活动,通过实际动手操作画一画、折一折、叠一叠、涂一涂等环节,充分让学生动起来,玩起来,在玩中学,学中玩,充分体现了数学大师陈省身的“数学好玩”的思想,让学生真正喜欢学习数学,这才是学习的持久动力。
3.落实“生本教学”
本节课的多个教学环节中均采取小组合作式学习,组员之间分工明确,自主学习,自主汇报,把课堂还给学生。数学20xx版《新课程标准》明确指出:“教师只是教学的参与者、组织者、引导者。”
4.采用多种学习方式
参考了高效课堂中的“独学、对学、群学”学习方式,本节课中运用了多种学习方式,并辅以随机指名学习和教师带领集体交流学习等,目的是通过不同学习方式的变换,来激发学生学习的积极性,使课堂更加生动有趣,吸引学生。
二、学习目标
1.知识与技能:经过折叠与展开的过程,体会立体图形和它的展开图之间的关系,能正确判断平面展开图所对应的简单立体图形。
2.过程与方法:在发现和概括规律的过程中提高分析和解决问题的'能力,能解决实际生活中的问题。
3.情感与态度:培养空间观念,提高合作意识及与人沟通交流的能力。
三、学习重难点
1.学习重点:经历折叠与展开的过程,体会立体图形和它的展开图之间的关系。
2.学习难点:能正确判断平面展开图所对应的简单立体图形。
四、学习用具
PPT课件、学习任务单、折叠图形
五、学习方法
小组合作式学习、探究学习法、独学对学群学
六、学习过程
(一)复习导入
通过对五年级上册第二单元第二课《展开与折叠》相关知识的回顾,引出“平面图形折叠后就是立体图形,立体图形展开后就是平面图形”这个关系,今天的学习重点研究折叠,从而顺利引入今天的课题--《有趣的折叠》,并板书课题和主要内容。
(二)合作探究
1.活动一折叠的仓库
(1)让学生先观察仓库展开图,通过一定的空间想象能力,大胆猜测折叠后的形状,指名两到三位学生交流反馈,学生可能会说到仓库、房子、甚至五棱柱等,只要合理即可,最后统一为仓库。
(2)学生独立操作,利用裁剪好的展开图折叠成为仓库,通过实际操作验证刚才的猜想。
2.活动二计算仓库占地面积
(1)组织学生同桌对学,互相讨论后,共同在学习任务单上写出计算仓库占地面积的算式。
(2)展示汇报,选取一对学生上台汇报,说说自己是如何计算的。学生可能在单位上或者计算哪个面上出现一些问题,由其他学生补充和质疑,教师也可适当提出质疑或追问,例如“为什么是8×3而不是8×2或者8×4的那个面?”
3.活动三标出位置
(1)组织学生小组合作学习,用图形等标出房屋立体图中的小鸟、烟囱、窗户在展开图中的对应位置。
(2)展示汇报,选取一组学生上台汇报,学生可能会对左侧有没有窗户以及烟囱所在位置是横中线正中间或下面出现一些问题,由其他学生补充和质疑,教师也可适当提出质疑。如由于门的位置已经给定,因此,窗户、烟囱和小鸟的位置就大概确定下来了。只要学生的表述合理,教师就应给予肯定。
(三)巩固练习
1.练习一长方体和正方体的折叠连线
(1)组织学生同桌对学,互相讨论后,共同在学习任务单上完成相关连线。
(2)展示汇报,选取一对学生与大家交流,正方体的折叠比较简单,直接连线下1即可,而长方体有学生可能会在下3和下4之间犹豫,这时教师适当引导学生从侧面四个长方形的大小形状这个角度分析,最后达成共识选择下4。
2.练习二三棱柱和四棱锥的折叠连线
(1)组织学生小组合作学习,共同在学习任务单上完成相关连线。分工合作,大胆猜想,分工合作,并利用裁剪好的三棱柱和四棱锥展开图折叠,通过实际操作验证猜想。
(2)展示汇报,选取一组学生进行汇报,而三棱柱有学生可能会在下2和下3之间犹豫,这时最好由其他学生进行补充,因为上一环节练习教师已经引导从某些面的大小形状来分析,所以由学生补充分析较好。如果进行得较顺利,没有学生出现问题,则由教师提出上面的相关质疑,最后达成共识选择下2。
需要说明的是,并不要求学生掌握三棱柱与四棱锥的知识,而是借助其发展学生的空间观念。同时,对于学习有困难的学生可通过动手操作解决此问题。
(四)拓展提高
1.生活中的折叠
(1)引导观察PPT上4组图片,都是学生在生活中非常常见的物品,观察后结合日常生活经验和空间想象,作出初步的判断并在脑海中连好线。
(2)随机指名,选取四名学生进行交流,如有问题师生集体订正。
2.神奇的折叠
(1)让学生不动手操作也不画图涂色等,大胆猜想折叠后的立体图形,这里学生可能会说出五花八门的名称来,教师都要予以鼓励。
(2)在教师的引导下,共同认识正八面体的简单知识。
3.附加练习
判断正方体展开图(看时间情况而定取舍)
(1)组织学生小组合作学习,分工合作判断三个展开图是否可以顺利折叠成正方体,可以空间想象,也可以利用裁剪好的三个展开图折叠验证。如果可以折叠成正方体,并由该组其他同学进行涂色,利用彩笔把正方体相对的面涂上相同的颜色。
(2)展示汇报,选取一组学生汇报。在这里因为在第二单元已经学习过正方体展开图的数字口诀和判断相对的面的口诀,学生利用已学知识进行会比较顺利,如有问题由其他学生补充和质疑。
需要说明的是,如果学生的判断与折叠出的结果不同,要引导学生反思错误的原因,由此可以让学生养成良好的学习习惯。
(五)总结评价
1.今天你学到了哪些知识?
2.关于折叠,您有什么想说的吗?
七、板书设计
有趣的折叠
平面图形折叠展开立体图形
五年级下册数学教案8
一、复习导入
师:我们在数学世界里,结识很多好朋友。我们刚刚认识了分数,看看你对他有多少了解?
练习:用分数表示阴影部分面积(其中一题突出“平均分”)
师:看来大家已经和分数成为了好朋友,他要邀请我们去一个好地方,当当蛋糕房开业了,快来看看吧!
当当蛋糕房里推出两款特色蛋糕,巧克力蛋糕和水果蛋糕,你喜欢哪一种?请你调查小组同学的选择情况,你能用分数分别把调查结果表示出来吗?(出示调查要求)
学生调查,汇报。
师:到底喜欢哪种蛋糕的人更多,比较这两个分数的大小就知道了。这节课我们就来研究“比较分数的大小”。(板书课题)
二、探索规律
(一)分母相同的分数大小的比较
1、师:开动脑筋想一想,我们可以怎样比较出这两个分数的大小?
(1)多种方法比较
折纸、画图形、画线段
(2)汇报结果,板书
师:介绍你们是怎样比较出这两个分数的大小的?
(3)观察分数及比较结果,总结规律。
师:同学们想出了这么多比较的方法,你们能从不同的角度,用不同的方法来解决问题真了不起。接下来我们一起来观察这些不等式,你发现了什么规律了吗?
板书:分母相同,分子不同的分数,分子越大,分数越大。
师:你能运用这个规律,来解决问题吗?
(4)用规律练习3道题
(二)分子相同的分数大小比较
师:当当非常感谢大家帮他做的小调查,送给大家每人一个相同的蛋糕,请你带回家与家人一同分享。你们家有几口人?你吃了其中的几分之几?你的好朋友呢?(询问多人,记录分数)
1、任意选择两个分数,他们谁吃得多?请你与好朋友一起合作,想办法比较出两个分数的大小。
(1)合作,用喜欢的方式来比较这两个分数的大小。
(2)汇报,展示,板书结果。
师:请小组派代表来汇报你们的比较过程及结论。
(分母代表将单位1平均分的份数,份数越多,每一份就越小。)
2、我们班有两对双胞胎,(笑笑哈哈、乐乐闹闹)一对家里共有5口人,一对家里有4口人,请你帮助两个哥哥比一比,谁吃的那块比较大?
(画图比较),从分数的意义的角度分析?
3、我再来观察这一组比较的结果,你能尝试着总结规律吗?
板书:分子相同,分母不同的分数,分母越大,分数越小;分母越小,分数反而越大。
4、用这个规律,解决问题
小结:你能总结一下我们今天一同探讨“比较分数的大小”,你有了哪些收获吗?
生总结。
师:看来我们今后可以运用这些规律来帮助我们更快地解决比较分数大小的问题。只是小猪和小猴在比较的时候出现了点小问题,也要提醒你注意啊!
(三)小猪与小猴吃蛋糕,一定一样多吗?——比较分数的大小,要以单位“1”相同为前提。
师;这节课我们更多的了解了有关分数的知识,接下来,就让我们开动智慧的大脑,来迎接这位朋友对我们的挑战。
三、巩固练习
1、比较分数大小
(1)看图、写分数、比大小2道
(2)看分数,比大小6道
2、补充分数的不等式4道
3、用分数表示数轴上的一点,并比较大小
4、三个分数比较大小1/3 2/3 2/4
5、一大一小怎样平均分?
四、拓展延伸
师:你们运用自己的聪明才智解决了这么多的问题,相信你今天一定有很多收获。可是当当蛋糕屋里有人不太开心,小兔子菲菲和小狗汪汪买了一个蛋糕,菲菲吃了这个蛋糕的1/5,汪汪吃了这个蛋糕的2/5,到底还剩下这块蛋糕的几分之几,他们弄不清楚了,下节课,我们一起来帮帮他们,好吗?
教学反思:
“比大小”是在初步理解分数的意义,会认、读、写简单分数的基础上,让学生经历比较简单分数大小的过程。基于数学教学是数学活动的教学的理念及教材的编写意图,我将课堂教学分为以下三个环节。
1、复习整理。进一步巩固已有的学习成果,强调分数意义,为下一步学习打下基础。
2、探索规律――给学生提供自主学习的机会。通过分、折、画等操作活动,培养学生独立思考、合作交流的能力,在活动过程中体会比较方法,并在多个实例中尝试概括比大小的规律。
3、运用规律解决问题――通过设计由浅入深、由易到难的练习和游戏情境,使学生牢固掌握所学的知识,培养学生的.创新精神和创新思维;有意识地联系生活,使学生发现生活中的数学问题并交流解决。
整节课以一个情境贯穿始终,学生在整堂课中反应积极,有强烈的求知欲望,以图形直观验证猜想的方法,发展到抽象思维。为学生提供大量动手操作、独立思考与合作交流的机会和空间,突出体现教师的组织、引导、合作者角色和学生的主体地位。针对学生情况,我适度地拓展知识的广度,在教材要求掌握“分子是1,分母不同”的基础上,将教学内容扩展为“分子相同,分母不同”的分数进行比较,学生掌握的效果很好,为以后的知识系统性打下基础。
在今后的教学过程中,除了师生之间的反馈交流外,还要注重生生之间的评价交流,多创造这样的机会,让学生在互相评价的过程中学会倾听别人的意见,在碰撞中加深知识的理解和扩展。注意教学的艺术性,倾听学生的发言,并能用“点睛之笔”来引导学生简洁、准确、完整的表述自己的观点。在组织学生进行合作交流时,一定保证相应的环节,要在个体充分思考的基础上进行。另外在应用探索规律解决问题的过程中,对数学知识的扩展适度,突出梯度。
在多次的课程活动中,在领导和老师们无私的帮助下,感觉自己有了很多的收获,但仍然有太多需要加强和改进的方面,我会在以后的教学中,更加努力,从有秀教师身上汲取更多的营养。
五年级下册数学教案9
教学目标
1、知识与技能
巩固整数与分数乘积的计算方法以及需要注意的问题。
2、过程与方法
通过将生活中的实例数学化进行计算解决问题。
3、情感态度和价值观
巩固以利于更加熟练计算整数和分数的乘积,并提高对生活实例的分析能力和计算能力。
教学重难点
熟练计算整数和分数的乘积。
教学过程
一、知识回顾
1、
2、
3、
二、新课引入
1、计算
(1)奇思早上吃了6块饼干,笑笑吃的饼干数是奇思的1/2,淘气吃的饼干数是奇思的2/3。
笑笑和淘气分别吃了多少块饼干?
6x1/2=3(块)
6x2/3=4(块)
答:笑笑吃了3块饼干,淘气吃了4块饼干。
(2)8的3/4是多少?
8x3/4=6
2、总结归纳
分数和整数相乘,分子与整数相乘,分母不变。
计算结果可以写成最简分数,能约分的,可以先约分。
3、练习
植树节,我们女生植了20棵树,男生植树的棵树比女生多1/4,男生比女生多植多少树?
20x1/4=5(棵)
答:男生比女生多植5棵树。
你能再说出一个类似的例子吗?
三、例与练
例1:门高2m,奇思的身高大约是门高的奇思的'身高大约是多少厘米?
2x3/4=1。5m=150cm
答:奇思的身高大约是150厘米。
例2:
练习:一场洪灾将村里960m长的公路冲毁了2/3,被冲毁的公路长多少米?
960x2/3=640m
答:被冲毁的公路长640米。
四、课堂小结
五、拓展延伸
某种松鼠的体长在20cm到28cm之间,它的尾巴约占体长的3/4,尾巴最长约有多长?最短约有多长?
20x3/4=15cm
28x3/4=21cm
答:尾巴最长约有15cm,最短约有21cm。
五年级下册数学教案10
教学内容:
人教版小学数学五年级下册教材第5-6页例3、例4。
教学目标:
1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。
2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
教学重点:
1、理解图形旋转变换的含义。
2、探索图形旋转的特征和性质。
教学难点:
能在方格纸上将一个简单图形旋转90°。
教学准备:
多媒体课件
教学过程:
教学环节教师活动学生活动设计意图一情景导入
1.揭示课题课件出现:摩天轮、电风扇、风车等旋转的物体。引导学生观察物体的旋转,并感知旋转现象观察物体的旋转,并感知旋转现象由学生生活中熟悉的事物引入,使学生感知旋转现象,建立旋转的表象。引导学生观察并描述这些物体是怎样运动的。
师:刚才,同学们反复地提到“旋转”,这节课我们就来研究“旋转”(板书课题)用语言描述这些物体是怎样旋转的`。还可以用肢体动作来表现这些物体的旋转。体验旋转现象,初步认识旋转。
2.联系生活师:生活中,你还见过哪些旋转现象?
师:同学们的思维真开阔,生活中像这样的旋转现象很多,那到底什么是旋转呢?
引导学生用数学语言概括出旋转含义,并板书。师:今天咱们就从与我们日常生活关系最密切地钟表和风车开始研究吧!风扇、陀螺、旋转木马、钟表、车轮……
学生用自己的语言说出旋转就是物体绕着某一个点或轴运动。通过生活事例,使学生初步了解图形的旋转变换。把学生的生活语言转化成数学语言,内化为学生的知识。
五年级下册数学教案11
一、教学内容:
粉刷围墙
教材第58 、59页的内容。
二、教学目标:
1 、通过学习,使学生巩固有关表面积的知识。
2 、加强数学知识在实际生活中的应用。
3 、培养学生收集、整理、分析信息的意识和能力。
三、重点难点:
应用数学知识灵活解决问题。
四、教学用具:
主题图,投影,相关数据。
五、教学过程:
(一)课堂前奏
谈话导人:
学校为了给同学们创设更好的学习环境,决定利用暑假时间粉刷围墙,这次粉刷想请同学们出出主意,亲自参与设计粉刷围墙的工程设计方案,我们以学习小组为单位,思考一下应该从哪几方面入手,确定后进行相应的'调查、测量,了解和收集相关数据。比一比,看哪个组的设计方案合理、实用,最后评出最佳设计奖和最佳策划。
(二)明确工作
1 、各小组汇报:粉刷围墙要做哪些工作?
小组汇报后,老师归纳板书:
了解粉刷面积
预算材料费
粉刷围墙人工费
(三)收集数据
了解数据来源。
粉刷面积:
(1)几个小组分工合作,亲自测量得出结果。
(2)向学校后勤组老师了解学校围墙面积。预算材料费:
(1)市场调查。(各组去不同商店)
(2)电话咨询相关单位。
(3)网上查阅。
(4)向熟悉这方面工作的家长了解相关信息。
人工费:
(1)向家长咨询。
(2)去装修厂家咨询。
(四)整理数据
1 、整理信息。
根据本组调查结果并聆听了其他组的意见后,整理有用信息进行方案设计。
2 、预算。
3 、设计粉刷围墙方案。
(五)提出方案
1 、各组把设计方案贴在磁板上展示。
2 、各组派代表介绍设计方案,其他组成员可质疑。
(1)粉刷围墙工程方案:
粉刷面积:1600m2
人工费:5元/m2,5 × 160O = 8000(元)
材料费:
型号规格价格耐用期
B——220kg/桶4405
440 ×(1600 ÷ 3 。5 ÷ 20)≈10000(元)
合计:8000 + 10000 = 18000(元)
(2)备选围墙装饰花边图案。
(3)备选围墙装饰颜色色板。
3 、集体评议最佳方案。说一说最佳方案好在哪儿。
4 、各组总结本次设计活动中的最佳参与个人。
5 、对于评选出的优秀小组和先进个人颁发奖状
6。把学生们的优秀设计方案整理装订好,请同学代表上交给学校后勤部门,让学生体会到数学的价值,体会到自己的劳动价值。
(六)课后延伸:
请你独立设计一个粉刷家庭围墙的方案,方案要符合家庭实际情况,注意环保和美观,做好后,请家长做出整体评价。
五年级下册数学教案12
信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。
1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。
2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。
3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。
一、引入:
1、出示:条形统计图
(1)某电影院上月各类影片观众人数统计图
(2)新芽书苑20xx年3月第一星期故事书销售情况统计图
2、提问:你已知道了条形统计图的`哪些知识?
3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。
(1) 上虞电影院20xx年(1~6)月观众人数统计图。
(2) 百官镇一农户96~20xx年人均收入统计图。
二、展开:
(一)折线统计图的特点和作用。
1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?
(1) 学生自由讨论交流。
(2) 这两类统计图最大的区别是什么?
2、结合条形统计图的特点,归纳折线统计图的特点。
3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?
4、结合课本进一步深入了解折线统计图的特点和作用。
(二)折线统计图的绘制。
1、你认为哪幅条形统计图用折线统计图来绘制更合适?
2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?
A、小组讨论 B、汇报 C、提问:绘制的关键是什么?
3、学生尝试绘制。
(1) 出示“我们的调查资料”。
(2) 想一想,哪几组数据用折线统计图绘制比较合适?
(3) 请选择其中一组数据绘制。
(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。
(5)大组交流绘制情况,并纠错。
三、应用
1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?
2、出示:百官镇一农户96~20xx年人均收入统计图。
思考:A、看图后你有什么感受?
B、你能提出哪些数学问题?
3、对比练习:
(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。
思考:A、两种鞋的销售趋势分别怎样?
B、你有什么建议?
(3) 出示:两家游泳衣专卖店的销售情况统计图。
思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?
B、猜猜为什么乐乐专卖店会有这样的销售现象
四、总结
你又有什么新收获?你是用什么方法学会的?
五、课外作业
省略
五年级下册数学教案13
教学内容
教科书第70~71页的例3及试一试。
教学目标
1、结合具体情境,理解整数的加减混合运算顺序在分数加减混合运算中同样适用的道理;认识带分数。
2、会用所学知识灵活解决混合运算中的问题,提高应用能力。
3、激发同学们参与数学学习的兴趣,获得成功体验,建立信心。
教学重、难点
分数的加减混合运算中怎样通分。
教学过程
一、复习铺垫
1、出示口算卡片
2/7+1/7 1/4+1/2 8/9—4/9 7/8—1/4 1—3/5 2/5+7/15
2、复习整数加减混合运算
(1)56+32+28 95+42-21 56-(21+14)
(2)整数加减混合运算的运算顺序是怎样的?
二、学习新知
结合情境,感悟分数混合运算顺序。
(1)教学例3(课件展示)。
师:观察图,你获得了哪些数学信息?
生:第一瓶剩下的酒精是3/5瓶,第二瓶剩下的酒精是2/3瓶,第三瓶剩下的酒精是2/5瓶,求"一共剩下多少瓶酒精。"
师:想一想,怎样解决这个问题呢?
生1:把剩下的酒精倒在一起。
让学生实践操作,体验感知结果是1瓶又2/3瓶。
生2:可以列式计算:3/5+2/3+2/5。
师:为什么用加法算?这是一道什么算式?(分数连加)
师:这是一道分数连加的算式。想一想,你准备怎样来计算这道题呢?说出理由。
学生先独立思考,然后全班交流。
生:我认为应该先确定它的运算顺序。
师:它的运算顺序是怎样的?
生:应该和整数连加运算一样,在没有括号的算式里,都应按从左到右依顺序计算。
师:为什么?
(引导学生看课件上的图)
生:因为在这道题中,先算第一瓶和第二瓶共剩多少酒精,再和第三瓶合起来共剩多少酒精,这个运算顺序正好和整数连加一样。
学生独立解答,然后展示解题结果,如下。有可能只出现其中一种解法,教师可引导学生想出
另一种算法。
算法一:3/5+2/3+2/5=9/15+10/15+6/15=25/15=5/3
算法二:3/5+2/5+2/3=1+2/3=123
师:请两位同学分别说说计算时是怎样想的?(也可多请几名学生说)
师:算法一是先把三个数一次性进行通分,再加。算法二是先算3/5+2/5得出1,再加2/3得
1+2/3。我们前面操作的结果就是1瓶又2/3瓶,说明这样计算是正确的。1+2/3可以写成1 。
(2)自主学习,认识带分数。
师:像1这样的分数又叫什么分数呢?怎么读?请同学们看教科书第70页。
生:像1这样的分数是带分数,读作:一又三分之二。
师:1在本题中表示的含义是1瓶多2/3瓶。5/3和1这两个结果相等吗?(充分让学生说
说自己的想法。可画线段图表示两个分数来比较。)
师:5/3和1相等,带分数1只是假分数5/3的另一种表现形式。
师:5/3怎样改写成带分数1?
小组讨论后汇报,教师引导出5/3=5÷3=1 。
归纳假分数化带分数的方法:用分母除以分子,整数商作带分数的整数部分,余数作带分数分
数部分的'分子,原分母作带分数分数部分的分母。
(3)尝试练习,理解分数混合运算顺序,弄清计算步骤。
教科书第71页试一试:
8/15+2/5+1/2 3/4-1/5-3/8 4/6-1/4+11/12
师:观察这几道题,它们分别是什么样的算式?运算顺序是怎样的?
生:分别是没有括号的异分母分数的连加、连减、加减混合算式,都应按从左到右的顺序计算。
学生独立解答,小组内相互交流各自的算法。
教师展示学生的作业,请学生分别说说每题的计算步骤。有不同算法的作业都展示出来。
师:观察这几道题的算法,比较这些算法有什么异同点?
生1:相同点是都要通分。
生2:不同点是可以分步计算,分步通分。
生3:也可以一次通分,然后再计算。
……
总结:计算异分母分数的加减混合运算时,必须先把相加减的异分母分数通分,化成同分母分
数。通分时可以分步计算,分步通分;也可以一次通分,然后再计算。注意计算时根据题目的特点和自己的方便来选择通分的方法。
三、总结新知,揭示课题
今天我们学习了哪些知识?(板书课题)这节课还有哪些收获?还有什么不懂的问题?
四、课堂作业
练习十五第2题第一横排。
五年级下册数学教案14
一、指导思想与理论依据
《课标》明确指出:“数学教学活动中,教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能。”要将这个理念落实在课堂教学中,就要求教师能根据教学的具体内容,选择恰当的学习方式,并巧妙创设学生主动探索的机会,变“接受学习”为“创造学习”,让学生在观察、操作、讨论、交流、归纳、整理、概括的过程中学习新知,充分以学生为主体,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。根据以上思想,本节课的设计我主要从尊重学生已有的知识经验;在观察与操作中去亲身体验知识的形成过程,掌握约分的方法。
二、教学背景分析
1、教学内容、地位及作用。
约分是分数基本性质的一种应用,是学生已经掌握了分数的基本性质和求几个数的最大公因数的.基础上进行教学的。同时,约分又是分数四则运算的重要基础。要掌握约分的方法,除了要能很快看出分子、分母最大公因数之外,很重要的一点是能判定约分的结果是不是最简分数。
2、学情分析
在学习约分之前,学生已经学习了了分数的基本性质,大多学生能较快的找出两个数的公因数、最大公因数,同时理解了互质数的概念。这些知识点的掌握为约分方法的学习提供了认知基础,学习本课应该较为容易。但快速并准确地判断约分的结果是不是最简分数对少部分学生应该有一定的难度。
三、教学方法与教学手段
在教法、学法上,我主要采用了问题启发法、操作探究法、验证发现法、归纳概括法,让学生在动手操作中,发现新知;在合作交流中探究新知;在实践验证中,理解新知,在归纳总结中提升新知。
根据学生原有的认识基础和认知规律,结合“以学生的发展为本”的理念,力求突出以下三点
第一、将教学内容活动化,让学生在操作中学。
第二、采用小组合作学习,让学生在互动中学。
第三、利用原有认知经验,让学生在迁移中学。
使学生获得了探索的乐趣和成功的体验。
四、教学目标
1、理解约分的意义。掌握约分的方法.
2、设置情景与激趣,让学生通过小组合作学习,利用旧知自主探究新知识.
3、培养学生迁移能力,归纳概括的能力及遇到问题积极思考,主动学习的学习习惯.
五、教学重点
理解最简分数及约分的意义和方法,六、教学难点
能很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
七、教学用具
教师准备:幻灯片,投影
学生准备:分别涂有红色,和绿色的卡片。
八、教学过程
口算复习
1、说出下面分数分子、分母的最大公因数。
3/5 2/8 4/6 5/15
五年级下册数学教案15
教学目标:
1、 引导学生经历和体验收集、整理、分析数据的过程,探究事物的规律。
2、学会用树状图或表格等辅助方法有条理地分析,有序地列举出简单事件的所有可能发生的结果。
3、能对可能发生的结果或某些事件发生的可能性的大小做出简单判断。
教学重点和难点:
重点:引导学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出简单判断,并做出适当的解释。
难点:引导学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出简单判断,并做出适当的解释。
教学媒体:教学平台
课前学生准备:每组准备:5、6、7、8四张扑克牌
教学过程:
课前准备:能简便要简便
7.2-1.2×[0.01÷(1-0.9)]
12.6×7.4÷6.3
一、复习引入。
1、请学生回忆对于“可能性”的认识
2、师:大家都知道可能性有大小之分,那么一件事情在发展过程中可能会出现多少种不同的结果呢?这就是我们今天所要学习的知识。
(出示课题:可能情况的个数)
二 、新知探究。
1、探究一:摸牌组数
师:请大家以四人为一组,用5、6、7、8这四张扑克牌一共可以组合出多少个两位数。
(1) 学生分小组动手操作
(2)汇报结果,列举交流
学生汇报交流,能拼出哪些不同的两位数。
问:怎样才能无重复、无遗漏地排出所有的可能结果?
(3)组内交流
(4)出示小亚和小胖的方法
(引导学生通过树状图或表格法来表述解题过程。)
小结:推测一件事物可能产生的结果,我们可以通过树状图或列表格的方法找到所有的可能性。
试一试:(课本P59)
(1)、在下图所示的旗上,分别涂上红、黄、蓝三种不同的颜色,总共有多少种不同的涂法?
(3)、在小胖、小巧、小亚、小丁丁和小丽五人学习小组中选出两名负责人,可能会有多少种选法?
2、探究二:
师:如果想要知道在这四张扑克牌中任意抽出两张计算它们的和,会有多少种不同的和。你打算怎么做?
学生讨论并交流解题方法。
学生动手操作得出结论(用数状图或表格)。
比较异同。
师:我们先后两次从四张扑克牌中任意抽出两张,一次是组成两位数,一次是计算和,大家觉得这两次操作有什么相同点和不同点?
学生交流。
小结:两次操作的目的不一样,但推测的方法都一样。在无遗漏、无重复地排出所有可能情况后,再根据要求去掉相同的情况的个数。
三、课内练习。
1、在四瓶不同的饮料中,选出两瓶装入口袋,可能有多少种不同的选法?
2、同时掷出两个数点块,掷出的`两个数点块的点数之和有多少种可能?
3、要在小胖、小巧、小亚、小丁丁和小丽五人中选出两人参加义务劳动,总共有多少种不同的选法?
学生集体完成,交流结果
师:这三题有什么要注意的地方?
(在树状图或表格中去掉相同的,就能得到最后的可能数。)
四、课堂总结。
今天我们运用的数状图或表格方法研究了可能性的问题,学会判断事情发生的可能性大小,希望大家可以用这些知识来为我们的生活提供帮助。
五、课后作业。
游戏:拿2、4、5、7四张数字卡片,能排出几个三位数?是哪几个?
检测目标达成练习:
1、.冷饮店里有五种冰激凌,从中选出两种,有多少不同的选法?
草莓冰激凌
香草冰激凌
巧克力冰激凌
咖啡冰激凌
果茶冰激凌
2、有1、2、3、4、5五张数卡,小胖和小丁丁每人从中抽出一张,小胖抽到的数字比小丁丁大的,总共有多少种情况?
教学反思:
【五年级下册数学教案】相关文章:
五年级下册数学教案03-28
(优选)五年级下册数学教案01-27
小学五年级下册数学教案02-15
新课标五年级下册数学教案范文01-03
苏教版五年级下册《圆的周长》数学教案01-17
五年级下册数学教案(大全15篇)11-06
沪教版五年级下册《方程》数学教案11-19
沪教版五年级下册《方程》数学教案【精选】01-17