当前位置:9136范文网>教育范文>教案>全等三角形教案

全等三角形教案

时间:2024-10-25 18:31:19 教案 我要投稿

全等三角形教案

  作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?以下是小编整理的全等三角形教案,欢迎阅读,希望大家能够喜欢。

全等三角形教案

全等三角形教案1

  教材分析

  利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

  学情分析

  学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的'准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

  教学目标

  (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

  (2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

  (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

  教学重点和难点

  重点:三角形全等条件的探索过程是本节课的重点。

  从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

  难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  教学过程

  一、回顾概念整合知识以提问的方式引出本节课的教学内容:

  问题1通过调查你对商品的标价、售价、进价和利润、利润率这些概念清楚了吗?你能列出它们之间的关系式吗?

  (学生板书写出三个基本关系式)

  教师引导得出变形关系式:利润=进价 × 利润率.

  设计意图通过调查使学生对商品销售过程所涉及的基本量、基本关系式有初步的了解,为后续的学习作好铺垫.

  二、强化练习巩固概念

  问题2运用基本关系式来做一组练习.

  1.如果足球的进价是每个a元,超市按进价提高30%后标价,则标价是多少元?

  2.如果足球的进价是每个a元,标价是每个150元,现7折优惠,则每个足球的利润是多少元?

  3.如果足球的进价是每个a元,卖出后盈利25%,则每个足球的利润是多少?

  4.如果足球的进价是每个a元,卖出后亏损25%,则每个足球的利润是多少?

  设计意图通过题组练习使学生熟练掌握进价、标价、利润、利润率之间的关系,进而促使学生理解概念.

  三、实践应用合作交流

  问题3解决调查编写的商品销售方面的有关问题.

  设计意图通过让学生编题互问互检,学生间的相互评价,拓展学生思维,给学生创造一个合作交流和表现发挥的舞台,让学生充分体验成功后的喜悦.

  四、联系实际探究新知

  问题4某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

  教师在学生独立思考几分钟后让学生估算并简单说出估算的理由,估算对否不给予评判,告诉学生估算对不对还要进行计算. 如何计算学生先独立思考,然后同桌交流,最后请一名同学到黑板板演利用一元一次方程解决此实际问题全部过程,其他同学在底下完成. 完成后同学间相互评价. 最后教师指出解决问题的关键——寻找等量关系,教师再进一步用估算方法分析亏损的原因.

  设计意图在学生基本掌握解决有关商品销售问题的基础上对所学内容进行拓展,延伸. 设计开放性问题的目的是通过本题的讲解使学生灵活运用本节的知识解决生活中的实际问题,也使全体学生在获得必要发展的前题下,不同的学生获得不同的体验.

  五、巩固练习当堂反馈

  问题5若某商品因库存积压,准备打折出售,如果按定价的7.5折出售将赔25元,而按定价的9折出售将赚20元. 该商品定价是多少元?

  (同学们思考后各自独立完成,然后同学互判)设计意图本节课对学生来说是一个难点,因此设计反馈这一环节很有必要,便于教师掌握学生学习的情况.

  六、布置作业课后延伸

  设计意图加深学生对知识的巩固;是课堂教学内容的延

全等三角形教案2

  一、教学内容分析

  本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

  二、学生学习情况分析

  学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

  学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

  三、设计思想

  我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

  四、教学目标

  1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

  2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

  3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。

  五、教学重点和难点

  重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。

  难点:三角形全等条件的探索中的分类思想的渗透。

  六、教学过程设计

  具体设计的教学过程描述如下:

  (一)创设情境,提出问题

  1.出示多媒体:

  大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?

  [学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。

  [设计意图]通过问题情境的创设,不但引入了本课的.课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。

  (二)探索发现,合作交流

  1.一个条件

  按照三角形“边、角”元素进行分类,师生共同归纳得出:

  一个条件: 一边,一角;

  再按以上分类顺序动脑、动手操作验证。

  2.验证过程可采取以下方式:

  画一画:按照下面给出的一个条件各画出一个三角形。

  ①三角形的一条边长是8cm;

  ②三角形的一个角为 60°。

  剪一剪:把所画的三角形分别剪下来。

  比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。

  对只给一个条件画三角形,画出的三角形一定全等吗?

  同组同学互相比较,观察得出结果。小组代表说明本小组的结论。

  再结合展示幻灯片。以便强化结论。

  教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。

  3.二个条件

  继续探索二个条件的情况,师生共同归纳得出:

  两个条件: 二边,一边一角,二角;

  [教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。

  [设计意图]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。

  4.画一画:按照下面给出的两个条件各画出一个三角形。

  ①三角形的两条边分别是:8cm,10cm;

  ②三角形一条边为7cm,一个角为 30°;

  ③三角形的两个角分别是:30°,50°。

  剪一剪:把所画的三角形分别剪下来。

  比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。

  [学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。

  [教师活动]在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。

  5.学生展示本小组的结论

  [设计意图]培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。

  [知识链接]这一知识点既是对后续归纳总结起到实验性证明。

  6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。

  [设计意图]从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。

  7. 继续探索三个条件的情况,师生共同归纳得出:

  三个条件: 三边,两边一角,一边两角,三角

  再继续探索三个条件中的三条边的情况。

  8. 画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。

  (对画图有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)

  剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。

  比一比:作出的三角形与其他同学作的比一比,是否全等。

  9.全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。

  [学情预设] 全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。

  [设计意图]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。很自然的突出重点。

  (三)、归纳结论,解决问题

  1.从上面的活动中,我们总结出:

  三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

  学生由理解上升到口述出原理,以便以后更好的运用到实践中去。

  [学情预设]学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。

  2.成功的解决了上面提出的玻璃问题。

  我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。

  (三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)

  [设计意图]学以致用,发现问题解决问题。

全等三角形教案3

  一、教学目标

  【知识与技能】

  理解并掌握全等三角形的概念及性质。

  【过程与方法】

  经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。

  【情感、态度价值观】

  感受生活中的数学,体会数学的魅力,从而激发学习数学的.兴趣,获得成功的情感体验。

  二、教学重难点

  【教学重点】

  全等三角形的概念与性质。

  【教学难点】

  全等三角形的性质。

  三、教学过程

  (一)导入新课

  图片导入,请学生观察生活中的全等图形的图片。提问:其中的图形有什么特点?适当请学生举例,导入课题。

  (二)讲解新知

  1.操作观察,得出概念

  给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。这里要提醒学生用剪刀要注意安全。

  提问:照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?

  预设:形状大小完全一样,能完全重合。

  多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。

  接着请学生回答,教师展示洗出来的两张照片,进行重合,请学生观察。

  在学生得到特点之后,教师总结全等形和全等三角形的概念。

  2.平移、翻折、旋转,对应关系

  小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形,什么变了?什么没变?

  预设:位置变了,形状大小没变。

  教师总结:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

  3.对应顶点、对应边、对应角

  请学生将平移前后的两个三角形重合,找出重合的顶点、边、角,并标出来。

  教师提出概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合

全等三角形教案4

  〖教学目标〗

  ◆1、探索两个直角三角形全等的条件.

  ◆2、掌握两个直角三角形全等的条件(hl).

  ◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

  〖教学重点与难点〗

  ◆教学重点:直角三角形全等的判定的方法“hl”.

  ◆教学难点:直角三角形判定方法的说理过程.

  〖教学过程〗

  一、创设情境,引入新课:

  教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

  二、合作学习:

  1.回顾:判定两个直角三角形全等已经有哪些方法?

  2.有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

  “斜边和一条直角边对应相等的两个直角三角形全等(hl)。”

  教师归纳出方法后,要学生注意两点:

  <1>“hl”是仅适用于rt△的特殊方法。

  <2>应用“hl”时,虽只有两个条件,但必须先有两个rt△的条件

  (3) 教师引导、学生练习 p47

  三、 应用新知,巩固概念

  例题讲评

  例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

  分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

  小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的.方法)

  角的内部,到角的两边距离相等的点,在这个角的平分线上。

  四、学生练习,巩固提高

  练一练:p48 1. 2. p49 3

  五、小结回顾,反思提高

  (1)本节内容学的是什么?你认为学习本节内容应注意些什么?

  (2)学习本节内容你有哪些体会?

  (3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)

  (4)你现在知道的有关角平分线的知识有哪些?

  六、布置作业

【全等三角形教案】相关文章:

全等三角形教案09-13

全等三角形判定教案01-24

三角形全等的判定教案12-28

数学全等三角形教案12-30

全等三角形教案优秀11-21

初二全等三角形教案03-16

全等三角形教案【合集15篇】07-15

全等三角形教案合集15篇03-27

《全等三角形》的教学反思05-15