当前位置:9136范文网>教育范文>教案>小学方程的教案

小学方程的教案

时间:2024-11-29 13:57:22 教案 我要投稿

小学方程的教案

  作为一位不辞辛劳的人民教师,时常需要编写教案,教案是备课向课堂教学转化的关节点。那么大家知道正规的教案是怎么写的吗?以下是小编整理的小学方程的教案,仅供参考,希望能够帮助到大家。

小学方程的教案

小学方程的教案1

  教学目标

  了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

  1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

  2.一元二次方程的一般形式及其有关概念.

  3.解决一些概念性的题目.

  4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

  重难点关键

  1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

  教学过程

  一、复习引入

  学生活动:列方程.

  问题(1)《九章算术》勾股章有一题:今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?

  大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

  如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.

  整理得:_________.

  问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

  如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

  整理,得:________.

  老师点评并分析如何建立一元二次方程的数学模型,并整理.

  二、探索新知

  学生活动:请口答下面问题.

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)有等号吗?或与以前多项式一样只有式子?

  老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

  因此,像这样的`方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

  分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

  解:去括号,得:x2+2x+1+x2-4=1

  移项,合并得:2x2+2x-4=0

  其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

  三、巩固练习

  教材P32 练习1、2

  四、应用拓展

  例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

  分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

  证明:m2-8m+17=(m-4)2+1

  ∵(m-4)20

  (m-4)2+10,即(m-4)2+10

  不论m取何值,该方程都是一元二次方程.

  五、归纳小结(学生总结,老师点评)

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

  六、布置作业

小学方程的教案2

  教材简析

  这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。

  本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。

  教学目标

  1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。

  2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。

  3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

  教学过程

  一、创设情境 激趣导入

  谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)

  我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。

  【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。

  二、合作探究 获取新知

  1、找出白鳍豚这组资料的等量关系,用字母表示。

  (1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?

  白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。

  (2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。

  (3)先自己写一写,再与小组内的同学交流。

  20xx年只数 + 300只=1980年只数

  1980年只数 - 20xx年只数=300只

  1980年只数-300只=20xx年只数

  (4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。

  学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。

  (5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。

  【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。

  2、借助天平理解等式的意义。

  根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)

  像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)

  (1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)

  (2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。

  提问:你发现了什么?你能想办法让天平平衡吗?

  右盘加上50克的砝码,天平平衡了。

  (3)天平左盘放入10克砝码,右盘放入20克砝码。

  提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)

  提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?

  10+10=20(板书)

  (4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。

  谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。

  20+x=50(板书)

  (5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。

  要求:用等式表示出天平左右两边的关系。

  50+50=100 4x=200(板书)

  (6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。

  【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。

  3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

  (1)提问:继续看大熊猫的资料,你获得了哪些信息?

  20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的`10倍。

  (2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?

  师生总结:

  您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数

  10x=1600

  如果用x表示人工养殖大熊猫的只数,那么x10=1600

  (3)学生打开教科书57页,结合图示进一步理解以上等量关系。

  【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。

  4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

  (1)提问:继续看东北虎的资料,你获得了哪些信息?

  预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。

  (2)提问:根据以上信息你能提出什么问题?

  引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。

  (3)先自己写一写,再与小组同学交流。

  学生汇报:

  20xx年的只数3+100=20xx年的只数

  列式为: 3X+100=1000 (板书)

  画图为:天平的左盘是3个X和一个100,右盘是1000。

  提问:这里的X表示什么?(x表示20xx年的只数。)

  【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。

  5、揭示方程的意义。

  (1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?

  引导学生分成两类:含有字母的是一类,不含字母的是一类。

  我们把含有未知数的这类等式叫做方程。(板书)

  (2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。

  (3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?

  方程必须含有未知数,还必须是等式。

  【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。

  三、巩固练习 加强应用

  1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。

  2、出示自主练习2,看图列方程。

  学生独立完成,说说自己是怎样想的。

  3、出示自主练习3,填一填。

  学生独立完成。

  【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。

  四、回顾反思 总结提升

  谈谈这节课你有哪些收获?

  总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。

  总设计意图:

  本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

  教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。

  总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。

小学方程的教案3

  学习目标

  1、进一步熟悉分式方程的解法;

  2、会列分式方程解决实际问题。

  学习重点

  实际生活中相关工程问题类的分式方程应用题的分析应用.

  学习难点

  将实际问题中的等量关系用分式方程来表示并且求得结果.

  学习过程

  一、知识链接:

  1、解方程

  (1)(2)

  2、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达。已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度。

  (1)此题中所包含的相等关系是:

  ①____________________________________________________;

  ②_____________________________________________________

  (2)若设骑车同学的速度为x千米/时,则汽车所用的时间为________________小时,骑车同学所用的时间为______________________小时。

  (3)列出方程,并解答.

  二、探究新知

  例1两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?

  练习:甲,乙做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲,乙每小时各做多少个?

  例2某次列车平均提速 vkm/h.用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度为多少?

  练习:甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地.求甲、乙的速度。

  三、巩固练习:

  1、某化肥厂原计划每天生产化肥x吨,由于采取了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的'方程是().

  2、部分学生自行组织春游,预计费用120元,后来又有2名学生参加,总费用不变,这样每人可少交3元,若设原来这部分学生的人数是x人,则可列方程为.

  3、某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?

  4、我市某校为了创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?

  5、某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍,求手工每小时加工产品的数量.

  四、课后反思:

小学方程的教案4

  有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

  例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?

  分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

  设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

  解:设有胶鞋x双,则有布鞋(46-x)双。

  7.5x-5.9(46-x)=10,

  7.5x-271.4+5.9x=10,

  13.4x=281.4,

  x=21。

  答:胶鞋有21双。

  分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以

  答:袋中共有74个球。

  在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。

  例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[

  分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  80x-40=(30x+40)×2,

  80x-40=60x+80,

  20x=120,

  x=6(座)。

  分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)×80=(2x+40)×30,

  80x-3200=60x+1200,

  20x=4400,

  x=220(米3)。

  由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

  同理,也可设有红砖x米3。留给同学们做练习。

  例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?

  分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程

  x-10=[(x-10)×2-9]×5,

  x-10=(2x-29)×5,

  x-10=10x-145,

  9x=135,

  x=15(个)。

  例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:

  还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?

  分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的`进球数加上至少投进3个球的人的进球数,

  0×7+1×5+2×4+6×(x-7-5-4)

  = 5+8+6×(x-16)

  = 6x-83,

  也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,

  = 3×(x-8)+24+36+10

  = 3x+46。

  由此可得方程

  6x-83=3x+46,

  3x=129,

  x=43(人)。

  例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。

  分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程

  4÷(150-3x)=8÷(150-x),

  4×(150-x)=8×(150-3x),

  600-4x=1200-24x,

  20x=600,

  x=30(千克)。

  练习23

  还剩60元。问:甲、乙二人各有存款多少元?

  有多少溶液?

  3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?

  4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?

  5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?

  含金多少克?

  7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?

小学方程的教案5

  一、复习目标:1、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;2、根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;3、能灵活运用条件求出直线的方程。

  二、重难点:重点:理解倾斜角与斜率的对应关系,熟练利用五种形式求直线方程

  难点:在求直线方程时,条件的转化和设而不求的运用

  三、教学方法:讲练结合,探析归纳

  四、教学过程

  (一)、谈新考纲要求及高考命题考查情况,促使学生积极参与。

  1、最新考纲要求:(1)、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;(2)、根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;(3)、能灵活运用条件求出直线的方程。

  2、高考命题考查情况及预测:本课高考考查的重热点是直线的倾斜角与斜率和直线的方程及其应用,多以选择题或填空题考查,解答题中也涉及到,单独命题很少,大都与圆锥曲线、三角结合考查,一般属于中难题。预测2013年高考仍会如此。以此突出考查学生的理解能力、逻辑思维能力、运算能力及数形结合的思想方法运用的能力。

  (二)、知识梳理整合,(学生完成复资P223填空题,教师针对问题讲评)

  1、直线的倾斜角与斜率:

  ⑴、对于一条与x轴相交的直线,把x轴所在直线绕着它与直线的交点按照逆时针方向旋转到第一次和直线重合时,所转过的最小正角叫倾斜角;倾斜角的取值范围是[00,1800);

  ⑵、直线的倾斜角α与斜率k的关系:当α时,k与α的关系是

  α时,直线斜率不存在⑶、经过两点P1(x1,y1)P2(x2,y2)(x1≠x2)的直线的斜率公式是;

  2、直线方程的五种形式:

  ⑴、点斜式方程是;不能表示的直线为垂直于轴的直线;

  斜截式方程为;不能表示的直线为垂直于轴的直线;⑶、两点式方程为;不能表示的直线为垂直于坐标轴的直线;⑷、截距式方程为;不能表示的直线为垂直于坐标轴的直线和过原点的直线;⑸、一般式方程为。

  3、几种特殊直线的方程:

  ①过点垂直于x轴的直线方程为x=a;过垂直于y轴的直线方程为y=b;②已知直线的纵截距为,可设其方程为;③过原点的直线且斜率是k的直线方程为y=kx。

  4、小试牛刀:

  1、直线x=-1的倾斜角等于()

  A、0°B、90°C、135°D、不存在

  2、已知两点A(-3,),B(,-1),则直线AB的斜率是()

  A、B、-C、D、-

  3、过点(-1,3)且垂直于直线x-2y+3=0的直线方程为()

  A、2x+y-1=0B、2x+y-5=0

  C、x+2y-5=0D、x-2y+7=0

  解析:直线x-2y+3=0的斜率为k=,则所求直线的斜率为-2,故所求直线方程为y-3=-2(x+1),即2x+y-1=0、

  4、已知直线的斜率是,在y轴上的截距是5,则该直线的方程为________、

  解析:因为直线的斜率为,又因为直线在y轴上的截距是5,由斜截式,得直线的方程为y=x+5、

  5、(2011·济南调研)设点A(1,0),B(-1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是________、

  【全解全析】直线2x+y-b=0在x轴上的截距为,欲使直线2x+y-b=0与线段AB相交,则需-1≤≤1,解得-2≤b≤2、

  6、(2010·安徽卷)过点(1,0)且与直线x-2y-2=0平行的直线方程()

  A、x-2y-1=0B、x-2y+1=0

  C、2x+y-2=0D、x+2y-1=0

  解析:∵所求直线与直线x-2y-2=0平行,∴所求直线斜率k=,排除C、D、

  又直线过点(1,0),排除B,故选A、

  2、若直线y=-x-经过第一、二、三象限,则()

  A、ab0,bc0B、ab0,bc0C、ab0,bc0D、ab0,bc0

  解析:因为直线经过第一、二、三象限,所以-0,即ab0,且直线与坐标轴的交点在原点的上方,所以-0,即bc0、

  (四)、小结:1、直线方程是表述直线上任意一点M的坐标x与y之间的关系,由斜率公式可导出直线方程的五种形式。这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定。2、待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程时,应该注意所设方程的适用范围。

  直线与方程

  第二章直线与方程小结与复习

  一、教材分析:本节课是对第二章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生基本知识系统化和网络化,基本方法条理化。本章内容大致分为三个部分:(1)直线的倾斜角和斜率;(2)直线方程;(3)两条直线的位置关系。可采用分单元小结的方式,让学生自己回顾和小结各单元知识。再此基础上,教师可对一些关键处予以强调。比如可重申解析几何的基本思想——坐标法,并用解析几何的基本思想串联全章知识,使全章知识网络更加清晰。指出本章学习要求和要注意的问题,可让学生阅读教科书中“学习要求和要注意的问题”有关内容。教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中的特殊地位。

  二、教学目标:通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力。能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分析讨论的思想和抽象思维能力。

  三、教学重点:1、直线的倾斜角和斜率、2、直线的方程和直线的位置关系的应用、3、激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力、

  教学难点:1、数形结合和分类讨论思想的渗透和理解、2、处理直线综合问题的`策略、

  四、教学过程

  (一)、知识要点:学生阅读教材的小结部分、

  (二)、典例解析

  1、例1、下列命题正确的有⑤:①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α180°,且当倾斜角增大时,斜率也增大;③过两点A(1,2),B(m,-5)的直线可以用两点式表示;⑤直线Ax+By+C=0(A,B不同时为零),当A,B,C中有一个为零时,这个方程不能化为截距式、⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1、

  2、例2、若直线与直线,则时,a_________;时,a=__________;这时它们之间的距离是________;时,a=________、答案:;;;

  3、例3、求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;

  答案:(1)2x+3y-1=0;(2)2x-y+5=0;(3)x+y-1=0或3x+2y=0;(4)4x+y-6=0或3x+2y-7=0

  4、例4、已知直线L过点(1,2),且与x,y轴正半轴分别交于点A、B(1)求△AOB面积为4时L的方程。解:设A(a,0),B(0,b)∴a,b0∴L的方程为∵点(1,2)在直线上

  ∴∴①∵b0∴a1

  (1)S△AOB===4∴a=2这时b=4∴当a=2,b=4时S△AOB为4

  此时直线L的方程为即2x+y-4=0

  (2)求L在两轴上截距之和为时L的方程、解:∴这时∴L在两轴上截距之和为3+2时,直线L的方程为y=-x+2+

  5、例5、已知△ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C的坐标、

  解:∵∴

  ∴直线AC的方程为

  即x+2y+6=0(1)又∵∴BC所在直线与x轴垂直故直线BC的方程为x=6(2)解(1)(2)得点C的坐标为C(6,-6)

  (三)、课堂小结:本节课总结了第三章的基本知识并形成知识网络,归纳了常见的解题方法,渗透了几种重要的数学思想方法、

  (四)、作业、:教材复习参考题

  五、教后反思:

  直线的参数方程学案

  第06课时

  2、2、3直线的参数方程

  学习目标

  1、了解直线参数方程的条件及参数的意义;

  2、初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习过程

  一、学前准备

  复习:

  1、若由共线,则存在实数,使得,2、设为方向上的,则=︱︱;

  3、经过点,倾斜角为的直线的普通方程为。

  二、新课导学

  ◆探究新知(预习教材P35~P39,找出疑惑之处)

  1、选择怎样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种“方向”“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程。

  如图,在直线上任取一点,则=,而直线

  的单位方向

  向量

  =(,)

  因为,所以存在实数,使得=,即有,因此,经过点

  ,倾斜角为的直线的参数方程为:

  2、方程中参数的几何意义是什么?

  ◆应用示例

  例1、已知直线与抛物线交于A、B两点,求线段AB的长和点到A,B两点的距离之积。(教材P36例1)

  解:

  例2、经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程、(教材P37例2)

  解:

  ◆反馈练习

  1、直线上两点A,B对应的参数值为,则=()

  A、0B、

  C、4D、2

  2、设直线经过点,倾斜角为,(1)求直线的参数方程;

  (2)求直线和直线的交点到点的距离;

  (3)求直线和圆的两个交点到点的距离的和与积。

  三、总结提升

  ◆本节小结

  1、本节学习了哪些内容?

  答:1、了解直线参数方程的条件及参数的意义;

  2、初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习评价

  一、自我评价

  你完成本节导学案的情况为()

  A、很好B、较好C、一般D、较差

  课后作业

  1、已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。

  2、经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程

  3、过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

小学方程的教案6

  教学内容:

  人教版第九册第102页练习二十五的习题。

  教学目标:

  1、通过练习,进一步理解和掌握ax±b=c这一类简易方程的解法,并能正确解简易方程。

  2、养成自觉检验的良好习惯。

  3、培养分析推理能力和思维的灵活性,提高解方程的能力。

  教学重点:

  进一步理解和掌握ax±b=c这一类简易方程的解法。

  教学难点:

  能正确解简易方程。

  教学过程:

  一、复习温顾。

  1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

  8×5+3x=70

  2、把下列解方程和检验过程补充完整。

  5x-3.7=8.5

  解:5x=8.5○()

  ()=12.2

  x=()○()

  x=2.44

  检验:把x=2.55代入原方程,

  左边=5×()-3.7=()

  右边=()

  左边○右边

  所以x=2.55是原方程的解。

  8x-4×14=0

  解:8x-()=0

  ()=56

  ()=56÷8

  x=()

  检验:把x=()代入原方程,

  左边=()×()-4×14=()

  右边=0

  左边○右边

  所以x=()是原方程的解。

  3、解下列方程:

  ⑴6x=42

  ⑵6x+35=77

  ⑶6x+5×7=77

  比较:这几道方程有什么相同和不同?解题后有什么体会?

  (这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

  二、巩固练习。

  1、可以把5x看作减数的是方程()。

  A.5x-6=20B.30+5x=75C.30-5x=5D.5x÷3=20

  2、2x在下列方程中可以看作什么部分数?

  ①2x+2.5=32.5()②2x-30=60()③2x-3×5=45()

  ④2x×7=42()⑤30×2-2x=12()⑥2x÷12=35()

  3、不解方程,你能判断下列方程的`解是否正确吗?说说你的方法。

  ①7x+15=120的解是x=15。()

  ②5x-3×6=22的解是x=9。()

  ③6x÷5=12的解是x=15。()

  ④12×5-3x=30的解是x=10。()

  4、解下列方程。(也可以选择第2题的方程其中3题)

  4x-7.2=10

  0.4(x-5)=16

  1.2x+0.16÷0.2=3.2

  5、列出方程并求方程的解。

  8与5的积减去一个数的4倍,差是20,这个数是多少?

  以上各题4人小组独立完成后,先交流订正,再集体订正。

  第4、5题,要求做错的题目,订正在练习纸的右栏。

  三、错题分析。

  1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

  2、出示常见的错题。

  观察下列各题的解方程是否正确,不正确的指出错处。

  7x-3.5=17.5

  解:x-3.5=17.5÷7

  x-3.5=2.5

  x=2.5+3.5

  x=6

  7x-3.5=17.5

  解:x=17.5+3.5

  x=21

  7x-3.5=17.5

  解:x=17.5+3.5

  7x=21

  x=21÷7

  x=3

  2x+4×3=48

  解:2x=4×3

  2x=12

  2x=48-12

  2x=36

  x=36÷2

  x=18

  四、拓展练习。

  1、根据方程24×6-x=80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

  情景:学校食堂买来6袋大米,每袋()千克,用去了一些,还剩()千克,()多少千克大米?

  2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

  ①6x+5×7=70+7

  ②2×3x+5×7=70+7

  ③(3+2x)×2=30

  3、如果2x+4=16,那么4x+8=()

  4、⑴x等于什么数时,3x-9的值等于12?

  ⑵x等于什么数时,3x-9的值大于12?

  五、复习小结。

小学方程的教案7

  教学内容:

  教材第88---90页

  教学目标:

  1、结合情境,了解方程的意义;

  2、会用方程表示简单的等量关系;

  3、在列方程的过程中,体会方程与现实世界的'密切联系。

  教学重难点:

  1、了解方程的意义;

  2、会用方程表示简单情境中的等量关系。

  教学准备:

  情境图、课件、卡片(等式、不等式、方程….)

  教学过程:

  一、课前谈话,设疑导入

  1、为什么学习方程?

  2、方程是什么?

  二、带着问题自主学习,合作交流,建立方程概念

  问题一:为什么学方程?

  (一)出示天平,建立等量概念:

  左边=右边

  (二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)

  1、小组合作,看图找出等量关系,用式子表示出来

  2、小组汇报,并将式子板书在黑板上

  小结:刚刚我们每一小组用式子表达情境问题中的等量关系,说说我们用的式子和以前用的式子有什么相同、不同之处?

  问题二:什么是方程?

  根据小结板书:含有未知数的等式叫方程。

  1、读一读:

  师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。

  2、圈一圈:

  师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。

  3、写一写:

  师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)

  4、试一试:

  含有未知数的式子就是方程吗?举个例子。

  等式一定是方程吗?举例。

  5、游戏巩固:听口令做动作

  游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式

  游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。

  三、课堂小结:

  1、这节课你有什么收获?

  2、第89页练一练第1、2题。

  四、布置作业

小学方程的教案8

  一、教学目标

  (一)基础知识目标:

  1.理解方程的概念,掌握如何判断方程。

  2.理解用字母表示数的好处。

  (二)能力目标

  体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的.重要一步,从算式到方程(从算术到代数)是数学的一大进步。

  (三)情感目标

  增强用数学的意识,激发学习数学的热情。

  二、教学重点

  知道什么是方程、一元一次方程,找相等关系列方程。

  三、教学难点

  如何找相等关系列方程

  四、教学过程

  (一)创设情景,引入新课

  由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  (二)提出问题

  章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

  你会用算术方法解决这个实际问题么?不妨试一下。

  如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

  根据题意画出示意图。

  由图可以用含x的式子表示关于路程的数量,王家庄距青山千米,王家庄距秀水千米,由时间表可以得出关于路程的数量,从王家庄到青山行车小时,王家庄到秀水小时,汽车匀速行驶,各路段车速相等,于是列出方程:

小学方程的教案9

  设计说明

  1、引导学生边观察、边思考,提高自主学习能力。

  《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。  2。引导学生辨方程、写方程,重视学情反馈。

  数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。

  课前准备

  教师准备:PPT课件、学情检测卡、课堂活动卡

  学生准备:小黑板、练习卡片

  教学过程

  情境引入,体会“等”与“不等”

  师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。

  师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)

  师:哪个班赢了?你能用一个数学式子来表示吗?

  (学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的.意义)

  师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)

  设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。

  情境呈现,抽象模型

  1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)

  自学提示:

  (1)理解教材62页每幅图画及对应式子的含义。

  (2)标示出你认为重要的内容。

  (3)思考:方程应该具备哪几个条件?

  (4)结合你对方程概念的理解,完成教材63页“做一做”1题。

  2、合作学习。

  (1)你能自己写几个方程吗?小组内互相订正。

  (2)组内交流收获。在小组内互相说一说:你学到了什么?

  由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。

  (3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。

  (此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)

  预设:

  ①全班同学的答案一致,全对。

  ②一部分小组全对,一部分小组有错误。

  这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。

  3、整理分类,加深对方程意义的理解。

  (1)组织学生分组活动,根据黑板上的算式特点进行分类。

  (2)交流汇报,说出分类依据。教师板书。

  4、独立完成教材63页“做一做”2题,汇报,集体订正。

  5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。

小学方程的教案10

  学习目标:

  1.探索具体问题中的数量关系和变化规律,并用方程进行描述,进而让学生初步体验方程是刻画现实世界的一种有效模型。

  2.通过观察所列的方程的特点,掌握一元一次方程的概念并能够熟练识别一元一次方程

  3.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。

  4.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。

  学习难点:

  分析与确定问题中的等量关系,能用方程来描述和刻画事物间的等量关系。

  教学过程:

  一、创设情境,引入新课

  问题一:

  甲、乙两城市间的铁路经过技术改造,列车在甲乙两城市间的运行速度从80千米/时提高到100千米/时,运行时间缩短了3小时.甲、乙两城市间的路程是多少千米?

  変式1:甲、乙两列车都从A市驶向B市,甲车用了3小时,乙车用了2小时。已知乙车的速度是甲车速度的2倍少40千米,甲、乙两车的速度分别是多少?

  変式2:甲、乙两列车都从A市驶向B市,甲车用了3小时,乙车用了2小时。已知乙车的速度是甲车速度的2倍少40千米,A、B两城市间的路程是多少?

  二、合作质疑,探索新知

  问题二:小明用50元钱购买了面值为1元和2元的邮票共30张,他买了多少张面值为1元的邮票?

  如果设面值为1元的邮票买了x张,那么面值为2元的邮票买了_______张.

  买面值为1元的邮票的钱+买面值为2元的邮票的钱=50元.

  可得方程____________________

  问题三:某通讯公司有两种手机话费付费方式:第一种方式不交月租费,每分钟付话费0.6元;第二种方式每月交月租费50元,每分钟付话费0.2元.一个月通话多少分钟时,两种付费方式费用相同?

  三、自主归纳,形成方法

  1、学生自主归纳:如何从问题到方程?

  2、自主归纳一元一次方程的特点,并举例说明

  四、巩固练习:

  根据实际问题的意义列出方程

  1.甲车的速度为60km/h,乙车的速度80km/h,两车同时同地出发,反向而行,经过多长时间两车相距280km?

  2.小丽花50元钱买了面值为1元和2元的两种邮票,如果面值为2元的邮票比面值为1元的邮票少5张,那么,这两种面值的邮票各买了多少张?

  3.一个长方形足球场的周长是300m,它的长比宽多30m,求这个足球场的长.

  五、课堂小结,感悟收获

  1、从实际问题到方程,一般要经历哪些过程?

  2、列方程的关键是什么?

  【课后作业】

  班级姓名学号

  一、选择:

  1.下列方程是一元一次方程的是()

  A.B.C.D.

  2.根据下列条件能列出方程的是()

  A.一个数的与另一个数的的和B.与1的`差的4倍是8

  C.和的60%D.甲的3倍与乙的差的2倍

  3.七年级二班共有学生48人,已知男生比女生少2人,问七年级二班男生、女生各有多少人?设七年级二班男生有男生x人,则下列方程中错误的是()

  A.B.C.D.

  4.课外兴趣小组的女生人数占全组人数的,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x人,则下列方程正确的是()

  A.B.C.D.

  二、根据实际问题的意义列出方程

  5.根据“x的5倍比它的35%少28”列出方程为________.

  6.一年三班55人,一年八班29人,因植树需要从三班中抽出x人到八班,使得两班人数相同,则根据题意可列方程为_____________.

  7.一个足球场的周长为310米,长和宽之差为25米,这个足球场的长和宽分别是多少?

  8.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分。甲队胜了多少场?平了多少场?

  9.三个连续奇数的和为57,求这三个数。

  10.一位教师和一群学生一起去看足球赛,教师门票按全票价每人70元,学生只收半价。如果门票总价910元,那么学生有多少人?

  11.某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满.问大船、小船各租了多少艘?

  12.议一议:育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度为4千米/小时,2班的学生组成后队,速度为6千米/小时,前队出发1小时后,后队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/小时。

  问题1:后队追上前队用了多长时间?

  问题2:后队追上前队时联络员行了多少路程?

  问题3:联络员第一次追上前队时用了多长时间?

  问题4:当后队追上前队时,他们已经行进了多少路程?

  你能根据题意再提出两个问题吗?和你的同学交流一下

小学方程的教案11

  一、教学目标

  1、使学生知道形积问题的意义,能分析题中已知数与末知数之间的相等关系,列出一元一次方程解简单的应用题;

  2、使学生了解列出一元一次方程解应用题的方法(含5个步骤)

  二、教学重点和难点

  列出一元一次方程解有关形积变化问题是重点;依题意准确把握形积问题中的相等关系是难点。

  三、教学过程

  (1)、复习引入(课前复习)钢铁工人正在锻造车间工作(照片或挂图)

  1、列方程解应用题应注意哪些事项?

  一是正确审清题意,找准“等量关系”;

  二是列出方程正确求解;

  三是判明方程解的合理性;

  2、列出方程解应用题的5个步骤是什么?

  3、填空:

  长方形的周长=面积=

  长方体的体积=正方体的体积=

  圆的周长==面积=

  圆柱的体积=

  (2)、例题讲解

  例1、将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少?

  分析:

  设锻压后圆柱的高为x厘米,填写下表:

  锻压前锻压后

  底面半径102cm

  202cm

  高36cmxcm

  体积∏*(102)2*36

  ∏*(202)2*x

  解:设锻压后圆柱的高为x厘米,根据等量关系,列出方程:

  解得x=9因此,高变成了9厘米。

  例2、用一根长10米的铁丝围成一个长方形。

  (1)使得长方形的长比宽多1、4米,此时长方形的长、宽各为多少米?面积呢?

  分析:由题意知,长方形的周长始终是不变的,在解决这个问题中,要抓住这个等量关系。

  解:(1)设此时长方形的宽为x米,则它的长为(x+1、4)米。

  根据题意,得

  2x=3、6x=1、8

  1、8+1、4=3、2面积=1、8*3、2=5、76

  此时长方形的长为3、2米,宽为1、8米;面积为5、76平方米。

  (2)使得长方形的长比宽多0、8米,此时长方形的长为(2、9)米,宽为(2、1)米,面积为(6、09)平方米。此时长方形的面积比(1)中面积增大(0、33)平方米。

  (3)若长与宽相等,此时正方形边长为(2、5)米,面积为(6、25)平方米。比(2)中面积增大(0、16)平方米。

  (4)若用10米长的铁丝围成一个圆,则半径约为(1、59)米,面积为(7、96)平方米,比(3)中面积增大(1、71)平方米。

  有何结论?---同样长的铁丝可以围更大的地方!

  (3)、随堂练习:你自己来尝试!

  墙上钉着用一根彩绳围成的梯形形状的.装饰物,小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,那么,小颖所钉长方形的长和宽各为多少厘米?

  分析:等量关系是变形前后周长相等

  解:设长方形的长是x厘米。

  则

  解得x=16

  因此,小颖所钉长方形的长是16厘米,宽是10厘米。

  (4)、开拓思维

  把一块长、宽、高分别为5cm、3cm、3cm的长方体木块,浸入半径为4cm的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢)

  相等关系:水面增高体积=长方体体积

  解:设水面增高x厘米。

  则

  因此,水面增高约为0、9厘米。

  (5)、——讨论题——

  1、在一个底面直径为3cm,高为22cm的量筒内装满水,再将筒内的水到入底面直径为7cm,高为9cm的烧杯内,能否完全装下?若装不下,筒内水还剩多高?若能装下,求杯内水面的高度。

  2、若将烧杯中装满水到入量筒中,能否装下?若装不下,杯内还剩水多高?

  答案1

  解:

  所以,能装下。

  设杯内水面的高度为x厘米。

  杯内水面的高度为4、04厘米。

  答案2

  解:因为

  所以,不能装下。

  设杯内还剩水高为x厘米。

  因此,杯内还剩水高为4、96厘米。

  (6)、小结:学完本节课你有什么收获?

  (7)、作业布置

  P/186页习题5、7共3题

  分式的概念导学稿

  张家港市第二中学责任导学稿

  年级:初二科目:数学执笔:初二数学组班级姓名

  课题课型主备人讲学时间

  分式的概念新授12年2月6日

  一、学习目标:

  1、了解分式和有理式的概念,明确分母不得为零是分式概念的组成部分。

  2、能求出使分式有意义的条件。

  3、知道分式中的分数线,不仅表示除号,还具有括号的作用。

  二、学前准备:按下列各问题,列出代数式:

  (1)已知正方形的周长是acm,则一边的长是cm,面积是____cm2、

  (2)从甲地到乙地的路程是20千米,某人用t小时走完全程,那么他的速度是千米/时、

  (3)已知长方形的周长是16cm,一边长是acm,则另一边的长是cm、

  (4)产量由m千克增长15%,就达到千克;

  (5)轮船在静水中每小时走a千米,水流速度是b千米/时,那么轮船在逆水中航行S千米所用的时间为____小时,在顺水中航行所用的时间为____时、

  问:什么叫整式?在上面所列出的代数式中,哪些是整式?

  三、探究活动:(请认真阅读下面的教学内容并加以理解、记忆!)

  (一)如果A、B表示两个整式,形如的式子叫分式。其中B中含有字母,在分母不为零的情况下分式才有意义。

  学习分式概念时,应弄清以下几点:

  1、分式是两个整式相除的商,其中分子是被除式,分母是除式,而分数线则可以理解为除号,还含有括号的作用。例如表示(a-b)÷(c+d)

  2、分式的分子可以含字母,也可以不含字母,但分母必须含字母。为什么?

  3、分母的值不得为零。分母的值是随着分式中字母取值的不同而变化的。字母取的值可能使分母的值为零,这时,分式无意义。所以要使一个分式有意义,必须指出所含字母不能取哪些值。例如:分式有意义的条件是x≠0;有意义的条件是x≠3。

  4、“分式无意义”和“分式的值为零”是两个根本不同的概念。

  当分式的分母为零时,分式无意义;当分式的分子为零且分母不为零时,分式的值为零。

  (二)整式和分式统称为有理式。即整式是有理式,分式也是有理式。

  四、例题:例1:下列各有理式,哪些是整式?哪些是分式?

  -,0,(m-n),整式有:分式有:

  例2:当x取什么值时,下列分式有意义?例3:当x是什么数时,分式的

  (1)(2)值是零

  例4:当x为何值时,下列式子的值为负数

  (1)(2)(3)

  解:(1)∵分子1>0(2)(3)

  ∴分母1-3x<0时,分式的值为负数。

  解得x>_______

  五、课堂练习:

  1、在有理式,12(x+y),23xy,7b-22a+3,,中,分式有()

  A、3个B、4个C、5个D、6个

  2、使分式的值为零的x的值是()

  A、2B、-2C、±2D、不存在

  3、无论x取什么值,下列各式中总有意义的是()

  A、B、C、D、

  4、若x满足则x的值为()

  A、负数B、正数C、非正数D、非负数

  5、有理式有意义的条件是()

  A、x≠0B、x≠±3C、x≠3D、x≠-3

  6、若分式a-ba+b的值为零,则a与b应满足()

  A、a=bB、a与b互为相反数C、a=b=0D、a=b≠0

  7、当x=-0、5时,下列分式中有意义的是()

  A、B、C、D、

  8、在分式中,当y=时,分式无意义;当y=时,分式值为零。

  9、在分式中,当x=时,分式有意义;当x=时,分式值为零

  10、当x=时,分式值为零

  11、当x=时,分式值为零。

  12、当x=时,分式没有意义;当x时,分式有意义

  13、当x为何值时,下列分式的值为零?

  (1)(2)(3)(4)

  14、当x为何值时,分式的值为?

  15、已知,求代数式

  16、已知

  六、课后练习:

  1、当x=-3时,在下列分式中,有意义的是()

  (1)(2)(3)(4)

  A、只有(1)B、只有(4)C、只有(1),(3)D、只有(2),(4)

  2、在分式中,当x=-m时,分式()

  A、值为0B、无意义C、当时,值为0D、不能确定

  3、在代数式中,分式有

  4、分式的值为零,则a=,b5、分式有意义,x的取值范围是

  6、分式的值为零,则a=

  7、已知,x取哪些值时,(1)y的值是正数?(2)y的值是负数?(3)分式无意义?

  8、若分式的值为正数,求m的取值范围。

  七、拓展延伸

  1、(1)当为何值时,分式有意义?(2)取何值时,分式总有意义?

  2、对于任意非零实数,定义运算“”如下:、求的值。

小学方程的教案12

  设计说明

  1.创设情境,引入新课。

  数学教学中,教师要不失时机地创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。上课伊始,由学生喜欢的体育运动这一话题引入本节课的情境,拉近了课本与学生的距离,使学生产生浓厚的学习兴趣。

  2.重视解题方法的教学。

  “授之以鱼不如授之以渔”,解决问题的教学,关键是理清思路,教授方法,启迪思维,提高解题能力。因此在这节课的教学中,首先让学生观察图画,了解画面信息,接着组织学生小组交流,分析数量关系,讨论解决问题的方法。在列方程解决问题的过程中,通过设计关键问题,层层深入引导学生讨论交流,使学生学会写设句,并根据题中的数量关系列出方程。最后引导学生总结列方程解决问题的步骤,使学生对本节课的知识有一个系统的认识。

  课前准备

  教师准备PPT课件学情检测卡课堂活动卡

  学生准备练习卡片

  教学过程

  ⊙创设情境,谈话导入

  师:同学们都喜欢什么体育运动?

  生:排球、乒乓球、篮球、足球……

  师:你知道吗?有一个小朋友叫小明,他跟你们一样,也非常喜欢体育运动,更是在学校的跳远比赛中破了纪录,你们想知道学校原来的跳远纪录是多少吗?这节课我们就来列方程解决这个问题。(板书课题)

  设计意图:把学生感兴趣的话题引入到新知的学习中,通过创设情境使学生感受到生活中处处有数学,从而对本节课的知识产生探究欲望,这样的设计过渡自然、顺理成章。

  ⊙探究新知

  1.教学例1,出示情境图。

  (1)写用字母x表示未知数的.设句。

  师:请同学们认真观察情境图并说说从中获取了哪些信息。

  预设生1:小明的跳远成绩为4.21m,超过原纪录0.06m。

  生2:这道题让我们求学校原跳远纪录是多少米。

  师:应该设谁为x?怎样把x表示什么写清楚?

  生:这道题要求学校原跳远纪录是多少米,应设学校原跳远纪录为xm。

  (2)找出题中的等量关系,列出方程。

  师:你能找出题中的等量关系吗?

  (生讨论后汇报:原纪录+超出部分=小明的成绩)

  师:你能根据等量关系列出方程吗?以小组为单位讨论。

  (生小组讨论后汇报:x+0.06=4.21)

  (3)解方程并检验。

  师:请同学们试着解方程。

  (生尝试完成解题全过程并汇报)

  教师根据学生汇报,板书解题过程:

  例1解:设学校原跳远纪录是xm。

  x+0.06=4.21

  x+0.06-0.06=4.21-0.06

  x=4.15

  ,答:学校原跳远纪录是4.15m。

  生检验并交流方法。

  预设生1:把x=4.15代入原方程,看方程左右两边是否相等,如果相等就说明做对了。

  生2:把x=4.15代入原题中,看看和原题的已知条件是否相符,如果相符就说明做对了。

小学方程的教案13

  教材分析

  1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。

  2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。

  学情分析

  1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。

  2、学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。

  3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。

  教学目标

  1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。

  2、掌握解方程的步骤和书写格式。

  3、提高学生分析问题并用数学知识解决问题的能力。

  4、培养学生进行数学探究的能力及合作意识。

  教学重点和难点

  1、本节课的重点是:根据等式的性质解方程。

  2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。

  教学过程

  一、复习导入:

  1、什么叫方程?什么叫方程的解? 什么叫解方程?

  2、前面,我们学习了两个等式保持不变的规律,等式的不变规律是什么?

  等式这些规律在方程中同样适用吗?

  今天我们就学习如何利用等式保持不变的规律来解方程。

  二、探究新知:

  1、电脑出示课件例1。

  2、从图中可以获取哪些信息?图中表示了什么样的等量关系?

  要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?

  3、探究怎样解方程。

  利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?

  (让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)

  4、知识迁移。

  把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?

  (方程两边同时减去一个3,左右两边仍然相等。)

  板书+3—3=9—3

  x=6

  5、追问:左右两边同时减去的为什么是3,而不是其它数呢?

  (因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)

  6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的.解)

  8、学生练习:解方程(X+21=32 X+41=50)

  9、学生讨论交流:解X+a=b这类方程的思路是什么?

  10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?

  11、学生尝试解方程:X—3=9

  12、学生讨论交流:解X—a=b这类方程的思路是什么?

  13、小结:解X+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)

  三、巩固练习:

  1、填一填(出示课件)。

  使学生进一步加深理解和运用等式不变规律1解决问题实际问题。

  2、书上“做一做”第1题(1)题

  3、巩固尝试:解方程(出示课件)。

  让学生独立完成会用等式不变规律1解方程,强调验算。

  四、课堂总结:

  通过这节课的学习,你都有哪些收获?

  五、拓展活动:

  利用课余时间小组内探究像32—X=10这类方程可以怎样解?

  六、作业设计:

  练习十一第5题一二行,第6题一行。

小学方程的教案14

  一、教学内容:

  教材第94页例1、“练一练”,练习二十—第1—4题。

  二、教学要求:

  使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。

  三、教学过程:

  一、复习导入。

  1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)

  2、根据下列句子说出数量之间的相等关系。

  杨树和柳树一共120棵

  杨树比柳树多120棵

  杨树比柳树少120棵

  3、出示线段图:梨树:

  桃树:

  从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?

  4、出示条件:母鸡的只数是公鸡的5倍。

  根据这个条件,你可以知道什么?如果公鸡的只数用x表示,那么母鸡的只数可以怎样来表示?

  5、在括号里填上含有字母的式子。(练习二十一第1题)

  6、交流:板演,你是根据怎样的数量关系来解答的?

  7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)

  二、教学新课。

  1、教学例1 果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?

  (1)齐读。

  (2)这道题已知什么条件,要求什么问题?边问边画出线段图。

  桃树的棵数是梨树的3倍,把哪个数量看做一份?用线段图来表示我们先画梨树,桃树的`棵数有这样的几份?还告诉我们什么条件?这道题的问题是什么?

  (3)“梨树和桃树各有多少棵”是什么意思?

  这道题要求的数量有两个,你认为用什么方法做比较简便?

  (4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。

  (5)交流。

  (6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。

  校对板演。还可以怎样求桃树的棵树?

  (7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。

  2、教学想一想。

  现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)

  一生板演,其余齐练。

  集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?

  3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)

  4、小结。

  从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。

  三、巩固练习。

  1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?

  2、只列式不计算。

  一个自然保护区天鹅的只数是丹顶鹤的2.2倍。

  (1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?

  (2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?

  3、选择正确的解法。

  明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?

  (1)解:设鸡和鸭各有x只。 x+3x=56

  (2)解:设鸡有x只,鸭有3x只。 x+3x=56

  (3)解:设鸭有x只,鸡有3x只。 x+3x=56

  商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?

  (1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26

  (2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26

  四、课堂总结。

  今天我们一起学习了什么?你感觉到今天学的应用题有什么特点?那你有哪些收获呢?还有什么疑问吗?

  老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。

  五、作业:

练习二十一/2—5

小学方程的教案15

  教学要求:掌握直线方程的两点式与截距式,能熟练地由已知条件求直线的方程。

  教学重点:掌握两点式与截距式方程。

  教学过程:

  一、复习准备:

  1.求下列直线的方程:

  ①过点P(-2,1),倾斜角与直线y=2x-3的倾斜角互补;

  ②在y轴上截距为-1,倾斜角的正弦为;

  ③在x轴上截距为2,且斜率为-3。

  2.知识回顾:点斜式;斜截式

  二、讲授新课:

  1.教学两点式、截距式方程:

  ①预备题:求过点A(-2,1)、B(3,6)的直线方程

  ②先讨论解法→试解(常规解法:先求k)

  ③讨论:设直线AB上任意点P(x,y)后,与A、B两点坐标有何关系?是否是方程?

  ④出示例:已知直线L过点P(x,y)、P(x,y)(x≠x),求直线L的方程。

  ⑤讨论解法。(分别从斜率、定比分点等角度思考)

  解法一:先求k,代入点斜式;解法二:用定比公式建立等式;

  解法三:用斜率相等建立等式

  ⑥观察三种求出结果共同点,化成统一形式,定义直线两点式方程,强调对应关系。

  ⑦练习:已知直线所经过两点,求直线方程:A(2,1)、B(0,-3);(a,0)、(0,b)

  ⑧定义:直线的截距式方程+=1,其中a、b分别为直线在x、y轴上的截距。

  2.教学例题:

  ①出示例:△ABC中,A(-5,0)、B(3,-3)、C(0,2),求三边所在直线方程。

  ②分析:每边所在直线方程所选用的适当方程式。

  ③练习:写出过A(3,-1)、B(-2,5)直线两点式方程,并化为截距式、斜截式方程。

  三、巩固练习:

  1.求过点P(-5,-4),且满足下列条件的直线方程:

  ①倾斜角的正弦是;②与两坐标轴围成的三角形的.面积等于5;

  ③倾斜角等于直线3x-4y+5=0的倾斜角的一半。

  2.直线L过点P(1,4),且在坐标轴上截距均正,求两截距之和最小值及L方程。

  变题:当三角形面积最小式,求直线L的方程。

  3.课堂作业:书P447、10、12题。

【小学方程的教案】相关文章:

小学方程教案10-04

《方程》教案09-28

圆的方程的教案06-15

方程的意义教案09-06

《方程的意义》教案05-16

小学五年级方程教案01-22

《方程》教案15篇09-30

从问题到方程的教案07-14

椭圆方程教案实用10-07

《方程的意义》教案[必备]05-16